- 无标题文档
查看论文信息

中文题名:

 基于在线文本评论的有机蔬菜动态定价研究    

姓名:

 张婷    

学号:

 2022814053    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 125600    

学科名称:

 管理学 - 工程管理    

学生类型:

 硕士    

学位:

 工程管理硕士    

学校:

 南京农业大学    

院系:

 信息管理学院    

专业:

 物流工程与管理(专业学位)    

研究方向:

 农产品物流与供应链    

第一导师姓名:

 江亿平    

第一导师单位:

 南京农业大学    

完成日期:

 2024-04-30    

答辩日期:

 2024-05-27    

外文题名:

 Organic Vegetables Dynamic Pricing Based On Online Text Reviews    

中文关键词:

 在线文本评论 ; 情感分析 ; 有机蔬菜 ; 动态定价 ; 交替方向乘子法    

外文关键词:

 Online text reviews ; Sentiment analysis ; Organic vegetables ; Dynamic pricing ; ADMM    

中文摘要:

电子商务是数字经济中的重要组成部分,具有广阔的发展空间和创新活跃度。作为实体经济数字化转型的先锋,电子商务的蓬勃发展为生鲜企业带来了前所未有的机遇,开辟了新的销售渠道,有效提升了企业的市场曝光度和销售业绩;同时让消费者拥有了更多的选择,更加注重价格和品质。在竞争激烈的市场环境下,以需求为导向,考虑消费者行为属性进行动态定价,以适应不断变化的消费者需求和市场状况,是促进零售商长足发展的关键。在线文本评论是反应消费者行为、影响消费者购买决策的关键要素,基于此,本文以在线文本评论情感分析在有机蔬菜定价中的应用为例,以提高有机蔬菜销售效益和消费者满意度为研究目标,以探索在线文本评论情感分析与消费者购买决策的相互作用为突破口,围绕“情感分析有效性—消费者价值评估—定价策略适应性”的有机蔬菜定价要求,运用协同训练算法、消费者行为理论和交替方向乘子法,开展基于在线文本评论情感分析的有机蔬菜定价研究。具体研究工作如下:

(1)针对在线文本评论蕴含的情感具有复合性、隐蔽性、层次性等多种特征,本文提出了融合多分类模糊支持向量机和Tri-training算法的文本评论情感分析方法。首先,通过使用半梯半岭分布函数来刻画模糊隶属度,利用多分类模糊支持向量机对标记样本进行精细化分类,提升初始分类器的性能;其次,结合Tri-training算法,采用多个分类器协同训练的方式,增强模型的泛化能力;最后,采用软投票集成规则,确保不同分类器之间的权重分配合理,进一步提高情感分析的准确性,为实际应用中的情感分析任务提供了切实可行的解决方案。

(2)针对在线文本评论对消费者购买行为和零售商定价决策的影响,以提高有机蔬菜销售效益和消费者满意度为研究目标,研究基于在线文本评论情感分析的有机蔬菜动态定价问题。首先,深入剖析在线文本评论中情感倾向与消费者行为的内在联系,挖掘消费者对有机蔬菜的满意度、购买意愿以及价格敏感度等多维度信息;其次,综合考虑市场供需、消费者偏好、有机蔬菜易腐性等关键影响因素,构建了基于在线文本评论情感分析的有机蔬菜动态定价模型,旨在最大化有机蔬菜零售商利润;最后,运用融合高斯回代的交替方向乘子法对模型求解,并以京东平台上的有机西红柿在线文本评论为例验证模型与算法的有效性,为有机蔬菜零售商提供了可行的管理建议。

本文研究成果,有利于促进自然语言处理等信息资源管理理论方法与电商运营管理实践的交叉、渗透和融合,为生鲜电商运营管理提供了新的视角和方向,对挖掘数据价值潜力,降低有机蔬菜运营成本,提高电商行业经济效益,深入推进数字经济高质量发展,具有重要的理论价值和现实意义。

外文摘要:

As an important component of the digital economy, e-commerce has vast development space and high level of innovation activity. As a vanguard for the digital transformation of the real economy, the thriving development of e-commerce has brought unprecedented opportunities for fresh enterprises, opening up new sales channels and effectively improving their market exposure and sales performance. At the same time, consumers have more choices and pay more attention to price and quality. In a fiercely competitive market environment, focusing on demand, considering consumer behavioral attributes for dynamic pricing to adapt to the constantly changing consumer demands and market conditions is key to promoting significant development for retailers. Online text reviews play a significant role in consumers' purchasing decision-making processes.

