- 无标题文档
查看论文信息

中文题名:

 洋葱种子引发处理的生物学效应及丸粒化技术初探    

姓名:

 王瑞    

学号:

 2019804202    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 095102    

学科名称:

 园艺    

学生类型:

 硕士    

学位:

 农业硕士    

学校:

 南京农业大学    

院系:

 园艺学院    

专业:

 农艺与种业(专业学位)    

研究方向:

 蔬菜生产原理与良种繁育    

第一导师姓名:

 王建军    

第一导师单位:

 南京农业大学    

完成日期:

 2021-06-13    

答辩日期:

 2021-06-17    

外文题名:

 Biological Effcets Of Onion Seed Initiation Treatment and Preliminary Study On Pelletization Technology    

中文关键词:

 种子引发+种子丸粒化 ; 种子活力 ; 生理指标 ; 主成分分析    

外文关键词:

 Seed priming + seed pelleting ; Seed vigor ; Physiological indicators ; Principal component analysis    

中文摘要:

本试验以洋葱品种‘连葱9号’为试验材料,探究不同的单一引发剂和组合引发剂对洋葱种子引发处理效果的影响,筛选出最佳引发剂;选用4%聚乙烯醇为粘合剂,滑石粉、膨润土为填充料,筛选获得了洋葱种子最佳的丸粒化配方。将种子引发处理后再进行种子丸粒化,引发与丸粒化相结合,旨在为提高洋葱种子活力和洋葱机械化生产提供的实践理论依据。主要研究结果如下:

1.不同浓度的PEG6000、KNO3、SA、H2O2、 H3BO3单一引发剂对‘连葱9号’种子进行引发处理,不同程度的提高了‘连葱9号’种子的发芽势、发芽率、发芽指数、活力指数等发芽指标。经综合比较不同浓度单一引发剂对种子发芽指标的引发效果,确定4种单一引发剂最佳浓度分别为10%PEG6000、0.5%KNO3、0.1%H2O2、0.15% H3BO3,发芽势分别提高了17%、15%、23%、18%,发芽率分别提高了17%、11%、17%、16%。

2.用最佳浓度的PEG6000、KNO3、H2O2、 H3BO3单一引发剂进行两两1:1组合成6种组合引发剂,4种最佳单一引发剂和6种组合引发剂进行引发试验。结果显示,在发芽指标和生长指标方面,大部分引发处理与对照CK相比有更好的表现。其中,A8(0.5%KNO3+0.1%H2O2)的表现最好,发芽势和发芽指数分别比CK(清水引发)增加了24%和19.82。

在生理指标方面,叶绿素含量的变化不显著,相对电导率和MDA不同程度降低,根系活力、可溶性蛋白含量、可溶性糖含量、SOD和CAT活性不同程度增加。MDA含量与可溶性糖含量、根系活力、SOD活性均呈显著负相关;根系活力与可溶性蛋白含量、及CAT、SOD活性均呈显著正相关。0.1%H2O2+0.5%KNO3、0.15%H3BO3+10%PEG6000这2种组合引发剂的引发效果最为显著。经综合比较引发处理后种子发芽指标和生理指标表现,确定最佳引发剂为组合引发剂0.5%KNO3+0.1%H2O2。

对引发处理后的生长及生理生化指标进行了主成分分析。结果表明,洋葱种子发芽指标中,发芽率得分最高;幼苗期各生长指标中,最大叶宽得分最高;生理生化指标,叶绿素含量得分最高。

3. 种子引发和种子丸粒化相结合。用最佳引发剂0.1%H2O2+0.5%KNO3进行引发处理后回干,再进行丸粒化处理。选用4%聚乙烯醇为粘合剂,滑石粉、膨润土为填充材料进行种子丸粒化处理。结果表明,滑石粉:膨润土为7:3比例的6倍物料比下丸粒化效果最好,且在发芽指标上与CK(0.1%H2O2+0.5%KNO3引发过的未丸粒化的种子)相比无显著差异,发芽势和发芽率分别为89.33%和91.33%,保持了原有的发芽活力。

对丸粒化种子质量指标和发芽指标进行了主成分分析,结果表明,洋葱丸粒化种子的有籽率得分最高。

外文摘要:

