中文题名: | 新疆小麦长颖基因TaVRT2的 精细定位、克隆与功能验证 |
姓名: | |
学号: | 2019801215 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 095101 |
学科名称: | 农学 - 农业推广 - 作物 |
学生类型: | 硕士 |
学位: | 农业硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 小麦遗传育种 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
完成日期: | 2021-06-01 |
答辩日期: | 2021-06-01 |
外文题名: | Fine Mapping, Cloning and Functional Verification of a Long Glume Regulating Gene TaVRT2 in Triticum Petropavlovskyi |
中文关键词: | |
外文关键词: | Triticum petropavlovskyi ; long glume ; fine mapping ; map-based cloning ; genetic transformation |
中文摘要: |
新疆小麦(Triticum petropavlovskyi Udacz.et Migusch.,2n=6x=42,AABBDD)是我国新疆特有的六倍体栽培裸粒小麦。新疆小麦与普通小麦在形态学方面有许多明显的区别,如长穗、长颖、长粒和高千粒重等,特别是长颖表型,是新疆小麦最突出的性状。目前,国内外学者对新疆小麦的起源演化过程和长颖性状的遗传分析进行了许多研究,但仍然未有定论,也尚未克隆到控制新疆小麦长颖的基因P1。颖壳长度是重要的农艺性状,颖壳不但能作为源器官进行光合作用产生同化物,也能作为库器官贮存营养物质。较长的颖壳对增加粒长、粒重有着重要的作用。因此对控制新疆小麦长颖的基因进行精细定位、克隆和功能验证,不仅可以拓宽栽培小麦遗传基础,而且为进一步利用长颖性状提高小麦产量提供参考,也可为新疆小麦的起源进化提供证据。 实验室前期以新疆小麦品系“洛浦”为母本,普通栽培小麦品种扬麦158为父本,构建了一个包含191个BC2F10家系染色体片段置换系(Chromosome Segment Substitution Line,CSSL)群体。使用小麦55K芯片对CSSL群体的家系进行SNP分型,结合表型数据,检测到7A染色体短臂127.5Mb-133.2Mb区域有一个控制颖长的QTL,并且与产量性状(千粒重)显著相关;以其中一个长颖的近等基因系2017CY92与扬麦158杂交构建的次级分离群体,通过筛选交换单株,将控制颖长的QTL进一步定位于7AS的128.8-130.3Mb。本研究在前期研究的基础上,利用CSSL群体中的另一个长颖的近等基因系LZP87与扬麦158构建F2次级分离群体,通过交换单株筛选和定位区间内分子标记加密,对新疆小麦控制长颖的基因进行了精细定位,结合转录组分析和目标区域基因序列差异分析,克隆了控制长颖的P1基因,该基因编码SVP类型的MADS-box转录因子,被命名为TaVRT-A2(TaVRT2),通过创制突变体、转基因功能互补验证等方法,证明了TaVRT2基因是控制新疆小麦长颖的P1基因。取得的主要研究结果如下: 1. 利用次级分离群体对新疆小麦长颖基因进行精细定位 在前期定位的区间内(7AS,127.5Mb-133.2Mb),根据中国春参考基因组序列,设计了56对SSR引物。利用这56对SSR引物分别在LZP87和扬麦158之间进行新疆小麦长颖基因TaVRT2的精细定位、克隆与功能验证 II 扩增,共筛选到16个双亲之间有多态扩增的SSR分子标记。选取其中扩增条带清晰的9个SSR分子标记在522个F2群体中扩增,筛选了22株交换单株,结合表型鉴定结果,最终将定位区间缩小到物理位置128.8-129.6Mb,约897Kb。该定位区间内共有12个已经注释的基因。 2. 利用转录组数据确定候选基因 为了确定定位区间内候选基因,本研究分别对长颖渐渗系家系LZP87和扬麦158的5个穗发育时期(护颖原基分化期、外颖分化期、花药原基发育时期、四分体时期和抽穗期)的穗子取样进行了转录组测序。结果显示在定位区间的12个基因里,一个SVP类型的MADS-box基因TaSVP-A2(TaVRT-A2)在长颖材料的5个时期均有较高的表达水平,而在正常颖扬麦158中几乎检测不到表达;其他11个基因或检测不到表达(6个),或可检测表达,但表达量在两个材料中没有明显差异(5个),选取5个可检测表达但无差异的基因进行序列克隆后比较,也未发现差异。因此,初步确定TaVRT2为新疆小麦长颖基因P1的候选基因。 3. TaVRT2的克隆与序列分析 对TaVRT2的克隆结果显示:新疆小麦洛浦和中国春(与扬麦158)仅在第一内含子中有一段插入-缺失(Indel)差异,其余部分的基因组DNA序列均完全相同。中国春和扬麦158第一内含子中有一段560bp的序列,对应新疆小麦洛浦是一段157bp的序列。根据此差异开发了Indel标记,可以区分560bp和157bp序列差异,利用该标记对191个CSSL家系进行了基因分型,结果发现凡是157bp类型的单株均表现为长颖,而560bp类型的单株均表现为正常颖。表明该标记与颖长性状是共分离的,进一步证明TaVRT-A2是控制新疆小麦长颖P1基因。 4. 新疆小麦洛浦短颖突变体的创制以及利用突变体验证候选基因 用EMS诱变新疆小麦洛浦的种子,在M2代发现了一个颖壳明显变短的突变体,M3代发现其短颖性状可以稳定遗传,在验证其新疆小麦背景后,分别克隆了TaVRT-A2基因的gDNA和cDNA序列,发现其gDNA的第六内含子5’端起始的GA剪切位点,第一个碱基G突变成了A,克隆cDNA发现,第六内含子包含在cDNA序列中,表明该突变导致成熟的mRNA中第六内含子不能被剪切,从而使得突变体编码的氨基酸发生了移码突变,导致基因编码提前终止,蛋白序列变短,我们推测正是由于突变体编码的氨基酸序列变短使其失去了调节颖壳变长的功能。通过突变体分析,进一步证实了控制新疆小麦长颖的P1基因就是TaVRT-A2。 5. TaVRT-A2基因的亚细胞定位和利用转基因验证TaVRT2基因的功能 利用农杆菌注射烟草进行瞬时表达,对TaVRT-A2基因进行了亚细胞定位分析,摘要 III 结果发现该基因定位于细胞核,符合其转录因子的特征。为验证TaVRT-A2基因的功能,利用农杆菌介导的转基因技术,在小麦品种Fielder中转化TaVRT2基因,使用玉米泛素基因启动子驱动其组成型表达。结果显示,在转TaVRT-A2的各个植株中,其颖壳长度相对于Fielder受体均有明显的伸长,而且转TaVRT-A2基因相对表达量越高,颖壳伸长越明显,表明TaVRT-A2具有明显的剂量效应。转基因功能互补实验进一步证明控制新疆小麦洛浦长颖的P1基因为TaVRT-A2。 6. 新疆小麦起源于波兰小麦 本研究发现了新疆小麦与普通小麦在TaVRT-A2第一内含子的两种不同单倍型,在两份波兰小麦中进行克隆,发现波兰小麦也属于157bp类型;基于此差异开发的Indel标记,对小麦属的多个典型的长颖或正常颖品种进行了基因分型,发现了新疆小麦与17份世界各地引种的波兰小麦均同属于157bp类型。表明六倍体新疆小麦由新疆当地或其他地区引进的六倍体小麦与四倍体小麦波兰小麦杂交后代中选育而来,P1基因克隆为新疆小麦起源于波兰小麦这一观点提供了强有力的证据。 |
外文摘要: |
The Chinese wheat landrace Xinjiang Rice Wheat (Triticum petropavlovskyi Udacz. et Migusch., 2n=42), known as ‘Daosuimai’ or ‘rice-head wheat’ was discovered in the western Tarim basin in Xinjiang Uygur Autonomous Region, China. T. petropavlovskyi featured by the morphology with long glume and long oval-shaped grain. Interestingly, it also has higher grain weight, long spike length and high protein content. At present, many studies focused on the origin and evolution process of Triticum petropavlovskyi and genetic analysis of long glume traits, but there is still no obvious conclusion, and the long glume gene has not been cloned. The length of the glume is an important agronomic trait. The glume can not only be used as a source organ for photosynthesis to produce assimilation, but also can be used as a sink organ to store nutrients. Longer glumes play an important role in increasing grain length and grain weight. Therefore, the fine mapping, cloning and