中文题名: | 非免疫磁分离介导生物传感方法的构建及对单增李斯特菌检测的研究 |
姓名: | |
学号: | 2018108044 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 083201 |
学科名称: | 工学 - 食品科学与工程(可授工学、农学学位) - 食品科学 |
学生类型: | 硕士 |
学位: | 工学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 食品安全与快速检测 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2021-05-29 |
答辩日期: | 2021-05-29 |
外文题名: | Construction of Biosensors Mediated by Non-immunomagnetic Separation and Study on the Detection of Listeria monocytogenes |
中文关键词: | |
外文关键词: | Listeria monocytogenes ; magnetic separation ; upconversion nanoparticles ; magnetic relaxation time ; hybridization reaction |
中文摘要: |
单增李斯特菌(Listeria monocytogenes)是一种人畜共患病原菌,能够在低温、高渗透压等极端环境中存活,可存在于食品产业链的各个环节,是食品安全问题的重要诱因,严重威胁人体健康,已经成为全球各国食源性疾病监测系统中重点关注对象。目前,针对单增李斯特菌的检测方法主要包括传统微生物培养计数法、酶联免疫吸附法、核酸扩增法等,虽然在一定程度上充实了单增李斯特菌检测体系,但大多受检测时长、仪器、成本、灵敏度等因素限制,无法满足日益增长的食品安全需求。针对上述问题,本研究基于磁分离技术和非免疫生物识别分子,构建了新型的荧光及磁弛豫生物传感器,并将其用于单增李斯特菌的快速、高灵敏检测,旨在克服单增李斯特菌传统检测方法的不足之处,为快速检测食源性致病菌提供新思路和新方法。主要研究内容包括以下三部分: 1. 基于双位点识别策略和荧光内滤效应构建的荧光传感器检测单增李斯特菌 本研究以万古霉素和核酸适配体为双位点识别分子,构建了上转换纳米粒子(UCNPs)介导的荧光生物传感器,并将其用于单增李斯特菌的快速检测。其中,万古霉素作为第一识别分子,制备MNPs-Van磁纳米探针;以生物素化的核酸适配体(aptamer)作为第二识别分子,可与单增李斯特菌细胞壁上的内化蛋白A结合。由于两种识别分子分别靶标目标菌上的不同位点,从而特异性捕获目标菌,形成三明治型复合物(MNPs-Van/单增李斯特菌/aptamer)。通过辣根过氧化物酶标记物(HRP-SA),引入HRP-TMB酶催化系统而产生蓝色物质,结合UCNPs的荧光内滤效应,导致UCNPs荧光强度的降低,从而实现对单增李斯特菌的定量检测。研究结果表明:该方法在2 × 103-2 × 108 CFU/mL线性范围内线性方程为y = 342.16x – 532.25(R2 = 0.9969),检测限为2.8 × 102 CFU/mL,特异性较好且能够在1.5 h左右实现对单增李斯特菌的定量分析,加标火腿样本中回收率为88.0-108.5%。与传统的酶联免疫吸附法相比,该检测体系不仅避免了抗体的使用,而且将颜色信号转变为荧光信号,使得信号放大,提高方法的准确性。该传感器的建立为单增李斯特菌等革兰氏阳性细菌的荧光分析方法提供了有益的补充。 2. 基于ALP介导Mn(VII)/Mn(II)转换构建的磁弛豫DNA传感器检测单增李斯特菌 本研究将ALP介导的Mn(VII)/Mn(II)磁弛豫传感系统与DNA杂交技术有机结合,构建了磁弛豫DNA传感器,并将其用于单增李斯特菌的定量分析。基于单增李斯特菌的hlyA致病基因设计了两条寡核苷酸探针,分别将其偶联磁纳米颗粒表面(MNPs-probe1)和进行生物素化(biotin-probe2),通过双探针识别目标DNA并触发杂交反应,并通过生物素-链霉亲和素体系,引入碱性磷酸酶(ALP),形成“MNP-目标DNA-ALP”结构;结合ALP诱导Mn(VII)转换成Mn(II),导致横向弛豫时间(T2)的显著变化,从而实现对单增李斯特菌的定量检测。研究结果表明:该方法在2 × 102-2 × 107 CFU/mL线性范围内线性方程为y = 62.45x + 35.67(R2 = 0.9976)且,检测限为102 CFU/mL,特异性较好且加标火腿样本中回收率为87.2-101.3%。与传统的核酸扩增法相比,该检测体系无需DNA扩增和前增菌处理,有效简化了分析流程,提高了分析效率。此外,本方法通过酶促反应和Mn(VII)/Mn(II)介导的磁弛豫信号打开系统有效地提高了检测灵敏度;与传统的磁免疫传感器相比,无需使用抗体,有效降低了检测成本,在检测食源性致病菌中具有较大优势。 3. 基于差速磁分离策略和无酶标记构建的磁弛豫DNA传感器检测单增李斯特菌 本研究在双探针杂交体系的基础上,结合差速磁分离策略,构建了一种无酶标记的磁弛豫DNA传感器,并将其用于单增李斯特菌的高灵敏检测。基于不同粒径的磁颗粒制备具有不同磁分离速度的磁纳米探针(MNP250-probe1和MNP30-probe2),结合DNA杂交反应,收集磁分离后未结合的MNP30-probe2,建立目标DNA与上清液中MNP30-probe2的一一对应关系,从而实现对单增李斯特菌的定量检测。研究结果表明:该方法的检测线性范围为102-107 CFU/mL,线性方程为y = 42.2x – 32.36(R2 = 0.9930),且检测限达到50 CFU/mL,特异性较好且在1.5 h左右实现目标菌的检测,加标火腿样本中回收率为83.4-105.3%。该系统集高灵敏度的磁传感和高效率的杂交反应于一体,为病原菌的检测提供了良好的平台。与传统检测手段相比,本方法具有检测快速、灵敏度高等优势,与上述建立的两个方法比较,该检测体系不需要酶标记物、DNA扩增和多次洗涤步骤,简化了分析流程,仅通过一步法反应就能定量检测单增李斯特菌。 |
外文摘要: |
Listeria monocytogenes is a zoonotic pathogen that can survive in extreme environments such as low temperature and high osmotic pressure. Listeria monocytogenes can exist in every link of the food industry chain, which is an important cause of food safety problems and a serious threat to human health. Listeria monocytogenes has become the focus of attention in food-borne disease surveillance systems around the world. At present, the detection methods for Listeria monocytogenes mainly include traditional microbial cultures counting method, enzyme-linked immunosorbent method, nucleic acid amplification method, etc. Although to a certain extent, these methods enriched the detection system for Listeria monocytogenes, but most of the testing time, equipment, cost, sensitivity and other factors limited, which cannot meet the increasing food safety requirements. According to the above problem, based on magnetic separation