This thesis takes the application of sentiment analysis of online text reviews in organic vegetable pricing as an example, with the research goal of improving the sales effectiveness and consumer satisfaction of organic vegetables. This thesis explores the interaction between online text review sentiment analysis and consumer purchasing decisions as a breakthrough, focusing on the requirements of organic vegetable pricing. By using collaborative training algorithms, consumer behavior theories, and alternating direction multiplier method, the research is conducted on organic vegetable pricing based on sentiment analysis of online text reviews. The specific research work is as follows:

(1) This thesis proposes a method for analyzing the sentiment of text comments by integrating the Multi-Classification Fuzzy Support Vector Machine and Tri-training algorithm, aiming at the fact that the sentiment embedded in online text comments has various characteristics such as composite, hidden, hierarchical, etc. Firstly, by using the half-trapezoidal and half-ridge distribution function to portray the fuzzy affiliation degree, the multiclassification fuzzy support vector machine is used to refine the classification of labeled samples and improve the performance of the initial classifiers. Secondly, combined with the Tri-training algorithm, multiple classifiers are trained in a cooperative manner to enhance the model's generalization ability. Finally, the soft-voting integration rule is used to ensure that the weights between different classifiers are distribution is reasonable to further improve the accuracy of sentiment analysis, which provides a practical solution for the task of sentiment analysis in practical applications.

(2) This thesis aims to improve the sales efficiency and consumer satisfaction of organic vegetables by addressing the impact of online text reviews on consumer purchasing behavior and retailer pricing decisions. Based on the analysis of online text review sentiment analysis, this study investigates dynamic pricing issues for organic vegetables. First, we delve into the intrinsic connections between emotional tendencies in online text reviews and consumer behavior, exploring multiple dimensions of information such as consumer satisfaction, willingness to purchase, and price sensitivity towards organic vegetables. Second, we consider key influencing factors such as market supply and demand, consumer preferences, and perishability of organic vegetables, and construct a dynamic pricing model for organic vegetables based on online text review sentiment analysis. The model aims to maximize the profits of organic vegetable retailers. Finally, we use the Gauss-Seidel backward method integrated with the alternating direction multiplier method to solve the model, and obtain the optimal dynamic pricing strategy. Taking online text reviews of organic tomatoes on the JD platform as an example, we verify the effectiveness of the model and algorithm, providing feasible management suggestions for organic vegetable retailers.

The research results of this thesis are conducive to promoting the intersection, penetration and integration of natural language processing and other information resource management theories and methods with e-commerce operation and management practices, providing a new perspective and direction for fresh food e-commerce operation and management, tapping the potential of the value of the data, reducing the operating costs of organic vegetables, and improving the economic efficiency of the e-commerce industry, promoting the high-quality development of the digital economy, which is of significant theoretical value and practical significance.

参考文献:

[1] Azadi Z, Eksioglu S D, Eksioglu B, et al. Stochastic optimization models for joint pricing and inventory replenishment of perishable products[J]. Computers & Industrial Engineering, 2019, 127: 625-642. DOI:10.1016/j.cie.2018.11.004.

[2] Bigne E, Ruiz C, Cuenca A, et al. What drives the helpfulness of online reviews? A deep learning study of sentiment analysis, pictorial content and reviewer expertise for mature destinations[J]. Journal of Destination Marketing & Management, 2021, 20: 100570. DOI:10.1016/j.jdmm.2021. 100570.

[3] Blum A, Mitchell T. Combining labeled and unlabeled data with co-training[C]. Proceedings of the 11th Annual Conference on Computational Learning Theory, 1998: 92-100. DOI:10.1145/ 279943.279962.