functional verification of the long glume genes that control Triticum petropavlovskyi can not only broaden the genetic basis of cultivated wheat, but also provide a reference for further use of long glume traits to increase wheat yield, and also for better understanding the evolutionary history of Triticum petropavlovskyi. In the early stage of our laboratory, a CSSL (Chromosome Segment Substitution Line, CSSL) population containing 191 lines was constructed coming from Triticum petropavlovskyi Luopu and the common cultivated wheat variety Yangmai 158.The LP/YM CSSL population was genotyped by Wheat55K Array. Association analysis of 138 SNP markers on 7A and GL phenotype data of the CSSLs showed that P1pet could be located within two SNP markers AX-109335244 and AX-108807463, corresponding to a genome region from 127.91 to 133.22 Mb on 7AS. Based on the previous research, this study used the F2 secondary segregation population coming from LZP87 and Yangmai 158. By developing more molecular markers and the phenotype of F2 individual plants in the positioning interval, the genes that control long glumes in wheat have been finely mapped. 新疆小麦长颖基因TaVRT2的精细定位、克隆与功能验证 IV Combining transcriptome analysis, gene cloning, mutant creation, genetic modification and other methods, it proved that the TaVRT2 gene regulated the glume elongation of Triticum petropavlovskyi. The main research results obtained are as follows: 1. Using secondary segregating populations to fine-map the wheat glume gene in Triticum petropavlovskyi To further fine map the P1pet, 56 SSR markers were developed referring to the genome sequence of China Spring. The 56 SSR molecular markers were amplified in LZP87 and Yangmai 158 to screening the polymorphic markers. Sixteen molecular markers were screened and polymorphic between LZP87 and Yangmai 158. To fine map P1pet, a CSSL line LZP87 and YM were used to construct a secondary F2 mapping population. (LZP87×YM) F2 population was genotyped using nine molecular markers. Finally, P1pet gene was finely mapped between markers SNP41698 and SSR4, corresponding to a physical distance of 897 Kb from 128.8 to 129.6 Mb on 7AS. According to RefSeqv1.1 annotation of Chinese Spring genome reference, 12 genes were annotated and considered as candidates of the target gene. 2. Using RNA-seq data to identify candidate genes To predict the candidate for P1pet, gene expression profile of LZP87 and YM at five developmental stages was compared using RNA-seq). The seven of 12 candidate genes (G3- G9) were precluded because they barely expressed in most of the tested stages. The remained five gene were further analyzed based on their gene annotation, gene expression and sequence comparison. Gene G1, G10, G11 and G12 showed relatively high expression at all five stages, no obvious difference in expression level between LZP87 and YM was detected. Sequence comparison showed they are completely identical between LZP87 and YM. Gene G2 (TraesCS7A02G175200) encodes an SVP-like MADS-box transcription factor. Gene annotation showed G2 has two splice variants, TraesCS7A02G175200.1 (226aa) and TraesCS7A02G175200.2 (240aa). RNA-seq revealed significantly different gene expression patterns of G2 between LZP87 and YM at all tested stages, with a very high expression level in LZP87 while be barely expressed in YM. Therefore, we deemed TraesCS7A02G175200 as the candidate for P1pet. ABSTRACT V 3. Cloning and sequence analysis of TaVRT2 pet According to TraesCS7A02G175200.1, the 6113 bp genomic DNA sequences of P1pet, including 431 bp upstream of the start codon ATG to the termination codon TGA, was cloned from LP. The 6113 bp is corresponding to the 6516 bp sequences in the public Chinese Spring genome reference (designated as P1cs). Sequence comparison identified a sole polymorphism within their intron-1, showing by that a 560-bp sequence in P1cs was substituted by a 157-bp sequence in P1pet. To verify the association of this polymorphic locus with the elongated glume, a PCR-based molecular marker (SVPA2-indel) was developed. SVPA2-indel could simultaneously detect the presence of 560-bp deletion in P1cs and the 157-bp substitution in P1pet. SVPA2-indel was used to genotype 