- 无标题文档
查看论文信息

中文题名:

 平原农区水耕人为土土系预测制图和区域土壤肥力评价    

姓名:

 白浩然    

学号:

 2017103081    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090301    

学科名称:

 农学 - 农业资源利用 - 土壤学    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 南京农业大学    

院系:

 资源与环境科学学院    

专业:

 土壤学    

研究方向:

 土壤资源与信息技术    

第一导师姓名:

 潘剑君    

第一导师单位:

 南京农业大学    

完成日期:

 2020-05-30    

答辩日期:

 2020-06-03    

外文题名:

 Predictive mapping of Stagnic Anthrosols soil series and evaluation of regional soil fertility in plain agricultural areas     

中文关键词:

 水耕人为土 ; 模糊c-均值算法 ; 土系预测制图 ; 土壤单体肥力评价    

外文关键词:

 Stagnic Anthrosols ; Fuzzy c-means algorithm ; Soil series prediction mapping ; Evaluation of soil Pedon fertility    

中文摘要:

目前,基层分类单元土族、土系的研究是我国的土壤系统分类研究的重点。土系调查制图一直都是土系研究的重点。其中,土系预测制图作为一种根据已知土壤剖面点来预测区域土壤类型的方法也逐渐受到人们的重视。但是,由于平原农区这类景观缓变区地势开阔平坦,地表起伏不明显,坡度较为平缓;自然植被相对单一,景观变化较小;加之人为活动剧烈导致土地利用类型多样且易变。因此,在对国计民生影响特别重大的以水耕人为土为主要代表的景观缓变地区,土系调查制图的研究相对较少。现今,土壤肥力评价多局限于土壤表层,虽然农业土壤养分绝大多数集中在土壤表层,但是在评价土壤肥力时仅仅考虑土壤表层是远远不够的,特别在水耕人为土中,水耕氧化还原层中的潴育化过程,黏化过程和同样具有淋溶现象的潜育化过程都说明了水耕人为土剖面上具有活跃且丰富的物质交流现象,也说明了土壤剖面肥力评价的必要性与重要性。土系与生产应用结合性强,是中国土壤系统分类最基层的土壤分类单元。因此基于土系制图技术,以土系作为区域土壤肥力评价的评价单元,进而完成区域土壤肥力评价对了解土壤肥力特征具有重要的研究意义。

本文的研究目的包括:寻找一种更加方便快捷的适用于景观缓变区的土系制图方法,完成水耕人为土的土系预测制图。其研究结果可以为区域精准农业管理、生态环境建模、土壤模拟等诸多领域提供更加细致的土壤基础资料;合理划分特征土层,计算土壤单体土壤肥力指数,并结合土系预测图制作区域土壤肥力评价图。预期研究成果对于完善基于中国土壤系统分类的土壤单体肥力评价理论与方法有重要意义。最后,分析不同土系类型与土系肥力之间的关系,以期能够反映水耕人为土土壤肥力的影响因素。这为制定防止土壤肥力退化措施和土壤肥力改良方法提供了重要的理论依据和科学指导。

本研究在中国土壤系统分类理论的基础上,根据中国土壤系统分类体系与各大成土因素对水耕人为土土壤类型空间变异的影响,遴选出8种水耕人为土土系类型诊断依据。结合模糊c-均值算法(Fuzzy c-means,FCM)对28个土壤剖面样点数据进行模糊聚类分析,将其输出结果利用两种地统计学插值方法进行插值,并去模糊化得到土系预测图。利用指数法土壤肥力评价模型,选取评价指标,确定指标权重,最后计算出土壤单体肥力指数PFQI,并结合土系预测图制作区域土壤肥力评价图。进一步分析不同土系类型与土系肥力之间的关系。对研究结果进行总结和概括,得到主要结论如下:

(1)为了使最终土壤类型预测结果在土系层级甚至土族、亚类和土类的层级上都能与土壤系统分类判别的土壤类型完全匹配。本文结合中国土壤系统分类体系、水耕人为土本身的土体特征和建立土系应当与农业生产应用具有较强结合性的特点,筛选了8种土系类型诊断依据,均是在土系的检索与建立的过程中用到的土壤诊断层、诊断特性和土壤剖面性状等,在验证点参与和不参与土壤模糊连续聚类两种聚类情况下得到的聚类中心都能与手动检索建立的土系类型建立良好的对应关系。所以,选择土壤诊断层、诊断特性等作为土壤类型诊断依据,在景观缓变区基层土壤分类单元中进行土壤数值化分类及并完成土壤预测制图是可行且适用的。

(2)比较两种地统计插值方法在土系预测制图中的应用结果,相比之下,使用IDW获得的结果更加准确、合理。进一步经过混淆矩阵验证分析,Kappa系数为0.61,总分类精度达到0.65,满足土壤制图精度的基本要求,说明FCM和IDW相结合能很好的实现平原农区水耕人为土土系的预测与制图,在合理的选择土壤类型诊断依据的前提下,可以广泛的应用于平原农区景观缓变区的土系类型的空间预测与制图。

(3)将土壤单体肥力指数PFQI与水稻产量做相关分析,根据相关分析得到:PFQI与水稻产量在0.01水平(双侧)上显著相关,相关度为0.71;耕作层肥力指数与水稻产量在0.05水平(双侧)上显著相关,相关度为0.33。说明本文以土壤诊断层与诊断特性作为土壤层次划分的依据,利用主成分分析法确定评价指标与各个土层的权重,计算PFQI的评价体系具有较好的科学性与应用性,且在水耕人为土中PFQI比耕作层肥力指数与水稻产量的相关性更高。

(4)分析不同土系类型与土壤单体肥力之间的关系,得到土壤肥力主要是由土壤质地、有机质及磷钾含量等土壤养分所决定,与土层厚度和土层结构也有很大的关系。其中潜育层次的存在对土壤单体肥力会产生负面影响,降低土壤单体肥力;具有铁聚特征层的土系普遍土壤单体肥力较高。

外文摘要:

Chinese Soil Taxonomy (CST) has made great progress at present, and it is at the stage of researching on the standard of basic taxonomic unit classification. The investigation and mapping of soil series has always been the focus of soil series research. Among them, predictive mapping of soil series as a method of predicting regional soil types based on known soil profile points has gradually attracted people's attention. The landscape slowly changing areas such as plain agricultural areas are wide and flat. It surface fluctuations are not obvious, and the slope is relatively gentle; the natural vegetation is relatively single, and the landscape changes are small; the intense human activities, the land use types are diverse and volatile, therefore, there are relatively few studies on soil surveying and mapping in areas with slowly changing landscapes, where Stagnic Anthrosols is the main representative. At present, the assessment of soil fertility is mostly limited to the soil surface. Although most of the soil nutrients in agriculture are concentrated on the soil surface. It is not enough to consider the soil surface only when evaluating the fertility, especially in Stagnic Anthrosols. The hydromorphic process, the sticking process and the gleying process with leaching phenomenon in the hydragric horizon indicate the active and abundant material exchange phenomenon on the Stagnic Anthrosols profile, as well as the fertility evaluation of the soil Pedon. Necessity and importance.

The research objectives of this article include: to find a more convenient and quick soil mapping method suitable for the slowly changing landscape area, and to complete the soil mapping prediction mapping of Stagnic Anthrosols. The research results can provide more detailed soil basic data for regional precision agriculture management, ecological environment modeling, soil simulation and other fields. The soil fertility index of Pedon was calculated by reasonably dividing characteristic soil layers, and the regional soil fertility evaluation map was made by combining with soil system prediction map. The expected research results is the theory and method of soil Pedon fertility evaluation in CST are of great significance. Finally, the variation of soil fertility in different soil layer structures and different soil types under Stagnic Anthrosols in the study area is discussed, In order to reflect the influencing factors of the soil fertility. It provides important theoretical basis and scientific guidance for formulating measures to prevent soil degradation and methods for improving soil.