[4] Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine learning, 2011, 3(1): 1-122. DOI:10.1561/2200000016.

[5] Chang C H, Hwang S Y, Wu M L. Learning bilingual sentiment lexicon for online reviews[J]. Electronic Commerce Research and Applications, 2021, 47: 101037. DOI:10.1016/j.elerap. 2021.101037.

[6] Chen Y, He W, Yokoya N, et al. Hyperspectral image restoration using weighted group sparsity-regularized low-rank tensor decomposition[J]. IEEE transactions on cybernetics, 2020, 50(8): 3556-3570. DOI:10.1109/TCYB.2019.2936042.

[7] Dhar S, Bose I. Walking on air or hopping mad? Understanding the impact of emotions, sentiments and reactions on ratings in online customer reviews of mobile apps[J]. Decision Support Systems, 2022: 113769. DOI:10.1016/j.dss.2022.113769.

[8] Fan T J, Xu C, Tao F. Dynamic pricing and replenishment policy for fresh produce[J]. Computers & Industrial Engineering, 2020, 139: 106127. DOI:10.1016/j.cie.2019.106127.

[9] Fan X, Zhang J, Zhu G. Effects of consumers’ uncertain valuation-for-quality in a distribution channel[J]. Annals of Operations Research, 2020, 329: 1-26. DOI10.1007/ s10479-020-03847-7.

[10] Feng L, Wang W C, Teng J T, et al. Pricing and lot-sizing decision for fresh goods when demand depends on unit price, displaying stocks and product age under generalized payments[J]. European Journal of Operational Research, 2022, 296(3): 940-952. DOI10.1016/j.ejor.2021.04.023.

[11] Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation[J]. Computers & Mathematics with Applications, 1976, 2(1): 17-40. Dot:10.1016/0898-1221(76)90003-1.

[12] Gisches E J, Qi H, Becker W J, et al. Strategic retailers and myopic consumers: competitive pricing of perishable goods[J]. Journal of Behavioral and Experimental Economics, 2021, 92:101700. DOI:10.1016/j.socer.2021.101700.

[13] Goldman S, Zhou Y. Enhancing supervised learning with unlabeled data[C]. Proceedings of the Seventeenth International Conference on Machine Learning , 2000: 3227-334. DOI:10.5555/ 645529.658273.

[14] Golmohammadi A, Mattila A S, Gauri D K. Negative online reviews and consumers’ service consumption[J]. Journal of Business Research, 2020, 116: 27-36. DOI:10.1016/j.jbusres. 2020.05.004.

[15] Guan L, Yang Z H, Li D S, et al. pdlADMM: An ADMM-based framework for parallel deep learning training with efficiency[J]. Neurocomputing, 2020, 435: 264-272. DOI10.1016/j. neucom.2020.09.029.

[16] Han D, Sun D F, Zhang L W. Linear rate convergence of the alternating direction method of multipliers for convex composite programming[J]. Mathematics of Operations Research, 2018 43(2): 622-637. DOI:10.1287/moor.2017.0875.

[17] Kayikci Y, Demir S, Mangla S K, et al. Data-driven optimal dynamic pricing strategy for reducing perishable food waste at retailers[J]. Journal of Cleaner Production, 2022, 344: 131068. DOI:10.1016/j.jclepro.2022.131068.

[18] Li H, Chen Q, Zhong Z, et al. E-word of mouth sentiment analysis for user behavior studies[J]. Information Processing and Management, 2022, 59(1). DOI:10.1016/j.ipm.2021.102784.

[19] Li M M, Shinji M. Dynamic pricing and inventory management of a dual-channel supply chain under different power structures[J]. European Journal of Operational Research, 2022, 303(1): 273-285.

[20] Li X, Hsee C K. The psychology of marginal utility[J]. Journal of Consumer Research, 2021, 48(1): 169-188. DOI:10.1093/jcr/ucaa064.