In this experiment, the onion variety 'Lian Cong No.9' was used as the test material to explore the effects of different single initiators and combination initiators on the priming effect of onion seeds, and the best initiator was selected; 4% polyvinyl alcohol was selected as the binding agent with talcum powder and bentonite as fillers, the best pelleting formula of onion seeds was obtained through screening. After the seed is primed, the seeds are pelletized, and the combination of prime and pelletizing aims to provide a practical theoretical basis for improving onion seed vigor and mechanized production of onion. Below are key research findings:

1. Single initiators of different concentrations of PEG6000, KNO3, SA, H2O2, H3BO3 primed 'Lian Cong No.9', which improved the germination potential, germination rate, germination index and vitality of 'Lian Cong No.9' to varying degrees. Index and other germination indicators. After comprehensively comparing the initiation effects of different concentrations of single initiators on seed germination indicators, it was determined that the best concentrations of the four single initiators were 10% PEG6000, 0.5% KNO3, 0.1% H2O2, 0.15% H3BO3, and the germination potential increased by 17%, 15%, 23%, 18%, the germination rate increased by 17%, 11%, 17%, 16% respectively.

2. Use the optimal concentration of PEG6000, KNO3, H2O2, H3BO3 single initiators to combine 1:1 into 6 combination initiators, 4 best single initiators and 6 combination initiators for initiation test. The results showed that in terms of germination indicators and growth indicators, most of the priming treatments performed better than the control CK. Among them, A8 (0.5%KNO3+0.1%H2O2) performed best, with germination vigor and germination index increased by 24% and 19.82 respectively compared with CK (initiated by clear water).

In terms of physiological indicators, the chlorophyll content did not change significantly, the relative conductivity and MDA decreased to varying degrees, and the root activity, soluble protein content, soluble sugar content, SOD and CAT activities increased to varying degrees. MDA content was significantly negatively correlated with soluble sugar content, root vitality, and SOD activity; root vitality was significantly positively correlated with soluble protein content, and CAT and SOD activities. The two combination initiators, 0.1%H2O2+0.5%KNO3, 0.15%H3BO3+10%PEG6000, have the most significant initiation effect. After comprehensively comparing the performance of seed germination indexes and physiological indexes after priming treatment, it was determined that the best initiator was the combined initiator 0.5%KNO3+0.1%H2O2.

Principal component analysis was carried out on the growth and physiological and biochemical indexes after priming treatment. The results showed that the germination index of onion seeds had the highest scores for germination rate; the growth indexes of seedling stage had the highest scores for maximum leaf width; the physiological and biochemical indexes had the highest scores for chlorophyll content.

3. Combination of seed priming and seed pelleting. Use the best initiator 0.1%H2O2+0.5%KNO3 for initiation treatment, then return to dryness, and then perform pelletizing treatment. Use 4% polyvinyl alcohol as binder, talc powder and bentonite as filling materials for seed pelletizing treatment. The results showed that talc: bentonite is 6 times the material ratio of 7:3 for the best pelletizing effect, and the germination index is comparable to CK (unpelleted seeds triggered by 0.1%H2O2+0.5%KNO3) Compared with no significant difference, the germination vigor and germination rate were 89.33% and 91.33%, respectively, maintaining the original germination vigor.

Principal component analysis was carried out on the quality index and germination index of pelleted seeds. The results showed that the onion pelleted seeds had the highest seed rate score.

参考文献:

[1]李威亚,惠林冲,陈微 等.不同地膜覆盖对洋葱生长及产量的影响[J].现代园艺,2020,43(21):52-53.

[2]樊治成,高兆波,李建友.我国葱蒜类蔬菜种质资源和育种研究现状[J].中国蔬菜,2004(06).

[3]林辰壹,张丽辉,赵芸.青霉素对老化洋葱种子发芽及幼苗生长的影响[J].新疆农业大学学报,2007(01):44-47.

[4]万玮.江苏连云港地区洋葱高产高效栽培技术[J].农业工程技术,2020,40(35):67-68.

[5]梁毅,王永勤,于春霞,等.中国洋葱产业的回顾与展望[J].中国农学通报,2009,25(24):308-312.

[6]赵靖,宋述尧,韩玉珠,等.分蘖洋葱和普通洋葱营养品质的比较[J].西北农林科技大学学报(自然科学版),2015,43(1):106-110.