191 LP/YM CSSL lines All individuals with elongated glumes had the marker allele the same as LP, confirming TraesCS7A01G175200 is the candidate 4. The creation of Triticum petropavlovskyi Luopu short glume mutants and the use of mutants to verify candidate genes By EMS mutagenesis treatment of LP, a stable mutant line (designated as NAU32) with reduced GL was identified from the M2 population. The TaVRT2 pet was cloned from NAU32, and we observed a homozygous mutation in the guanine residue of the GT canonical splice acceptor site in intron-6, being a G>A transition at 4926-bp from the start codon of TaVRT2 pet. The cDNA from young spike of NAU32 was sequenced to determine the effect of the G4926A splice site mutation on TaVRT2 pet transcription. We did observe the change of fragment sizes in wildtype LP (681 bp) and mutant NAU32 (815 bp). Further sequencing of the cDNA clones showing that only mutant NAU32 had the sequence intron6, implying a failure of splicing due to the impairing in the mutated splice acceptor site. The non-splicing of intron-6 transcript in NAU32 results in a frame-shift and generates a premature termination codon at 15 bp in this intron. The truncation of the C-terminus 52 amino acids results in a shorter protein of only 174 amino acids (being 226 aa in wildtype). Compared with wildtype LP, NAU32 displayed reduced GL. This confirmed P1pet’s candidate is TaVRT2 pet, which is critical for elongated glume in wildtype T. petropavlovskyi. We assumed the truncated protein in mutant lost the function in regulating glume elongation. 新疆小麦长颖基因TaVRT2的精细定位、克隆与功能验证 VI 5. Subcellular localization of TaVRT2 pet gene and verification of the function of TaVRT2 pet gene by transgene Using the transient expression system mediated by Agrobacterium in the tobacco system, the TaVRT2 pet gene was analyzed for subcellular localization, and it was found that the gene was localized in the nucleus. In order to verify the function of the TaVRT2 pet gene, Agrobacterium-mediated transgenic technology was used to overexpress the TaVRT2 pet gene in the wheat variety Fielder. The results showed that the length of the glume of transgenic plant with overexpression of TaVRT2 pet was significantly longer to the receptors, and also found that transgenic plant with the higher relative expression has the more elongation of the glumes, and the texture and color of the glumes were closer to that of Triticum petropavlovskyi Luopu. This result fully demonstrated that the gene controlling Triticum petropavlovskyi Luopu glume length is TaVRT2 pet. 6. Triticum petropavlovskyi originated from Triticum polonicum Two different Indel types in the first intron of TaVRT2 pet in Triticum petropavlovskyi and common wheat were detected in Triticum petropavlovskyi and common wheat. the Indel marker was developed based on this difference, and genes for many typical long glume or normal glume varieties of the Triticum genus were carried out. Marker analysis of 278 wheat varieties using SVPA2-indel indicated they were all P1cs allele, indicating the “157-bp sequence” in intron-1 was only present in T. petropavlovskyi. The P1pol was cloned from T. polonicum (Accession No. CItr 3282), and the genome sequence was 100% identical to P1pet. Thirteen T. polonicum lines including CItr 3282 were analyzed using the marker SVPA2-indel, and they all have 157-bp sequence in intron-1. It implied P1pet in T. petropavlovskyi may be introduced from tetraploid T. polonicum through the hybridization between T. polonicum and hexaploidy landraces with awn-like appendage on the glume |
参考文献: |