[21] Lim K L, Jiang X D. Variational posterior approximation using stochastic gradient ascent with adaptive stepsize[J]. Pattern Recognition, 2021, 112: 107783. DOI:10.1016/j.patcog. 2020.107783

[22] Lin H C K, Wang T H, L G C, et al. Applying sentiment analysis to automatically classify consumer comments concerning marketing 4Cs aspects[J]. Applied Soft Computing Journal, 2020, 97(PA): 106755. DOI:10.1016/j.asoc.2020.106755.

[23] Lin W T, Wang Y W, Li C J, et al. Distributed resource allocation: an indirect dual ascent method with an exponential convergence rate[J]. Nonlinear Dynamics, 2020, 102(3): 1685-1699. DOI:10.1007/s11071-019-05376-w.

[24] Lin X, Ho C, Xia L, et al. Sentiment analysis of low-carbon travel APP user comments based on deep learning[J]. Sustainable Energy Technologies and Assessments, 2021, 44: 101014. DOI:10.1016/j.seta.2021.101014.

[25] Liu B, Li Y M, Xu Z L. Manifold regularized matrix completion for multi-label learning with ADMM[J]. Neural Networks, 2018, 101: 57-67. DOI:10.1016/j.neunet.2018.01.011.

[26] Liu K, Li W, Jia F, et al. Optimal strategies of green product supply chains based on behaviour-based pricing[J]. Journal of Cleaner Production, 2022, 335:130288. DOI:10.1016/j.jclepro. 2021.130288.

[27] Liu L, Zhao L, Ren X. Optimal preservation technology investment and pricing policy for fresh food[J]. Computers & Industrial Engineering, 2019, 135: 746-756. DOI:10.1016/j.cie. 2019.06.04.

[28] Liu Q, van Ryzin G J. Strategic capacity rationing to induce early purchases[J]. Management Science, 2008, 54(6): 1115-1131. DOI:10.1287/mnsc.1070.0832.

[29] Luo J M, Vu H Q, Li G, et al. Understanding service attributes of robot hotels: A sentiment analysis of customer online reviews[J]. International Journal of Hospitality Management, 2021, 98:103032. DOI:10.1016/j.ijhm.2021.103032.

[30] Mandel N, Rucker D D, Levav, J, et al. The compensatory consumer behavior model: How self-discrepancies drive consumer behavior[J]. Journal of Consumer Psychology, 2017, 27(1): 133-146. DOI:10.1016/j.jcps.2016.05.003.

[31] Nigam K, Ghani R. Analyzing the effectiveness and applicability of co-training[C]. Proceedings of the Ninth International Conference on Information and Knowledge Management, 2000: 86-93. DOI:10.1145/354756.354805.

[32] Qin H Z, Simchi-Levi D, Wang L. Data-driven approximation schemes for joint pricing and inventory control models[J]. Management Science, 2022, 68(9): 6591-6609. DOI:10.1287/mnsc.2021.4212.

[33] Rana J, Paul J. Consumer behavior and purchase intention for organic food: A review and research agenda[J]. Journal of retailing and consumer services, 2017, 38: 157-165. DOI:10.1016 /j.jretconser.2017.06.004.

[34] Sachs E, Volkwein S. Augmented Lagrange-SQP methods with Lipschitz-continuous Lagrange multiplier updates[J]. SIAM journal on numerical analysis, 2002, 40(1): 233-253. DOI:10.1137/S0036142998348212.

[35] Shalev-Shwartz S, Zhang T. Stochastic dual coordinate ascent methods for regularized loss minimization[J]. Journal of Machine Learning Research, 2013, 14(1): 567-599. DOI:10.5555/2567709.2502598.

[36] Song B Q, Li M Z F, Zhuang W F. Dynamic channel control and pricing of a single perishable product on multiple distribution channels[J]. European Journal of Operational Research, 2021, 288(2): 539-551. DOI:10.1016/j.ejor.2020.06.004.

[37] Vahdani M, Sazvar Z. Coordinated inventory control and pricing policies for online retailers with perishable products in the presence of social learning[J]. Computers & Industrial Engineering, 2022, 168:108093. DOI:10.1016/j.cie.2022.108093.