[7]邓浩亮,张恒嘉,肖让,等.膜下滴灌调亏在提升河西绿洲洋葱产量及品质的应用[J].水土保持学报,2020,34(04):201-208.

[8]姜英,卢红.洋葱无公害高产栽培及病虫害绿色防控技术[J].上海蔬菜,2020(06).

[9]梁雪岩.洋葱在功能食品中的应用及发展前景[J].现代食品,2020(13):106-108.

[10]高金龙,张衍荣,郑锦荣,等.我国洋葱产业发展的思考[J].广东农业科学,2009(06).

[11]李平,郁网庆.我国洋葱产业现状及发展[J].农技服务,2005,(10).

[12]魏照信,夏成明,王学强,等.河西走廊洋葱生产现状及发展建议[J].中国蔬菜,2012(01):8-11.

[13]李金祥,王洁,韩俊.建水县面甸镇洋葱高产栽培技术[J].现代农业科技,2014(24):104-105.

[14]唐成顺.对嘉峪关市洋葱产业发展的思考[J].农业科技与信息,2007(08):13.

[15]Finch-Savage W E, Bassel G W. Seed vigour and crop establishment: extending performance beyond adaptation[J]. Journal of Experimental Botany, 2016, 67(3):567-91.

[16]周峰,华春,贲爱玲,等.种子活力和作物产量[J].种子,2017,36(03):50-53.

[17]屈冬玉,李树德.中国蔬菜种业大观[M].北京:中国农业出版社, 2001.

[18]赵颖雷. 水-电场混合引发对洋葱种子活力的恢复及其机理研究[D].上海交通大学,2019.

[19]詹明兴.种子老化及活力修复研究进展分析[J].种子科技,2017,35(06):112-113.

[20]黄守程,刘爱荣,叶梅荣,等.水杨酸修复老化玉米种子活力的研究[J]. 湖北农业科学, 2016, 55(08):1917-1919.

[21]Caseiro R, Bennett M A, Marcos-Filho J.Comparison of three pri ming techniques for onion seed lots differing in initial seed quality[J].Seed Science and Technology, 2004,32 (2) :365-375.

[22]李兆东,孙誉宁,杨文超,等.光束阻断式小粒蔬菜种子漏充与堵孔同步检测系统研究[J].农业机械学报,2018,49(08):119-126.

[23]王建军,侯喜林,宋慧,等.洋葱育种研究进展[J].中国蔬菜,2003,(04).

[24]潘天春.洋葱育种的探索与实践[J].江苏农业科学,2013,41(05):119-121.

[25]陈沁滨,王建军,薛萍,等.洋葱种质资源与遗传育种研究进展[J].中国蔬菜,2008(01).

[26]刘冰江,杨妍妍,吴雄.洋葱品质育种研究进展[J].山东农业科学,2009(04):38-41.

[27]谢丰汁.嘉峪关市洋葱产业现状及对策[J].甘肃科技,2014,30(18):6-8.

[28]后彭斌,郭崇杰,杨杰,等.酒泉市肃州区洋葱产业发展问题研究[J].农村经济与科技,2020,31(01):232-233.

[29]杜承豫,史晓倩,孙佳勇,等.浅谈“一带一路”背景下酒泉市洋葱种植业发展路径[J].山西农经,2019(02):85.

[30]刘建新,刘瑞瑞,贾海燕,等.NaHS引发提高裸燕麦种子活力的生理机制[J].草业学报,2021,30(02):135-142.

[31]牛晓雪,牟萌,李保华,等.FeSO4引发提高秦艽种子萌发的生理机制[J].中国生态农业学报,2018,26(12):1828-1835.

[32]毛培胜,张晔,黄琪,等.褪黑素引发对敖汉苜蓿种子碱性盐胁迫的缓解作用[J].中国草地学报,2020,42(03):30-36.

[33]赵玥,辛霞,王宗礼,等.种子引发机理研究进展及牧草种子引发研究展望[J].中国草地学报,2012,34(03):102-108.

[34]马悦,王荣华,朱腾翔,等. 过氧化氢、硼酸、PEG对甜菜种子萌发的影响[J].中国农学通报,2020,36(06):19-23.