1. Adamski NM, Simmonds J, Brinton JF, et al. Ectopic Expression of Triticum polonicum VRTA2 Underlies Elongated Glumes and Grains in Hexaploid Wheat in a Dosage-Dependent Manner. The Plant cell,2021. 2. Akond ASMGM, Watanabe N, Furuta Y. Comparative genetic diversity of Triticum aestivumTriticum polonicum introgression lines with long glume and Triticum petropavlovskyi by AFLP-based assessment. Genetic Resource Crop Evolution, 2008, 55:133-141. 3. Coulson A , Sulston J , Brenner S , et al. Toward a physical map of the genome of the nematode C. elegans.[J]. Proceedings of the National Academy of Sciences, 1986, 83:7821-7825. 4. Alvarez-Buylla ER, García-Ponce B, Garay-Arroyo A. Unique and redundant functional domains of APETALA1 and CAULIFLOWER, two recently duplicated Arabidopsis thaliana floral MADS-box genes. Journal of Experimental Botany, 2006, 57, 3099-3107. 5. Alvarez-Buylla ER, Liljegren S, Pelaz S. MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant Journal, 2000, 24, 457-466. 6. Ammiraju J, Dholakia B, Santra D, et al. Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theoretical and Applied Genetics, 2001(102): 726-732. 7. Angenent GC, Colombo L. Molecular control of ovule development. Trends in Plant Science, 1996, 1: 228-232. 8. Appels R, Eversole K, Feuillet C, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361: 6403. 9. Arora R, Agarwal P, Ray S. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genome, 2007, 18, 238-242. 10. Aswath CR, Kim SH. Another story of MADS-box genes: their potential in plant biotechnology. Plant Growth Regulation, 2005, 46: 177-188. 11. Avni R, Nave M, Barad O, et al. Wild emmer genome architecture and diversity elucidate wheat 致谢 60 evolution and domestication. Science, 2017; 357: 93-97. 12. Bemer M, Wolters-Arts M, Grossniklaus U, et al. The MADS domain protein DIANA acts together with AGAMOUS-LIKE 80 to specify the central cell in Arabidopsis ovules.Plant Cell, 2008, 20: 2088-2101. 13. Benlloch R, d'Erfurth I, Ferrandiz C, et al. Isolation of mtpim Proves Tnt1 a Useful Reverse genetics tool in medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Plant Physiology, 2006, 142(3):972-983. 14. Bietz JA, Shepherd KW, Wall JS. Single-kernel analysis of glutenin: Use in wheat genetics and breeding. Cereal Chemistry. 1975, 52: 513-532. 15. B?rner A, Schumann E, Fürste A, et al. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2002(105): 921-936. 16. Bowman J L,Smyth DR, Meyerowitz EM.Genetic interactions among floral homeotic genes of Arabidopsis. Development, 1991, 112: 1-20. 17. Breseghello F, Sorrells M. QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crops Research, 2007(101): 172-179. 18. Briggs RW, Amano E, Smith HH. Genetic recombination with ethylmethane sulphonate induced waxy mutants in maize. Nature, 1965, 207: 891-892. 19. Campbell K, Bergman C, Gualberto D, et al. Quantitative trait loci associated with kernel traits in a Soft ×Hard wheat cross. Crop Science, 1999(39): 1184-1195. 20. Cato S A, Gardner R C, Kent J, et al. A rapid PCR- based method for genetically mapping ESTs. Theoretical Applied and Genetics, 2001, 102: 296-306. 21. Chang JZ, Zhang JN, Mao XG, et al. Polymorphism of TaSAP1-A1 and its association with agronomic traits in wheat. Planta, 2013(237): 1495-1508. 22. Chao L, Song YX, Gao LF, et al. Integration of QTL detection and marker assisted selection for improving resistance to Fusarium head blight and important agronomic traits in wheat. The Crop Journal, 2014, 2: 70-78. 23. Chao S, Sharp P, Worland E, et al. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theoretical and Applied Genetics, 1989(78): 495-504. 24. Chen Q, Kang HY, Fan X, et al. Evolutionary history of Triticum petropavlovskyi Udacz.et 致谢 61 Migusch. inferred from the sequences of the 3-Phosphoglycerate kinase gene. PLoS One, 2013, 8(8): e71139. 25. Chen Q, Song J, Du WP. Possible origin of Triticum petropavlovskyi based on cytological analyses of crosses between T-petropavlovskyi and tetraploid, hexaploid, and synthetic hexaploid wheat accessions. Spanish Journal of Agricultural Research, 2016,14(4). 26. Coulson A, Sulston J, Brenner S. Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 1986(83): 7281-7825. 27. Cuthbert J, Somers D, Babel A, et al. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L. ) . Theoretical and Applied Genetics, 2008(117): 595-608. 28. Dong LL, Wang FM, Liu T, et al. Natural variation of TaGASR7-A1 affects grain length in common wheat under multiple cultivation conditions. Molecular Breeding, 2014(34): 937-947. 29. Efremova T, Maysuenko O, Arbuzova V, et al. Genetic analysis of glume colour in common wheat cultivars from the former USSR. Euphytica, 1998(102): 211-218. 