[38] Wang P, Li J, Hou J. S2SAN: A sentence-to-sentence attention network for sentiment analysis of online reviews[J]. Decision Support Systems, 2021, 149: 113603. DOI:10.1016/j.dss. 2021.113603.

[39] Wang W, Guo L H, Wu Y J. The merits of a sentiment analysis of antecedent comments for the prediction of online fundraising outcomes[J]. Technological Forecasting & Social Change, 2022, 174: 121070. DOI:10.1016/j.techfore.2021.121070.

[40] Wu M, Ran Y, Zhu S X. Optimal pricing strategy: How to sell to strategic consumers?[J]. International Journal of Production Economics, 2022, 244: 108367. DOI:10.1016/ j.ijpe.2021.108367.

[41] Yan B, Chen X X, Cai C Y, et al. Supply chain coordination of fresh agricultural products based on consumer behavior[J]. Computers & Operations Research, 2020, 123:105038. DOI:10.1016/j.cor. 2020.105038.

[42] Yang Y, Sun J, Li H B, et al. ADMM-CSNet: A deep learning approach for image compressive sensing[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(3): 521-538. DOI:10.1109/TPAMI.2018.2883941.

[43] Zhang J, Lu X, Liu D. Deriving customer preferences for hotels based on aspect-level sentiment analysis of online reviews[J]. Electronic Commerce Research and Applications, 2021, 49: 101094. DOI:10.1016/j.elerap.2021.101094.

[44] Zhang K, Zhu Y W, Zhang W J, et al. Cross-modal image sentiment analysis via deep correlation of textual semantic[J]. Knowledge-Based Systems, 2021, 216: 106803. DOI:10.1016/ j.knosys.2021.106803.

[45] Zhang S, Zhang J, Zhu G. Retail service investing: An anti-encroachment strategy in a retailer-led supply chain[J]. Omega, 2019,84: 212-231. DOI:10.1016/j.omega.2018.05.005.

[46] Zhao H L, Liu Z H, Yao X M, et al. A machine learning-based sentiment analysis of online product reviews with a novel term weighting and feature selection approach[J]. Information Processing and Management, 2021, 58(5): 102656. DOI:10.1016/j.ipm.2021.102656.

[47] Zhou Z, Li M. Tri-training: exploiting unlabeled data using three classifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11): 1529-1541. DOI:10.1109/TKDE.2005.186.

[48] Zhu J J, hang Y C, Ku C H, et al. Online critical review classification in response strategy and service provider rating: Algorithms from heuristic processing, sentiment analysis to deep learning[J]. Journal of Business Research, 2021, 129: 860-877. DOI:10.1016/j.jbusres. 020.11.007.

[49] 包乾辉, 李佳利, 石淑珍, 等. 基于DSLML的鸡蛋消费在线评论情感分析[J]. 农业机械学报, 2021, 52(S1): 496-503.

[50] 曹晓宁, 王永明, 薛方红, 等. 供应商保鲜努力的生鲜农产品双渠道供应链协调决策研究[J]. 中国管理科学, 2021, 29(3): 109-118.

[51] 陈靖, 吴一帆. 生鲜品定价与物流集配联合决策研究[J]. 管理学报, 2020, 17(4): 602-612.

[52] 陈柳鑫, 黄磊, 马利军. 运费成本共担下TPL参与的农产品供应链收益共享契约研究[J]. 管理工程学报, 2021, 35(6): 218-225.

[53] 邓君, 孙绍丹, 王阮, 等. 基于Word2Vec和SVM的微博舆情情感演化分析[J]. 情报理论与实践, 2020, 43(8): 112-119.

[54] 国务院. 国务院关于印发“十四五”数字经济发展规划的通知[EB/OL]. (2022-01-12). https://www.gov.cn/zhengce/content/2022-01/12/content_5667817.htm.

[55] 胡韩莉, 曹裕, 吴堪. 基于预售的生鲜供应链销售模式选择与定价研究[J]. 运筹与管理, 2022, 31(11): 128-134.

[56] 黄鹤. 在线评论对电商平台定价与消费者渠道选择的影响[J]. 管理评论, 2023, 35(12): 148-159.