[35]Heydecker W, Higgins J, Gullive R L. Accelerated germination by osmotic seed treatment[J]. Nature, 1973, 246:42-44.

[36]Hegarty T W. The physiology of seed hydration and the control of germination :Areview[J]. Plant Cell Environ, 1997, 78:349 359.

[37]王彦荣.种子引发的研究现状[J].草业学报,2004(04):7-12.

[38]Muhammad Farooq et al. Integrated use of seed priming and biochar improves salt tolerance in cowpea[J]. Scientia Horticulturae, 2020, 272.

[39]Jafar, M.Z., Farooq, M., Cheema, M.A., et al. Improving the Performance of Wheat by Seed Priming Under Saline Conditions[J]. Journal of Agronomy and Crop Science, 2012, 198(1) : 38-45.

[40]郑宇,杨小峰,白亮宇,等.荞麦种子引发处理研究[J].科学之友,2011(19):160-163

[41]杨文杰,巢思琴.不同化学药剂对黄秋葵种子的引发效果试验[J].天津农业科学,2016,22(11):115-119.

[42]季延海,吴萍,王晨,等.风选和引发处理对甜椒种子萌发及幼苗生长的影响[J].中国瓜菜,2020,33(01):29-32.

[43]富波年,马乐元,马慧霞,等.PEG引发对小冠花种子萌发及幼苗生理特性的影响[J].草原与草坪,2021,41(01):126-131.

[44]肖爽,韩雨辰,号宇然,等.聚乙二醇引发对盐胁迫下棉种萌发及生理特性的影响[J].核农学报,2021,35(01):202-210.

[45]闫月,卢艳,崔程程,等.聚乙二醇引发处理对水曲柳种子在高温下萌发的影响[J].东北林业大学学报,2020,48(06):13-16.

[46]赵晓晨,田雨,张红香.PEG引发紫花苜宿种子的最优处理方案[J].草业科学,2019,36(10).

[47]杨雪桐,张永强,曹微,等.PEG引发种子对大豆产量及主要农艺性状的影响[J].黑龙江八一农垦大学学报,2016.

[48]李昆峰,张效宁,张倩倩,等.不同药剂处理对菜心种子萌发的影响[J].山西农业科学,2020,48(06):892-895.

[49]马文广,利站,郑昀晔,等.过氧化氢增氧引发对烟草种子活力的影响[J].中国烟草科学,2015,36(05):8-12.

[50]韩燕雨,鲁凤年,宋佳,等.两种引发剂对黄芩种子萌发及幼苗生长的影响[J].山东农业科学,2020,52(02):59-63.

[51]张泽旭,骆岩,王维成,等.基于磷酸二氢钾引发剂组合对甜菜种子的影响[J].中国农学通报,2019,35(22):25-30.

[52]姚东伟,吴凌云,沈海斌,等.种子引发技术研究与应用进展[J].上海农业学报,2020,36(05):153-160.

[53]江绪文.草坪草种子引发及其生理生化变化的研究[D].安徽农业大学,2008.

[54]罗金梅,张忠武,孙信成,等.豇豆种子水引发研究[J].农学学报.2019,9(09).

[55]吴萍,宋顺华,张海军,等.精选和引发处理对萝卜种子质量的影响[J].黑龙江农业科学,2020(01):96-99.

[56]陈亮,刘斌,麻玉梅,等.引发处理对野生西瓜种子萌发及生理生化特性的影响[J].中国瓜菜,2014,27(S1):41-45.

[57]董志朋,刘顼,唐玉姣,等.我国种子引发技术在作物抗旱性上的研究进展[J].种子,2016,35(10):53-58.

[58]方敦煌,顾金刚,李天飞,等.防治烟草黑胫病的根际细菌分离与筛选[J].中国烟草学报,2001.(03):19-22.

[59]孙玉军,司文会,李春,等.抗旱剂拌种处理对小麦萌发和幼苗生长的影响[J].种子,2002,21(4):25-29.

[60]贾洪涛,曹善东,杜立树.小麦专用复方抗旱型浸种剂和包衣剂抗旱机理的初步研究[J].麦类作物学报,2010,30(3):496-499.

[61]卫亚红,Dorna H.引发剂、杀真菌剂和生物制剂对洋葱种子的抑菌作用(英文)[J].西北农林科技大学学报(自然科学版),2006(01).