technology and non-antibody biological recognition molecules, this study has built new fluorescence and magnetic relaxation biosensors that have been used to rapidly, sensitively detect Listeria monocytogenes, aiming to overcome the disadvantages of traditional detecting methods for Listeria monocytogenes and providing new ideas and new methods for rapid detection of foodborne pathogens. The main research contents include the following three parts: 1. Development of fluorescence sensor based on two-site recognition strategy and fluorescence internal filtration effect for detection of Listeria monocytogenes In this study, the upconversion nanoparticles (UCNPs) mediated fluorescence biosensor was constructed using vancomycin and aptamer as two-site recognition molecules, and was used for the rapid detection of Listeria monocytogenes. Vancomycin was used as the first recognition molecule to prepare MNPs-Van magnetic nano-probe; A biotinylated aptamer, as a second recognition molecule, could bind to the internalized protein-A on the cell wall of Listeria monocytogenes. Because the two recognition molecules target different sites on the target bacteria, they can specifically capture the target bacteria to form a sandwich type complex (MNPs-Van/Listeria monocytogenes/aptamer). Through the horseradish peroxidase marker (HRP-SA), the HRP-TMB enzyme catalysis system was introduced to produce blue substance. Combined with the fluorescence internal filtration effect of UCNPs, the fluorescence intensity of UCNPs was reduced, so as to realize the quantitative detection of Listeria monocytogenes. The results showed that the linear equation of the method was y = 342.16x - 532.25 (R2 = 0.9969) with the linear range of 2 × 103 to 2 × 108 CFU/mL. The limit of detection (LOD) was 2.8 × 102 CFU/mL with good specificity, and the detection of target bacteria was realized in about 1.5 h. The recovery rate in the spiked ham samples was 88.0-108.5%. Compared with the traditional ELISA, the detection system not only avoids the use of antibodies, but also transforms the color signal into fluorescent signal, which can amplifie the signal and improve the accuracy of the method. The establishment of this sensor provides a useful supplement for fluorescence analysis of Gram-positive bacteria such as Listeria monocytogenes. 2. Development of magnetic relaxation DNA sensor based on ALP-mediated Mn(VII)/Mn(II) conversion for detection of Listeria monocytogenes In this study, the ALP-mediated Mn(VII)/Mn(II) magnetic relaxation sensing system was organically combined with DNA hybridization technology to construct a magnetic relaxation DNA sensor, which was used for the quantitative analysis of Listeria monocytogenes. Based on the hlyA gene of Listeria monocytogenes, two oligonucleotide probes have been designed, and bound to magnetic nanoparticles surface (MNPs-probe1) and biotinylated (bio-probe2), respectively, which triggered hybridization reaction by double probe identifying the target DNA. Through the streptavidin-biotin system, alkaline phosphatase (ALP) was introduced, forming "MNP-target DNA-ALP" structure; and ALP induced the conversion of Mn(VII) and Mn(II), resulting in a significant change in transverse relaxation time (T2), thus achieving the quantitative detection of Listeria monocytogenes. The results showed that the linear equation of the method was y = 62.45x + 35.67 (R2 = 0.9976) with the linear range from 2 × 102 to 2 × 107 CFU/mL, and LOD of 102 CFU/mL. The method had good specificity and the recovery rate was 87.2-101.3% in the spiked ham samples. Compared with the