[57] 金亮, 郑本荣. 电商平台自营渠道引入决策:在线产品评论的价值[J]. 系统工程理论与实践, 2023, 43(2): 469-487.

[58] 康晨, 吴珏, 姜安泽, 等. 贮藏温度对“黄妃”樱桃番茄果实品质的影响[J]. 中国食品学报, 2023, 23(4): 295-304.

[59] 李航. 机器学习方法[M]. 北京: 清华大学出版社, 2022: 3-27.

[60] 李浩君, 吕韵, 汪旭辉, 等. 融入情感分析的多层交互深度推荐模型研究[J]. 数据分析与知识发现, 2023, 7(3): 43-57.

[61] 李红莲, 陈浩天, 张乐, 等. 融合情感-主题双通道信息的评论摘要生成模型[J/OL]. 数据分析与知识发现, 2023. http://kns.cnki.net/kcms/detail/10.1478.G2.20230816.1646. 003.html.

[62] 李宗活, 杨文胜, 司银元, 等. 短视型与策略型消费者并存的双渠道两阶段动态定价策略[J]. 系统工程理论与实践, 2019, 39(8): 2080-2090.

[63] 刘逸, 孟令坤, 保继刚, 等. 人工计算模型与机器学习模型的情感捕捉效度比较研究——以旅游评论数据为例[J]. 南开管理评论, 2021, 24(5): 63-74.

[64] 卢超, 邢窈窈. 基于线上评论的生鲜产品供应链定价策略[J]. 运筹与管理, 2022, 31(6): 91-97.

[65] 罗汉洋, 李智妮, 林旭东, 等. 网络口碑影响机制:信任的中介和性别及涉入度的调节[J]. 系统管理学报, 2019, 28(3): 401-414.

[66] 牛奉高, 高旭霞. 基于加权网络改进的中文短文本相似性度量模型[J]. 情报学报, 2021, 40(3): 278-285.

[67] 潘琳, 徐夏静, 周荣庭. 博弈视角下社区生鲜食品供应链双渠道动态定价研究[J/OL].中国管理科学, 2022. https://doi.org/10.16381/j.cnki.issn1003-207x.2021.1506.

[68] 庞庆华, 董显蔚, 周斌, 等. 基于情感分析与TextRank的负面在线评论关键词抽取[J]. 情报科学, 2022, 40(5): 1-7.

[69] 齐文娥, 林川. 消费者生鲜农产品购买意愿影响因素分析[J]. 华南农业大学学报(社会科学版), 2018, 17(1): 78-93.

[70] 商务部电子商务和信息化司. 2023年中国网络零售市场发展报告[EB/OL]. (2024-03-13). https://cif.mofcom.gov.cn/cif/reportHome.fhtml.

[71] 史达, 王乐乐, 衣博文. 在线评论有用性的深度数据挖掘——基于TripAdvisor的酒店评论数据[J]. 南开管理评论, 2020, 23(5):64-75.

[72] 谭春桥, 曾雨晴. 基于区块链技术的O2O生鲜农产品供应链两阶段定价策略研究[J]. 管理学报, 2023, 20(6): 904-915.

[73] 唐跃武, 范体军, 程永伟. 基于不同保鲜方式的生鲜品定价订货决策[J]. 中国管理科学, 2022, 30(3): 189-198.

[74] 王道平, 宋雨情. 考虑消费者行为转化的零售商两阶段动态定价研究[J]. 运筹与管理, 2021, 30(9): 152-157.

[75] 王磊, 但斌. 考虑质量与数量损耗控制的生鲜农产品保鲜策略研究[J]. 中国管理科学, 2023, 31(8): 100-110.

[76] 王文隆, 任越, 张涑贤. 直播带货对农产品供应链商域流量投入和渠道选择的影响[J]. 管理学报, 2023, 20(8): 1216-1224.

[77] 韦强, 史思雨, 赵立群, 等. 不同包装方式对番茄货架期品质的影响[J]. 农产品加工, 2024(4): 34-38+42.

[78] 夏争鸣. 基于在线评论情感分析模型的鲜果动态定价研究[D]. 南京农业大学, 2022.