30. Gao FM, Wen WE, Liu JD, et al. Genome-wide linkage mapping of QTL for yeild components, plant height and yeild-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Frontiers in Plant Science, 2015(6): 1099-1116. 31. Giura N, Saulescu NN. Chromosomal location of genes controlling grain size in a large grained selection of wheat (Triticum aestivum L.). Euphytica, 1996(89): 77-80. 32. Gramzow L, Theissen G.A hitch hiker's guide to the MADS world of plants.Genome Biology, 2010, 11(6): 214-235. 33. Graziano C. Existence, uniqueness and qualitative properties of minima to radially symmetric non-coercive non-convex variational problems. Mathematische Zeitschrift, 2000, 235(3): 569-589. 34. Grewal S, Edwards H, Yang CY, et al. Rapid identification of homozygosity and site of wild relative introgressions in wheat through chromosome-relative introgressions in wheat through chromosome specific KASP genotyping assays. Plant Biotechnology Journal, 2020(18): 743-755. 35. Gu LQ, Wei B, Fan RC, et al. Development, identification and utilization of introgression lines 致谢 62 using Chinese endemic and synthetic wheat as donors. Journal of Integrative Plant Biology, 2015, 57(8): 688-697. 36. Gupta PK, Balyan HS, Edwards KJ, et al. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theoretical Applied and Genetics, 2002, 105: 413-422. 37. Hou J, Jiang QY, Hao CY. Global selection on sucrose synthase haplotypes during acentury of wheat breeding. Plant Physiology, 2014, 164: 1918-1929. 38. Hu JH, Wang XQ, Zhang GX, et al. QTL mapping for yield?related traits in wheat based on four RIL populations. Theoretical and Applied Genetics, 2020(133): 917-933. 39. Hu MJ, Zhang HP, Liu K, et al. Cloning and characterization of TaTGW-7A gene associated with grain weight in wheat via SLAF-seq-BSA. Frontiers in Plant Science, 2016(7): 1902-1913. 40. Huang XQ, Cster H, Ganal MW, et al. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2003, 106: 235-44. 41. Jain A, Roorkiwal M, Kale S, et al. InDel markers: an extended marker resource for molecular breeding in chickpea. PLoS One, 2019, 14(3): e0213999. 42. Jantasuriyarat C, Vales M, Watson C, et al. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2004(108): 261-273. 43. Jia HY, Wan HS, Yang SH, et al. Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theoretical and Applied Genetics, 2013(126): 2123-2139. 44. Jia JZ, Zhao S, Kong X, et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013; 496: 91-95. 45. Kane NA, Danyluk J, Tardif G. TaVRT-2, a member of the StMADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat. Plant Physiology, 2005, 138: 2354-2363. 46. Kang HY, Fan X, Zhang HQ, et al. The origin of Triticum petropavlovskyi Udacz. et Migusch demonstration of the utility of the genes encoding plastid acetyl-CoA carboxylase sequence. Molecular Breeding, 2010(25): 381-395. 47. Kang IH, Steffen JG, Portereiko MF, et al. The AGL62 MADS domain protein regulates cell 致谢 63 ularization during endo sperm development in Arabidopsis.Plant Cell, 2008, 20: 635-647. 48. Kearsey M, Pooni H. The genetical analysis of quantitative traits. Journal of Medical Genetics, 1996, 33: 976-981. 49. Kitahara K, Hibino Y, Aida R, et al. Ectopic expression of the rose AGAMOUS-like MADSbox genes ‘MASAKOC1 and D1’ causes similar homeotic transformation of sepal and petal in Arabidopsis and sepalintorenia.Plant Science, 2004, 166: 1245-1252. 50. Kohler C, Hennig L, Spillane C, et al.The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev, 2003, 17: 1540-1553. 51. Kosuge K, Watanabe N, Kuboyama T, et al. Recombination around the P locus for long glume phenotype in experimental introgression lines of Triticum aestivum –Triticum polonicum. Genetic Resources and Crop Evolution, 2010, (57): 611-618. 52. Kotoda N, Wada M, Kusaba S, et al.Overexpression of MdMADS5, an APETALA1-like gene of apple,causes early flowering in transgenic Arabicdopsis.Plant Science, 2002, 162: 679-687. 53. Kumar A, Mantovani E, Seetan R, et al. Dissection of genetic factors underlying wheat kernel shape and size in an Elite×Nonadapted cross using a high density SNP linkage map. The Plant Genome, 2016, 9(1): 1-22. 54. Kuraparthy V, Sood S, Dhaliwal H, et al. Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theoretical and Applied Genetics, 2007,114:214-8. 