traditional nucleic acid amplification methods, the new detection system does not require DNA amplification and pre-enrichment treatment, which effectively simplifies the analytical process and improves the analytical efficiency. In addition, this method can effectively improve the detection sensitivity by enzymatic reaction and Mn(VII)/Mn(II)-mediated magnetic relaxation signal opening system. Compared with the traditional magnetic immunosensor, it does not need the use of antibodies, effectively reducing the detection cost, and has a great advantage in the detection of food-borne pathogens. 3. Development of magnetic relaxation DNA sensor based on differential magnetic separation strategylarge without enzyme labeling for detection of Listeria monocytogenes In this study, a magnetic relaxation DNA sensor without enzyme labeling was constructed on the basis of two-probe hybridization system combined with differential magnetic separation strategy, and it was used for the highly sensitive detection of Listeria monocytogenes. Magnetic nano-probes (MNP250-probe1 and MNP30-probe2) with different magnetic separation speeds were prepared based on magnetic nanoparticles with different particle sizes. Then, combined with DNA hybridization reaction, unbound MNP30-probe2 after magnetic separation was collected to establish the one-to-one correspondence between target DNA and MNP30-probe2 in the supernatant, so as to realize the quantitative detection of Listeriosis monocytogenes. The results showed that the linear equation of the method was y = 42.2x - 32.36 (R2 = 0.9930) with the linear range from 102 to 107 CFU/mL, and the limit of detection was 50 CFU/mL. The recovery rate rate of target bacteria was 83.4-105.3% in the spiked ham samples. The system combines high sensitivity magnetic sensing and high efficiency hybridization reaction, which provides a good platform for pathogen detection. Compared with the traditional detection methods, this method has the advantages of rapid detection and high sensitivity. Compared with the two methods established above, this detection system does not need enzyme markers, DNA amplification and multiple washing steps, which can simplify the analytical process, and quantitatively detect Listeria monocytogenes only through one-step reaction. |
参考文献: |
[1] Xiong H, Lv S. Factors affecting social media users’ emotions regarding food safety issues: Content analysis of a debate among Chinese Weibo users on genetically modified food security[J]. Healthcare, 2021, 9(2): 113. [2] 潘慧玉. 我国食品安全事件的内容分析[D]. 厦门: 厦门大学, 2018. [3] 厉曙光, 陈莉莉, 陈波. 我国2004—2012年媒体曝光食品安全事件分析[J]. 中国食品学报, 2014, 14(3): 1-8. [4] 包丽娟. 国内外微生物源食源性疾病监测及其防控进展[J]. 食品安全质量检测学报, 2016, 7(7): 2990-2994. [5] 苏涛, 毛永杨, 李智高, 等. 国内外食源性疾病监测与负担估计的研究进展[J]. 食品安全质量检测学报, 2019, 10(17): 5940-5946. [6] Centers for Disease Control and Prevention (CDC). Surveillance for food-borne disease outbreaks, United States, 2016, annual report[C]. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2018. [7] EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control), 2018. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017[J]. EFSA J, 2018, 16(12): e05500. [8] 付萍, 王连森, 陈江, 等. 2015 年中国大陆食源性疾病暴发事件监测资料分析[J]. 中国食品卫生杂志, 2019, 31(1): 64-70. [9] Valero A, Carlos Ortiz J, Fongaro G, et al. Definition of sampling procedures for collective-eating establishments based on the distribution of environmental microbiological contamination on food handlers, utensils and surfaces[J]. Food Control, 2017, 77(9): 8-16. [10] GB 29921-2013 食品安全国家标准 食品中致病菌限量[S]. [11] 周遵武. 致病菌控制在食品加工过程中关键科学问题的思考[J]. 食品安全导刊, 2016, (36): 76. [12] 陈谋通. 