[79] 熊思斯, 滕宇, 胡珀. 政务新媒体互动内容分析及诉求回应研究——以人民网留言板数据分析为例[J]. 情报杂志, 2024, 43(3): 150-156+9.

[80] 徐兵, 邱芳. 基于消费者选择和产品平均新鲜度的生鲜农产品两阶段定价研究[J]. 工业工程与管理, 2021, 26(2): 118-126.

[81] 许明辉, 沈会, 郑义威. 基于消费者时间偏好与产品质量信息更新的动态定价研究[J]. 系统工程理论与实践, 2023, 43(10): 2989-3017.

[82] 杨钧翔, 张鹏, 曹森, 等. 不同生物保鲜剂处理对番茄采后贮藏品质及生理变化的影响[J/OL]. 食品与发酵工业, 2024. https://doi.org/10.13995/j.cnki.11-1802/ts.037813.

[83] 杨天山, 袁功林. 考虑绿色配送技术投资的易腐品动态定价与补货策略研究[J]. 中国管理科学, 2023, 31(11): 279-287.

[84] 叶俊, 顾波军, 付雨芳. 不同贸易模式下生鲜农产品供应链冷链物流服务与定价决策[J]. 中国管理科学, 2023, 31(2): 95-107.

[85] 张继东, 蒋丽萍. 基于多模态深度学习的旅游评论反讽识别研究[J]. 情报理论与实践, 2022, 45(7): 158-164.

[86] 张名扬, 郭健涛, 于欣格. 电子商务模式下易腐农产品的定价与库存联合决策[J]. 预测, 2021, 40(4): 32-37.

[87] 张锐, 林峰, 贾涛. 考虑保质期的非即时易腐品最优订购与定价决策[J]. 运筹与管理, 2019, 28(5): 26-34.

[88] 赵忠, 程瑜. 考虑保鲜努力的生鲜农产品供应链期权契约协调[J/OL]. 中国管理科学, 2023. https://doi.org/10.16381/j.cnki.issn1003-207x.2022.0044.

[89] 郑本荣, 李芯怡, 黄燕婷. 考虑在线评论的双渠道供应链定价与服务决策[J]. 管理学报, 2022, 19(2): 289-298.

[90] 郑志国. 效用价值论是典型的伪科学[J]. 管理学刊, 2015, 28(5): 16-20.

[91] 中国互联网信息中心. 第53次《中国互联网络发展状况统计报告》[EB/OL]. (2024-03-22). https://www.cnnic.net.cn/n4/2024/0322/c88-10964.html.

[92] 中国政府网. 习近平:高举中国特色社会主义伟大旗帜 为全面建设社会主义现代化国家而团结奋斗——在中国共产党第二十次全国代表大会上的报告[EB/OL]. (2022-10-25). https://www.gov.cn/xinwen/2022-10/25/content_5721685.htm.

[93] 种晓丽, 张金隆, 满青珊, 等. 基于消费者效用的移动服务定价策略研究[J]. 管理学报, 2011, 8(12): 1823-1830.

[94] 周建, 刘炎宝, 刘佳佳. 情感分析研究的知识结构及热点前沿探析[J]. 情报学报, 2020, 39(1): 111-124.

[95] 周宁, 钟娜, 靳高雅, 等. 基于混合词嵌入的双通道注意力网络中文文本情感分析[J]. 数据分析与知识发现, 2023, 7(3): 58-68.

[96] 周知, 王春迎, 朱佳丽. 基于超短评论的图书领域情感词典构建研究[J]. 情报理论与实践, 2021, 44(9): 183-189+197.

[97] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 63-70.

[98] 朱桂阳, 贾涛, 林峰. 考虑产品新鲜度及策略型消费的供应链两阶段模型及策略研究[J]. 工业工程与管理, 2019, 24(1): 87-95.

[99] 朱晓卉, 胡彦蓉, 刘洪久. 基于微博核心实体的情感分析方法及引导机制研究[J]. 情报科学, 2022, 40(3): 136-143+165.

中图分类号:

 F32    

开放日期:

 2024-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式