55. Lee H, Suh SS, Park E. The agamous-like 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes and Development, 2000, 14, 2366-2376. 56. Lee H, Yoo S J, Lee J H, et al.Genetic framework or flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis.Nucleic Acids Research, 2010, 38: 3081-3093. 57. Lee S, Woo YM, Ryu SI. Further characterization of a rice AGL12 group MADS-box gene, OsMADS26. Plant Physiology, 2008, 147, 156-168. 58. Li FJ, Wen WE, He ZH, et al. Genome?wide linkage mapping of yield?related traits in three Chinese bread wheat populations using high?density SNP markers. Theoretical and Applied Genetics, 2018, 131: 1903-1924. 59. Li HY, Wang QL, Xu LS et al. Rapid identification of a major effect QTL conferring adult plant 致谢 64 resistance to stripe rust in wheat cultivar Yaco“S” . Euphytica, 2017, 213: 124-125. 60. Li WL, Nelson J, Chu CY, et al. Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica, 2002, 125: 357-366. 61. Lin Ma, Tian Li, Chenyang Hao. TaGS5‐3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnology Journal, 2016, 14(5):1269-1280. 62. Ling HQ, Zhao SC, Liu DC, et al. Draft genome of the wheat A-genome progenitor Triticum urartu[J]. Nature, 2013; 496: 87-90. 63. Liu JL, Xu ZB, Fan XL, et al. A Genome-wide association study of wheat spike related traits in China. Frontiers in Plant Science, 2018(9): 1584-1597. 64. Liu S, Yeh C, Tang H, et al. Gene Mapping via Bulked Segregant RNA-Seq (BSR-Seq) . PLoS ONE, 2012,7: e36406. 65. Luo MC, Gu YQ, Puiu D, et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature, 2017, 551: 498-502. 66. Ma J, Ding PY, Qin P, et al. Structure and expression of the TaGW7 in bread wheat (Triticum aestivum L.). Plant Growth Regulation, 2017, 82: 281-291. 67. Ma L, Li T, Hao CY. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnology Journal, 2016, 14:1269-1280. 68. Ma M, Wang Q, Cheng HH, et al. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size. The Plant Journal, 2015, 83: 312-325. 69. Ma MJ, Zhang HP, Cao JJ, et al. Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.) . Molecular Breeding, 2016, 36: 25-38. 70. Mago R,Till B, et al.Generation of loss-of-function mutants for wheat rust disease resistance gene cloning.Methods in Molecular Biology, 2017, 1659: 199-205. 71. Meng Z, Han K, Guang Z. Overexpression of TaUb2 enhances disease resistance to Pseudomonas syringae pv. tomato DC3000 in tobacco. Physiological and Molecular Plant Pathology, 2015, 90:98-104. 72. Mir R, Kumar N, Jaiswal V, et al. Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. Molecular Breeding, 2012, 29: 963-致谢 65 972. 73. Moon J, Suh SS, Lee H. The SOC1 MADS-box gene integrates vernalization and gibberellin signal for flowering in Arabidopsis. Plant Journal, 2003, 35, 613-623. 74. Nabila Y, Payorm S, Robert D. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant Journal, 2010, 37(4): 528-538. 75. Okamoto Y, Takumi S. Pleiotropic effects of the elongated glume gene P1 on grain and spikelet shape-related traits in tetraploid wheat. Euphytica, 2013(194): 207-218. 76. Paux E, Sourdille P, Salse J, et al. A physical map of the 1-gigabase bread wheat chromosome 3B. Science, 2008, 322: 101-04. 77. Pelaz S, Ditta GS, Baumann E, et al. Band C floral organ identity functions require sepallata MADS-box genes.Nature, 2000, 405: 200-203. 78. Peng JH, Ronin Y, Fahima T, et al. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(5): 2489-2494. 79. Purugganan MD. The MADS-box floral homeotic gene lineages predatethe origin of seed plants: phylogenetic and molecular clock estimates. Journal of Molecular Evolution, 1997, 45, 392-396. 80. Rafalski J A. Novel genetic mapping tools in plants: SNP and LD-based approaches. Plant Science, 2002, 162: 329-333. 81. Rasheed A, Hao YF, Xia XC, et al. Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Molecular Plant, 2017,10(8): 1047-1064. 82. Rasheed A, Xia XC. From markers to genome?based breeding in wheat. Theoretical and Applied Genetics, 2019, 132: 767-784. 83. Ren TH, Hu YS, Tang YZ, et al. Utilization of a Wheat55K SNP Array for mapping of major QTL for temporal expression of the tiller number. Frontier in Plant Science, 2018, 9: 333-341. 