食源性单核细胞增生李斯特菌遗传多样性分析和群体感应研究[D]. 广州: 华南理工大学, 2014. [13] Freitag N E, Port G C, Miner M D. Listeria monocytogenes from saprophyte to intracellular pathogen[J]. Nature Reviews Microbiology, 2010, 7(9): 623-637. [14] Morandi S, Silvetti T, Vezzini V, et al. How we can improve the antimicrobial performances of lactic acid bacteria? A new strategy to control Listeria monocytogenes in Gorgonzola cheese[J]. Food Microbiology, 2020, 90: 103488. [15] 李翠云. 单核细胞李斯特菌研究近况[J]. 中国热带医学, 2010, 10(1): 120-122. [16] 崔焕忠, 乔立桥, 王义冲. 单核细胞增生性李斯特菌的主要毒力因子及其致病机理[J] 中国畜牧兽医, 2010, 37(1): 128-133. [17] 王亚鸽. 一株多重耐药ST477型单增李斯特菌全基因组测序与比较基因组学分析[D]. 广州: 华南理工大学, 2019. [18] Brusa V, Prieto M, Campos C A, et al. Quantitative risk assessment of listeriosis associated with fermented sausage and dry-cured pork shoulder consumption in Argentina[J]. Food Control, 2021, 123. [19] Alexandre L, Pauline K, Jean-Christophe A, et al. Risk factors for sporadic listeriosis: A systematic review and meta-analysis[J]. Microbial Risk Analysis, 2020, 30: 100128. [20] Aleksandra M K, Magdalena A O. Biofilm formation and microscopic analysis of biofilms formed by Listeria monocytogenes in a food processing context[J]. LWT-Food Science and Technology, 2017, 84: 47-57. [21] Ricci A, Allende A, Bolton D, et al. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU[J]. EFSA journal European Food Safety Authority, 2018, 16(1): e05134. [22] WHO & FAO. Risk Assessment of Listeria monocytogenes in Ready-To-Eat Foods. 2004, www.who.int/publications. [23] Anna-Liisa V, Anu T-T, Elina V. Rapid detection and identification methods for Listeria monocytogenes in the food chain-A review[J]. Food Control, 2015, 55: 103-114. [24] GB 4789.30-2016 食品安全国家标准 食品微生物学检验 单核细胞增生李斯特氏菌检验[S]. [25] Law J W-F, Ab Mutalib N S, Chan K-G, et al. An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food[J]. Frontiers in Microbiology, 2015, 6: 1227. [26] 苏嘉妮, 邓嘉慧, 赵梓烽. 不同增菌液对单增李斯特菌的增菌效果比较[J]. 食品安全质量检测学报, 2020, 11(16): 5418-5422. [27] Chen Y, Wang Z, Wang Z, et al. Rapid enzyme-linked immunosorbent assay and colloidal gold immunoassay for kanamycin and tobramycin in swine tissues[J]. Journal of Agricultural and Food Chemistry, 2008, 56(9): 2944-2952. [28] Zhao Q, Lu D, Zhang G, et al. Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials[J]. Talanta, 2021, 223: 121-727. [29] Liu A, Xiong Q, Shen L, et al. A sandwich-type ELISA for the detection of Listeria monocytogenes using the well-oriented single chain Fv antibody fragment[J]. Food Control, 2017, 79: 156-161. [30] Portanti O, Di Febo T, Luciani M, et al. Development and validation of an antigen capture ELISA based on monoclonal antibodies specific for Listeria monocytogenes in food[J]. Veterinaria Italiana, 2011, 47(3): 281-290. [31] 朱慧, 李嘉文, 绳秀珍, 等. 副溶血弧菌胶体金快速检测试纸的研制及应用[J]. 中国海洋大学学报(自然科学版), 2021, 51(3): 24-33. [32] 赵鑫, 张帅, 祁文婧, 等. 冷鲜猪肉中单增李斯特菌快速检测试纸条的初步研制[J]. 北京农学院学报, 2019, 34(1): 92-96. [33] 崔焕忠, 张辉, 王兴龙. 胶体金试纸快速检测食品中单增李斯特菌[J]. 食品科学, 2010, 31(4): 239-242. [34] Amagliani G, Brandi G, Omiccioli E, et al. Direct detection of Listeria monocytogenes from milk by magnetic based DNA isolation and PCR[J]. Food Microbiology, 2004, 21(5): 597-603. [35] 闫琳, 王晓英, 郭云昌, 等. 增菌-PCR法与传统方法检测猪肉中单增李斯特菌的比较研究[J]. 中国卫生检验杂志, 2013, 23(15): 3021-3024. [36] Germini A, Masola A, Carnevali P, et al. Simultaneous detection of Escherichia coli O175:H7, Salmonella spp., and Listeria monocytogenes by multiplex PCR[J]. Food Control, 2009, 20(8): 733-738. [37] 刘芳, 徐振娜, 洪伟彬, 等. 食品中单增李斯特菌荧光PCR检测方法的建立[J]. 