[62]孙建华,王彥荣,余玲,等.聚乙二醇引发对几种牧草种子发芽率和活力的影响[J].草业学报,1999,(02).

[63]Vertucci C W. The kineticsv of seed imbibtion:controlling factor s and relevance to seeding vigor(A). In:stanwoodPc, McDonaldMB. Seed moisture[M]. CSSA Special Publication No.14, 1989, 93 115.

[64]傅家瑞.种子生理[M].北京:科学出版社,1985.335-375.

[65]吴凌云,李明,姚东伟. 种子引发对辣椒和茄子种子在不同温度下萌发和出苗的影响[J].上海农业学报,2017,33(03).

[66]Robert S G,Kathryn J S and Andrew.Crawford alleviation of dormancy in annual ryegrass seeds by hydration and after-ripening[J].Weed science,2004,52:968-975.

[67]Madakadze I C, Prithiviraj B, Madakadze R M,et al.Effect of preplant seed conditioning treatment on the germination of switchgrass(Panicum virgatum L)[J].Seed Sci.and Tec,2000,28:403-411.

[68]王茂芊,王维成,吴则东,等.我国甜菜种子引发研究进展[J].中国糖料,2018,40(05):70-72.

[69]吴萍,宋顺华,宫国义,等.引发处理对西瓜种子保存和寿命的影响[J].北方园艺,2015(02):29-33.

[70]李明,姚东伟,陈利明.园艺种子引发技术[J].种子,2004(09).

[71]李建设,高艳明,冯艳.蛭石和珍珠岩基质引发对洋葱种子发芽率影响[J].北方园艺,2006(06):16-17.

[72]穆瑞霞. 人工老化与引发对大葱种子活力及幼苗生理生化变化的影响[D].河南农业大学,2008.

[73]单昕昕.不同引发剂对洋葱种子的处理效果[D].南京农业大学,2018.

[74]熊自立,朱剑桥,宋文坚.浅谈种子包衣丸化技术[J].中国种业,2004(6):49-51.

[75]侯占峰,陈利杰,陈智,等.牧草种子丸粒化包衣运动规律与参数优选研究[J].农机化研究,2021,43(11):184-191.

[76]郑述东,史志明,曹亮,等.小粒蔬菜种子丸粒化研究及其应用前景[J].种子科技,2019,37(14):19-23.

[77]尚兴朴,朱勇,邓庭伟,等.我国中药材种子丸粒化研究进展[J].中国现代中药:1-12.

[78]张会娟,胡志超,王海鸥,等.种子丸粒化加工技术发展探析[J].江苏农业科学,2011,39(04):506-507.

[79]李明,姚东伟,陈利明.我国种子丸粒化加工技术现状(综述)[J].上海农业学报,2004(03):73-77.

[80]陈凯,韩柏和,陆岱鹏,等.甘蓝种子丸粒化包衣加工工艺及其对品质的影响[J].中国农机化学报,2019,40(08):82-88.

[81]吴春胜,杨伟光.种子包衣处理新方法对玉米幼苗的影响[J].吉林农业大学学报,1997,19(3).

[82]杜肖岚.种子包衣——一项农业增产的新技术[J].内蒙古农业科技.1993,6.

[83]张彦才,刘明分,李若楠.种子丸粒化技术及其研究进展[J].作物研究,2007(03):173-175.

[84]郭战玲,张超泉,李太魁,等.麦套朝天椒省工减肥高效栽培技术[J].中国瓜菜,2020,33(08).

[85]崔慕华,韩兴华,赵玉云,等.洋葱全程机械化栽培技术[J].中国蔬菜,2018(09):77-79.

[86]Taylor A G,Grabe D F,Paine D H.Moisture contant and water activity determination of pelleted and film coated seeds[J].Seedtechnol,1997,19:24-32.

[87]王维成,王荣华,高有军,等.甜菜种子丸粒化加工技术初探[J].中国糖料,2016,38(05).

[88]陶启威,俞元春,张文英,等.柠条锦鸡儿与小叶锦鸡儿种子丸粒化及发芽特性[J].安徽农业大学学报,2015,42(01):60-64.