84. R?der M S, Korzun V, Gill B S, et al. The physical mapping of microsatellite markers in wheat. Genome, 1998b, 41: 278-283 85. Schilling S, Kennedy A, Pan S. Genome-wide analysis of MIKC-type MADS-box genes in wheat: pervasive duplications, functional conservation and putative neofunctionalization. New 致谢 66 Phytologist, 2020, 225: 511-529. 86. Schwarz-Sommer Z, Huijser P, Nacken W,et al.Genetic control off lower development by homotic genes in Antirrhinummojus.Science, 1990, 250: 931-936. 87. Seonghoe J, Kyungsook A, Shin young L, et al.Characterization of tobacco MADS-box genes involve dinfloral initiation.Plant Cell Physiology, 2002, 43(1): 230-238. 88. Smoers D, Isaac P, Edwards K, et al. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.) . Theoretical and Applied Genetics, 2004, 109: 1105-1114. 89. Su ZQ, Hao CY, Wang LF, et al. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.) . Theoretical and Applied Genetics, 2011, 122: 211-223. 90. Sun XY, Wu K, Zhao Y, et al. QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica, 2009, 165: 615-624. 91. Tanksley SD, Grandillo S, Fulyon TM, et al. Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium . Theoretical and Applied Genetics, 1996, 92: 213-224. 92. The International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum L.) genome. Science, 2014, 345: 1251788. 93. Tsilo T, Hareland G, Simsek S, et al. Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theoretical and Applied Genetics, 2010, 121: 717-730. 94. Vasu K, Shilpa SHS, Dhaliwal P. Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theoretical and Applied Genetics, 2007, 114(2): 285-294. 95. Wang HJ, Huang XQ, R?der MS et al. Genetic mapping of loci determining long glumes in the genus Triticum. Euphytica, 2002, 123: 287-293. 96. Wang HY, Wang XE, Chen PD, et al. Assessment of genetic diversity of Yunnan, Tibetan, and Xinjiang wheat using SSR markers. Journal of Genetics and Genomics, 2007, 34(7): 623-633. 97. Wang HY, Wang XE, Chen PD. Allelic variation and genetic diversity at HMW glutenin subunits loci in Yunnan, Tibetan and Xinjiang Wheat. Scientia Agricultura Sinica, 2004, 3(10): 721-727. 98. Wang LF, Ge HM, Hao CY, et al. Identifying loci influencing 1,000-Kernel weight in wheat by 致谢 67 microsatellite screening for evidence of selection during breeding. PLoS One, 2012, 7(2): e29432. 99. Wang SS, Zhang XF, Chen F, et al. A single-nucleotide polymorphism of TaGS5 gene revealed its association with kernel weight in Chinese bread wheat. Frontiers in Plant Science, 2015, 6: 1166. 100. Wang SX, Zhu YL, Zhang DX, et al. Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PLoS One, 2017, 12(11): e0188662. 101. Watanabe N, Imamura I. Genetic control of long glume phenotype in tetraploid wheat derived from Triticum petropavlovskyi Udacz. et Migusch. Euphytica, 2002, 128: 211-217. 102. Watanabe N, Sekiya T, Sugiyama K, et al. Telosomic mapping of the homoeologous genes for the long glume phenotype in tetraploid wheat[J]. Euphytica, 2002, 128: 129-134. 103. Watanabe N, Yotani Y, Furuta Y. The inheritance and chromosomal location of a gene for long glume in durum wheat. Euphytica, 1996, 91: 235-239. 104. Watanabe N. Genetic control of the long glume phenotype in tetraploid wheat by homoeologous chromosomes. Euphytica, 1999, 106: 39-43. 105. Wei YM, Zheng YL, Liu DC, et al. HMW-glutenin and gliadin variations in Tibetan weedrace, Xinjiang rice wheat and Yunnan hulled wheat. Genetic Resources and Crop Evolution, 2002, 49: 327-330 106. Whitt SR, Wilson LM, Tenaillon MI. Genetic diversity and selection in the maize starch pathway. ProcNatl Acad Sci USA, 2002, 99: 12959-12962. 107. Wu JH, Wang QL, Liu SJ, et al. Saturation mapping of a major effect QTL for stripe rust resistance on wheat chromosome 2B in cultivar Napo 63 using SNP genotyping arrays. Frontiers in Plant Science, 2017, 8(8): 653-659. 108. Xiao J,Chen Y , Lu Y , et al. A natural variation of an SVP MADS-box transcription factor in Triticum petropavlovskyi leads to its ectopic expression and contributes to elongated glume. 2021. 109. Xie L, Zhang Y, Wang K, et al. TaVrt2, an SVP-like gene, cooperates with TaVrn1 to regulate vernalization-induced flowering in wheat. New Phytologist, 2019, 10.16339. 