农村经济与科技, 2017, 28(17): 84-85+91. [38] Li F, Ye Q, Chen M, et al. Real-time PCR identification of Listeria monocytogenes serotype 4c using primers for novel target genes obtained by comparative genomic analysis[J]. LWT - Food Science and Technology, 2021, 138: 110774. [39] Niessen, L, Luo, J, Denschlag, C, et al. The application of loop-mediated isothermal amplification (LAMP) in food testing for bacterial pathogens and fungal contaminants[J]. Food Microbiology, 2013, 36(2): 191-206. [40] Fortes E D., David J, Koeritzer B, et al. Validation of the 3M molecular detection system for the detection of Listeria in meat, seafood, dairy, and retail environments[J]. Journal of Food Protection, 2013, 76(5): 874-878. [41] 贺生芳, 郭澍强, 谈静惠, 等. 单核细胞增生性李斯特菌LAMP-浊度/荧光检测方法的建立[J]. 动物医学进展, 2020, 41(7): 48-52. [42] Dominguez R B, Hayat A, Alonso G A, et al. Nanomaterial-based biosensors for food contaminant assessment[M]. America: Academic Press, 2017, 8: 805-839. [43] Sharma H, Mutharasan R. Review of biosensors for foodborne pathogens and toxins[J]. Sensors and Actuators B-Chemical, 2013, 183: 535-549. [44] Shao B, Xiao Z. Recent achievements in exosomal biomarkers detection by nanomaterials-based optical biosensors - A review[J]. Analytica Chimica Acta, 2020, 1114: 74-84. [45] 吴静, 李 耘, 王天琪, 等. 基于纳米粒子荧光传感器的食源性病原菌检测技术研究[J]. 农产品质量与安全, 2017(6): 32-38. [46] 晏许超, 周熙成, 程水连, 等. 单核增生李斯特氏菌近红外快检方法建立与应用[J]. 食品安全质量检测学报, 2021, 12(1): 255-261. [47] Wang Z, Miu T, Xu H, et al. Sensitive immunoassay of Listeria monocytogenes with highly fluorescent bioconjugated silica nanoparticles probe[J]. Journal of Microbiological Methods, 2010, 83(2): 179-184. [48] Capo A, D'Auria S, Lacroix M. A fluorescence immunoassay for a rapid detection of Listeria monocytogenes on working surfaces[J]. Scientific Reports, 2020, 10(1): 21729. [49] Li F, Ye Q, Chen M, et al. Cas12aFDet: A CRISPR/Cas12a-based fluorescence platform for sensitive and specific detection of Listeria monocytogenes serotype 4c[J]. Analytica Chimica Acta, 2021, 1151: 338248. [50] 许思齐, 金敏. 光学生物传感器在致病菌检测中的研究进展[J]. 食品研究与开发, 2019, 40(13): 192-199. [51] Liu Y, Wang J, Zhao C, et al. A multicolorimetric assay for rapid detection of Listeria monocytogenes based on the etching of gold nanorods[J]. Analytica Chimica Acta, 2019, 1048: 154-160. [52] Alhogail S, Suaifan G A R Y, Zourob M. Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen[J]. Biosensors and Bioelectronics, 2016, 86: 1061-1066. [53] Du J, Singh H, Dong W, et al. Colorimetric detection of Listeria monocytogenes using one-pot biosynthesized flower-shaped gold nanoparticles[J]. Sensors and Actuators B-Chemical, 2018, 265: 285-292. [54] Mahmoudpour M, Dolatabadi J E N, Torbati M, et al. Nanomaterials and new biorecognition molecules based surface plasmon resonance biosensors for mycotoxin detection[J]. Biosensors and Bioelectronics, 2019, 143: 111603. [55] 洪小柳, 赵 芳, 刘慧玲, 等. SPR生物传感器高通量检测多种食源性致病菌的研究[J].食品安全质量检测学报, 2014, 5(11): 3444-3453. [56] Raghu H V., Kumar N. Rapid detection of Listeria monocytogenes in milk by surface plasmon resonance using wheat germ agglutinin[J]. Food Analytical Methods, 2020, 13: 982-991. [57] Zhang X, Tsuji S, Kitaoka H, et al. Simultaneous detection of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes at a very low level using simultaneous enrichment broth and multichannel SPR biosensor[J]. Journal of Food Science, 2017, 82(10): 2357-63. [58] Langer J, de Aberasturi D J, Aizpurua J, et al. Present and future of surface-enhanced Raman scattering[J]. ACS Nano, 2020,14(1): 28-117. [59] Liu H, Du X, Zang Y, et al. SERS-based lateral flow strip biosensor for simultaneous detection of Listeria monocytogenes and Salmonella enterica serotype Enteritidis[J]. Journal