[89]杨丽芳,高捍东,顾美影,等.柠条种子丸粒化配方的筛选[J].南京林业大学学报(自然科学版),2019,43(05):9-15.

[90]陈馨,蔺海明.凹凸棒石新型材料必将在现代生态农业中发挥重要作用[J].甘肃农业,2019(08):95-98.

[91]Chang J W and Kim S D.Seed coating for the application of biocontrol agent Bacillus subtilis YBL-7against phytopathogens[M].Korean Journal of Applied Microbiology and Biotechnology(Korea Republic),1995,23(2):243-248.

[92]李明,周志疆,王文娟,等.不同烘干时间对丸粒化青菜种子含水率与发芽出苗率之影响[J].上海农业学报,2003(03):44-46.

[93]王关平,王咏梅,牛彩霞,等.基于简易专家系统的智能种子包衣机控制实现[J].农业机械,2013(19):152-155.

[94]程广宇,陈云,付斌军,等.新疆种子丸粒化技术发展探析[J].新疆农垦科技,2015,38(07).

[95]孙守如,朱磊,栗燕,等.种子丸粒化技术研究现状与展望[J].中国农学通报,2006(06):151-154.

[96]雷燕.中药材小粒种子丸粒化加工技术研究进展[J].农业技术与装备,2020(03):44-45.

[97]王少先,彭克勤,萧浪涛.种子包衣及丸化技术研究进展[J].种子,2002(05):32-35.

[98]曹本.烟草种子包衣丸粒化技术的新进展[J].中国烟草,1993,3:(42).

[99]招启柏.不同丸化包衣种对烟苗素质的影响.烟草科技,1999(1):37-38.

[100]王瑛.促进特殊种子发芽的处理种子方法[J].种子科技,2006(02).

[101]杨波,何俊瑜,任艳芳,等.过氧化氢对镉胁迫下水稻种子萌发的缓解效应[J].植物生理学 报,2018,54(06):1111-1118.

[102]韩东敏,谢贵明.过氧化氢对盐胁迫下黄瓜种子萌发的影响[J].吉林蔬菜,2011(05):74-75.

[103]刘婷,史宝胜.硼酸、吲哚乙酸、硫酸铜溶液对天仙子和龙胆种子萌发的影响[J].河北科技师范学院学报,2018,32(02):44-50.

[104]王少平,林紫玉,刘改芬.不同浓度硼酸对蜀葵种子发芽的影响[J].北方园艺,2007(10):128-130.

[105]陈宝悦,陈子敬,王倩.聚乙二醇6000引发对芹菜种子萌发及生长的影响[J].北方园艺,2016(06):10-13.

[106]祁瑞林,张红瑞,彭涛,等.不同引发剂对贮藏夏枯草种子引发效果的影响[J].浙江农业科学,2018,59(02):283-286.

[107]牟建梅,张国芹,刘凤军,等.白菜叶绿素含量的测定方法筛选[J].江苏农业科学,2014,42(09):289-290.

[108]武辉,侯丽丽,周艳飞,等.不同棉花基因型幼苗耐寒性分析及其鉴定指标筛选[J].中国农业科学,2012,45(9):1703-1713.

[109]吴殿廷,吴迪.用主成分分析法作多指标综合评价应该注意的问题[J].数学的实践与认识,2015,45(20):144-150.

[110]李小玲,华智锐,许肖.引发剂对黄岑种子萌发及幼苗耐旱性的影响.河南农业科学,2019,48(08):61-67.

[111]王永超,郭素娟,马履一.白皮松抗老化最适含水量的选择及其机制分析[J].种子,2010,29(4):52-55.

[112]聂永雄,覃永业,唐世斌,等.PEG胁迫对六堡茶生理指标的影响[J].山西农业科学,2020,48(04):535-539.

[113]欧阳泽怡,陈雯彬,欧阳硕龙,等.低磷胁迫对赤皮青冈幼苗叶片生理指标的影响[J].中南林业科技大学学报,2021,41(01):69-79.

[114]芦光新,李希来,乔有明.丸粒化处理对几种牧草种子萌发及生理特性的影响[J].草地学报,2011,19(3).

[115]周玉瑞.胡麻种子丸粒化技术效果初探[D].甘肃农业大学,2014.

中图分类号:

 S63    

开放日期:

 2021-09-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式