110. Xu JH, Zhong XF, Zhang QZ, et al. Over expression of the GmGAL2 gene accelerates 致谢 68 flowering in Arabidopsis.Plant Molecular Biology Report, 2010, 28: 704-711. 111. Xu T, Bian N, Wen M, et al. Characterization of a common wheat (Triticum aestivum L.) hightilleing dwarf mutant.Theoretical and Applied Genetics,2017,130(3):483-494. 112. Yan L, Loukoianov G, Tranquilli M. Positional cloning of the wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10). 113. Yu K, Liu DC, Chen Y, et al. Unraveling the genetic architecture of grain size in einkorn wheat through linkage and homology mapping and transcriptomic profiling. Journal of Experimental Botany, 2019, 70(18): 4671-4688. 114. Zeng ZB. Precision mapping of quantitative trait loci. Genetics, 1993, 136: 1457-1468. 115. Zhang PP, Li X. QTL mapping of adult-plant resistance to leaf and stripe rust in wheat cross SW 8588/Thatcher using the wheat 55K SNP Array. Plant Disease, 2019, 103(12): 3041-3049. 116. Zhou SH, Zhang JP, Che YH, et al. Construction of Agropyron Gaertn. genetic linkage maps using a wheat 660K SNP array reveals a homoeologous relationship with the wheat genome. Plant Biotechnology Journal, 2018, 16: 818-827. 117. Zhou YP, Conway B, Miller D, et al. Quantitative trait loci mapping for spike characteristics in hexaploid wheat. Plant Genome, 2017, 10(2). 118. Zuo JR, Li JY. Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annual Review of Genetics, 2014, 48: 99-118. 119. Удачин, Э.Ф.Mи?ущова, Новое в цознании ρода Triticum .Вестник C-Х Науки, 1970, 9: 20-23 120. 陈建省, 陈广凤, 李青芳. 利用基因芯片技术进行小麦遗传图谱构建及粒重QTL分析.中国农业科学, 2014, 47(24): 4769-4779. 121. 陈谦. 基于波兰小麦和节节麦人工合成六倍体小麦SHW-DPW探讨新疆稻麦的起源[D]. 四川农业大学, 2014.. 122. 陈勤, 孙雨珍, 董玉琛. “新疆小麦”种间杂种的细胞遗传学研究. 作物学报, 1985, 11(1): 23-29. 123. 陈庆富. 中国特有小麦起源探讨. 贵州农业科学, 1999, 27(1): 20-25 124. 陈庆富. 中国特有小麦中杂种黄化基因Chl和提型胞质育性恢复基因的分布研究. 广西植物, 1998, 18(4): 325-330. 致谢 69 125. 陈瑞阳. 中国云南小麦、西藏半野生小麦、新疆小麦染色体组型与Giemsa N-分带的研究. 中国遗传学会第二次大会即学术讨论会论文摘要汇编. 1983, 222-223 126. 陈妍. 栽培小麦高密度连锁图谱构建及穗、粒相关性状的QTL定位[D]. 南京农业大学, 2018. 127. 陈洋, 高兰英, 邵艳军. EMS诱导小麦易位系YW642突变体的鉴定与分子标记分析核农学报, 2011, 25(4):617-621, 651. 128. 崔金梅, 郭天才等. 小麦的穗. 中国农业出版社, 2008. 129. 邓小锋, 周永红, 杨瑞武等. 新疆吐鲁番矮秆波兰小麦穗长基因的染色体定位. 四川农业大学学报, 2005, 23(1): 12-14. 130. 董玉琛. 小麦的稀有种及其在育种中的利用. 中国农业科学, 1979(3): 1-7. 131. 高明刚. 小麦高密度遗传图谱的构建和产量相关性状的QTL分析[D]. 山东农业大学, 2014. 132. 李丹丹. 基于SNP芯片的“潍麦8号/安农91186”RIL群体农艺及产量性状QTL定位[D]. 山东农业大学, 2017. 133. 李磊, 贡豪, 顾世梁, 等. 小麦中基于转录组测序SNP的dCAPS标记的高通量开发及验证. 扬州大学学报, 2018, 39(4): 86-90. 134. 李韬, 骆孟, 钱丹, 等. 抗赤霉病小麦地方品种黄方柱和海盐种EMS突变体的变异分析. 植物遗传资源学报, 2016, 17(6):1092-1098. 135. 刘凯, 邓志英, 李青芳, 等. 利用高密度SNP遗传图谱定位小麦穗部性状基因. 作物学报, 2016, 42(6): 820-831. 136. 刘志鹏, 陈妍, 徐涛, 等. 新疆稻麦子控制穗长相关QTL定位分析. 江苏省遗传学会2019年学术研讨会论文集, 江苏省遗传学会, 2019:1. 137. 陆燕, 赵天祥, 刘国祥, 等.小麦矮秆圆粒突变体的鉴定与分析. 植物遗传资源学报, 2014, 15(1):160-164. 138. 蒲艳艳, 宫永超, 李娜娜, 等. 中国小麦作物遗传多样性研究进展. 作物种质资源, 2016, 32(30): 7-13. 139. 齐莉莉, 刘大钧. 中国春双端二体中端体的配对研究. 遗传学报, 1992(03):244-249+292. 140. 任径幽. 植物基因克隆技术的研究进展. 科技创新与应用, 2013, 5:20-1. 141. 宿振起. 小麦粒重基因TaGW2的克隆、标记的开发及功能验证. 中国农业科学院, 2010. 142. 孙钦龙, 刘在徐. 我省应加强对硬粒小麦的研究与利用. 河北农业科学, 1990, (04):12. 致谢 70 143. 王富强, 樊秀彩, 张颖. SNP分子标记在作物品种鉴定中的应用和展望. 植物遗传资源学报, 2020, 4:1-20. 144. 王海燕, 王秀娥, 陈佩度, 等. 云南、西藏与新疆小麦高分子量谷蛋白亚基组成及遗传多样性分析. 中国农业科学, 2005, 38(2): 228-233. 145. 王海燕. 云南、西藏与新疆小麦的遗传多样性研究[D]. 南京农业大学, 2005. 146. 武炳瑾, 简俊涛, 张德强, 等. 利用90K芯片技术进行小麦穗部性状QTL定位. 作物学报, 2017, 43(7): 1087-1095. 147. 熊朝军. 小麦颖片对结实率、粒重及发芽率的影响. 种子, 2002(03): 60-61. 148. 徐涛, 卞能飞, 温明星, 等. 普通小麦望水白矮秆多蘖突变体NAUH167突变性状的QTL定位. 江苏省遗传学会第九次会员代表大会暨学术研讨会论文集. 江苏省遗传学会, 2015, 2. 149. 许耀奎, 邬信康, 刘素兰, 等. 化学诱变剂EMS处理春小麦获得的一个黄绿色突变系的遗传分析. 吉林农业大学学报, 1987(02):4-107. 150. 杨武云, 颜济, 杨俊亮. 中国几个特有普通小麦起源研究. 四川农业大学学报, 1992, 10(1): 12-1 151. 姚景侠, 杨芳彬, 师素云, 等. 小麦属的新种-新疆稻穗麦之研究. 遗传, 1983(5): 17-20. 152. 张秋. 普通小麦遗传图谱构建及重要农艺性状的QTL定位[D]. 山东农业大学, 2012. 153. 张维宏, 安哲, 范学锋, 等.EMS诱导小麦TcLr19感叶锈病突变体的筛选. 华北农学报, 2016, 31(4):88-93. 154. 张新业. 小麦粒重基因TaGW2-6A的功能验证及粒重相关性状的QTL分析[D]. 山东农业大学, 2012. 155. 赵天祥, 孔秀英, 周荣华, 等.EMS诱变六倍体小麦偃展4110的形态突变体鉴定与分析. 中国农业科学, 2009, 42(3):755-764. 156. 赵天祥. 六倍体小麦偃展4110EMS突变体库的构建及矮秆基因变异检测. 中国农业科学院, 2008. 157. 郑殿升, 孙雨珍. 小麦属各个种简介(五). 作物种质资源, 1986a(4): 35-37. 158. 周小鸿, 马建, 罗伟, 等. 西藏半野生小麦粒型性状的QTL定位. 麦类作物学报, 2016, 36(1): 27-35. |
中图分类号: | Q943 |
开放日期: | 2021-06-22 |