of Agricultural and Food Chemistry, 2017, 65(47): 10290-10299. [60] Huang D, Zhuang Z, Wang Z, et al. Black phosphorus-Au filter paper-based three-dimensional SERS substrate for rapid detection of foodborne bacteria[J]. Applied Surface Science, 2019, 497: 143825. [61] Akcinar H Y, Aslim B, Torul H, et al. Immuno-magnetic separation and Listeria monocytogenes detection with surface enhanced Raman scattering[J]. Turkish Journal of Medical Sciences, 2020, 50(4): 1157-1167. [62] Silva N F D, Neves M M P S, Magalh?es J M C S, et al. Emerging electrochemical biosensing approaches for detection of Listeria monocytogenes in food samples: An overview[J]. Trends in Food Science and Technology, 2020, 99: 621-633. [63] Wang D, Chen Q, Huo H, et al. Efficient separation and quantitative detection of Listeria monocytogenes based on screen-printed interdigitated electrode, urease and magnetic nanoparticles[J]. Food Control, 2017, 73: 555-561. [64] Hills K D, Oliveira D A, Cavallaro N D, et al. Actuation of chitosan-aptamer nanobrush borders for pathogen sensing[J]. Analyst, 2018, 143(7): 1650-1661. [65] Li F, Ye Q, Chen M, et al. An ultrasensitive CRISPR/Cas12a based electrochemical biosensor for Listeria monocytogenes detection[J]. Biosensors and Bioelectronics, 2021, 179: 113073. [66] Josephson L, Perez JM, Weissleder R. Magnetic nanosensors for the detection of oligonucleotide sequences[J]. Angewandte Chemie-International Edition, 2001, 40(17): 3204-3206. [67] Wang S, Zhang Y, An W, et al. Magnetic relaxation switch immunosensor for the rapid detection of the foodborne pathogen Salmonella enterica in milk samples[J]. Food Control, 2015, 55: 43-48. [68] 胡云云. 基于磁弛豫传感检测汞离子和循环肿瘤DNA[D]. 重庆: 西南大学, 2020. [69] Chung H J, Castro C M, Im H, et al. A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria[J]. Nature Nanotechnology, 2013, 8(5): 369-75. [70] 谷桂英, 王欣, 周化岚, 等. 磁弛豫开关传感器在医学诊断及食品安全检测中的研究进展[J]. 分析化学, 2018, 46(8): 1161-1170. [71] Zhao Y, Li Y, Jiang K, et al. Rapid detection of Listeria monocytogenes, in food by biofunctionalized magnetic nanoparticle based on nuclear magnetic resonance[J]. Food Control, 2017, 71: 110-116. [72] Chen Y, Xianyu Y, Wang Y, et al. One-step detection of pathogens and viruses: combining magnetic relaxation switching and magnetic separation[J]. ACS Nano, 2015, 9(3): 3184-3194. [73] Wang Z, Xianyu Y, Zhang Z, et al.Background signal-free magnetic bioassay for foodborne pathogen and residue of veterinary drug via Mn(VII)/Mn(II) interconversion[J] ACS Sensors, 2019, 4(10): 2771-2777. [74] de Noordhout C M, Devleesschauwer B, Angulo F J, et al. The global burden of listeriosis: A systematic review and meta-analysis[J]. The lancet Infectious Diseases, 2014, 14(11): 1073-1082. [75] Lee B-H., Cole S, Badel-Berchoux S, et al. Biofilm formation of Listeria monocytogenes strains under food processing environments and pan-genome-wide association study[J]. Frontiers in Microbiology, 2019, 10: 2698. [76] Campos Braga P A, Tata A, Dos Santos V G, et al. Bacterial identification: from the agar plate to the mass spectrometer[J]. RSC Advances, 2013, 3(4): 994-1008. [77] Wu L, Li G, Xu X, et al. Application of nano-ELISA in food analysis: recent advances and challenges[J]. TrAC-Trends in Analytical Chemistry, 2019, 113: 140-156. [78] Alía A, Andrade M J, Córdoba J J, et al. Development of a multiplex real-time PCR to differentiate the four major Listeria monocytogenes serotypes in isolates from meat processing plants[J]. Food Microbiology, 2020, 87: 103367. [79] 周进. 基于上转换荧光纳米探针的免疫生物传感器构建及其应用研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018. [80] Lin C, Xia Z, Zhang L, et al. Organic linkers enable tunable transfer of migrated energy from upconversion nanoparticles[J]. ACS Applied Materials and Interfaces, 2020, 12(28): 31783-31792. [81] Chen S, Yu Y-L, Wang J-H. Inner filter effect-based fluorescent sensing systems: A review[J]. Analytica Chimica Acta, 2018, 999: 13-26. [82] Li H, Ahmad W, Rong Y, et al. Designing an aptamer based magnetic and upconversion nanoparticles conjugated fluorescence sensor for screening Escherichia coli in food[J]. Food Control, 2020, 107: 106761. [83] Bu T, Yao X, Huang L, et al. Dual recognition strategy and magnetic enrichment based lateral flow assay toward Salmonella enteritidis detection[J]. Talanta, 2020, 206: 120204. [84] Williams D H, Bardsley B. The vancomycin group of antibiotics and the fight against resistant bacteria[J]. Angewandte Chemie-International Edition, 1999, 38(9): 1173-1193. [85] Kell A J, Stewart G, Ryan S, et al. Vancomycin-modified nanoparticles for efficient targeting and preconcentration of Gram-positive and Gram-negative bacteria[J]. ACS Nano, 2008, 2(9): 1777-1788. [86] You Q, Zhang X, Wu F-G, et al. Colorimetric and test stripe-based assay of bacteria by using vancomycin-modified gold nanoparticles[J]. Sensors and Actuators B-Chemical, 2019, 281: 408-414. [87] Ohk S H, Koo O K, Sen T, et al. Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food[J]. Journal of Applied Microbiology, 2010, 109(3): 808-817. [88] Feng J, Dai Z, Tian X, et al. Detection of Listeria monocytogenes based on combined aptamers magnetic capture and loop-mediated isothermal amplification[J]. Food Control, 2018, 85: 443-452. [89] Zhang L, Huang R, Liu W, et al. Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification[J]. Biosensors and Bioelectronics, 2016, 86: 1-7. [90] 吴世嘉. 基于上转换荧光纳米探针的高灵敏微生物毒素检测方法研究[D]. 无锡: 江南大学, 2013. [91] Chen Y, D'Amario C, Gee A, et al. Dispersion stability and biocompatibility of four ligand-exchanged NaYF4: Yb, Er upconversion nanoparticles[J]. Acta Biomaterialia, 2020, 102: 384-393. [92] Bandar S, Anbia M, Salehi S. Comparison of MnO2 modified and unmodified magnetic Fe3O4 nanoparticle adsorbents and their potential to remove iron and manganese from aqueous media[J]. Journal of Alloys and Compounds, 2021, 851: 156822. [93] 孟祥玉. 万古霉素功能化磁珠的合成及在单增李斯特菌和金黄色葡萄球菌分离检测中应用的研究[D]. 南昌: 南昌大学, 2018. [94] 翁诗甫. 傅里叶变换红外光谱分析[M]. 北京: 化学工业出版社, 2010. [95] Maury M M, Bracq-Dieye H, Huang L, et al. Hypervirulent Listeria monocytogenes clones' adaption to mammalian gut accounts for their association with dairy products[J]. Nature Communications, 2019, 10(1): 2488. [96] Hermann C A, Duerkop A, Baeumner A J. Food safety analysis enabled through biological and synthetic materials: A critical review of current trends[J]. Analytical Chemistry, 2019, 91(1): 569-587. [97] Guo Y, Zhao C, Liu Y, et al. A novel fluorescence method for the rapid and effective detection of Listeria monocytogenes using aptamer-conjugated magnetic nanoparticles and aggregation-induced emission dots[J]. Analyst, 2020, 145(11): 3857-3863. [98] Zhang Y, Yang H, Zhou Z, et al. Recent advances on magnetic relaxation switching assay-based nanosensors[J]. Bioconjugate Chemistry, 2017, 28(4): 869-879. [99] Abdalhai M H, Fernandes A M, Xia X, et al. Electrochemical genosensor to detect pathogenic bacteria (Escherichia coil O157:H7) as applied in real food samples (fresh beef) to improve food safety and quality control[J]. Journal of Agricultural and Food Chemistry, 2015, 63(20): 5017-5025. [100] Yang X, Zhou X, Zhu M, et al. Sensitive detection of Listeria monocytogenes based on highly efficient enrichment with vancomycin-conjugated brush-like magnetic nano-platforms[J]. Biosensors and Bioelectronics, 2017, 91: 238-245. [101] Neely L A, Audeh M, Phung N A, et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood[J]. Science Translational Medicine, 2013, 5(182): 182-54. [102] Dong M, Zheng W, Chen Y, et al. Fe-T1 sensor based on coordination chemistry for sensitive and versatile bioanalysis[J]. Analytical Chemistry, 2018, 90(15): 9148-9155. [103] Dong M, Zheng W, Chen Y, et al. Cu-T1 sensor for versatile analysis[J]. Analytical Chemistry, 2018, 90(4): 2833-2838. [104] Liu Z, Xianyu Y, Zheng W, et al. T1-mediated nanosensor for immunoassay based on an activatable MnO2 nanoassembly[J]. Analytical Chemistry, 2018, 90(4): 2765-2771. [105] Parak W J, Pellegrino T, Micheel C M, et al. Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis[J]. Nano Letters, 2003, 3(1): 33-36. [106] Martins S A, Prazeres D M, Fonseca L P, et al. The role of probe-probe interactions on the hybridization of double-stranded DNA targets onto DNA-modified magnetic microparticles[J]. Analytical and Bioanalytical Chemistry, 2009, 394(6): 1711-1716. [107] Paul R, Saville A C, Hansel J C, et al. Extraction of plant DNA by microneedle patch for rapid detection of plant diseases[J]. ACS Nano, 2019, 13(6): 6540-6549. [108] Xu X, Ying Y, Li Y. One-step and label-free detection of alpha-fetoprotein based on aggregation of gold nanorods[J]. Sensors and Actuators B-Chemical, 2012, 175: 194-200. [109] Jancik Prochazkova A, Gaidies S, Yumusak C, et al. Peptide nucleic acid stabilized perovskite nanoparticles for nucleic acid sensing[J]. Materials Today Chemistry, 2020, 17: 100272. [110] Lu W, Chen Y, Liu Z, et al. Quantitative detection of microRNA in one step via next generation magnetic relaxation switch sensing[J]. ACS Nano, 2016, 10(7): 6685-6692. [111] Yu Q, Zhai L, Bie X, et al. Survey of five food-borne pathogens in commercial cold food dishes and their detection by multiplex PCR[J]. Food Control, 2016, 59: 862-869. [112] Hameed S, Xie L, Ying Y. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review[J]. Trends in Food Science & Technology, 2018, 81: 61-73. [113] 董永贞, 吴紫荆, 王知龙, 等. 磁弛豫生物传感器在食品安全快速检测中的应用研究进展[J]. 华中农业大学学报, 2021, 40(1): 137-146. [114] Zou L, Ling L. Ultrasensitive detection of HIV DNA with polymerase chain reaction-dynamic light scattering[J]. Analytical Chemistry, 2018, 90(22): 13373-13377. [115] Yuan Y-H, Wu Y-D, Chi B-Z, et al. Simultaneously electrochemical detection of microRNAs based on multifunctional magnetic nanoparticles probe coupling with hybridization chain reaction[J]. Biosensors and Bioelectronics, 2017, 97: 325-331. [116] Chen Q, Huang F, Cai G, et al. An optical biosensor using immunomagnetic separation, urease catalysis and pH indication for rapid and sensitive detection of Listeria monocytogenes[J]. Sensors and Actuators B-Chemical, 2018, 258: 447-453. [117] Zhan Z, Li H, Liu J, et al. A competitive enzyme linked aptasensor with rolling circle amplification (ELARCA) assay for colorimetric detection of Listeria monocytogenes[J]. Food Control, 2020, 107: 106806. [118] Li W, Mao R, Yue X, et al. Competitive annealing mediated isothermal amplification (CAMP) for rapid and simple detection of Listeria monocytogenes in milk[J]. Food Control, 2020, 117: 107347. [119] Li F, Li F, Aguilar Z P, et al. Polyamidoamine (PAMAM) dendrimer-mediated biotin amplified immunomagnetic separation method coupled with flow cytometry for viable Listeria monocytogenes detection[J]. Sensors and Actuators B-Chemical, 2018, 257: 286-294. |
中图分类号: | TS2 |
开放日期: | 2021-06-18 |