Based on the CST theory and the major soil formation factors on the spatial variability of Stagnic Anthrosols types, 8 diagnosis basis of soil were selected according to the soil genetic characteristics of Stagnic Anthrosols. Fuzzy c-means (FCM) was applied to analyze the sample soil, and the output results were interpolated by two geostatistical interpolation methods. Then get the soil series prediction map by defuzzification method. Using the index method of soil evaluation model, the evaluation index is selected, the index weight is determined, and finally the PFQI is calculated. Combined with the soil series prediction map, the regional soil fertility evaluation map was made. The relationship between different soil series types and soil series fertility was further analyzed. Summarizing the research results, the main conclusions are as follows:

(1) In order to make the final soil prediction result can match the soil type discriminated by the CST at the soil series level or even at the level of the soil Family, soil subgroup and great group. This paper combines the characteristics of the CST classification system, the characteristics of the Stagnic Anthrosols, and the characteristics of establishing the soil series that should be strongly combined with agricultural production applications. 8 kinds of soil diagnosis basis. The cluster centers obtained under the two clustering cases of verification point participation and verification point non-participation in soil fuzzy continuous clustering can establish a good correspondence with the soil series established by manual retrieval. Therefore, it is feasible and applicable to select soil diagnostic layers and diagnostic characteristics as the basis for soil type diagnosis. It is feasible and applicable to carry out numerical soil classification and soil prediction mapping in the basic soil classification unit of landscape slowly changing area.

(2)Compare the application results of the two geostatistical interpolation methods in the prediction of soil series. In contrast, the results obtained using the Inverse Distance Weighted (IDW) are more accurate and reasonable. After further analysis by the confusion matrix, the Kappa coefficient is 0.61, and the total classification accuracy is 0.65, which meets the basic requirements for soil mapping accuracy. It shows that the combination of FCM algorithm and IDW can well realize the prediction and mapping of Stagnic Anthrosols in the plain agricultural area. Spatial prediction of soil systems can be widely applied to the spatial prediction and mapping of soil system types in the slowly changing landscape areas of plain agricultural areas on the premise of reasonable selection of soil diagnostic basis.

(3) Correlate the soil fertility of Pedon with rice yield: the soil fertility of Pedon and rice yield were significantly related at the 0.01 level (two sides), the correlation was 0.71. The fertility of the tillage layer is significantly correlated with the rice yield at the 0.05 level (bilateral), the correlation was 0.33. It shows that this paper uses the soil diagnosis layer and diagnosis characteristics as the basis for the division of the soil layer, uses the principal component analysis method to determine the evaluation index and the weight of each soil layer, and finally calculates the PFQI. Thr evaluation system is scientific and practical. Also shows that the fertility of Pedon in the Stagnic Anthrosols soil profile has a higher correlation with rice yield than the fertility of the cultivated layer.

(4) Analyze the relationship between different soil series types and its fertility. The fertility of the soil series is mainly determined by the soil texture, organic matter, phosphorus and potassium content and other soil nutrients, and also closely related to the thickness and structure of the soil layer. The existence of the gley horizon will have a negative impact on the fertility of the soil series and reduce the fertility level of soil fertility; the soil series with iron-accumulating characteristic layer generally has higher fertility.

参考文献:

[1] Rabenhorst M C. A Half Century of Changes in Soil Taxonomy[J]. Soil Science Society Of America Journal, 2016, 80(04): 839-844.

[2] 龚子同. 中国土壤系统分类: 理论·方法·实践[M]. 北京: 科学出版社, 1999.

[3] Jones J B, Jr. Soil Taxonomy, Horizontal Characteristics, and Clay Minerals[M]. Crc Press-Taylor & Francis Group, 6000 Broken Sound Parkway Nw, Ste 300, Boca Raton, Fl 33487-2742 USA, 2012: 45-47.

[4] 张保华, 何毓蓉. 中国土壤系统分类及其应用研究进展[J]. 山东农业科学, 2005(04): 76-78.

[5] 龚子同, 张甘霖, 陈志诚. 土壤发生与系统分类[M]. 北京: 科学出版社, 2007.

[6] 中国科学院南京土壤研究所土壤系统分类课题组, 中国土壤系统分类课题研究协作组. 中国土壤系统分类检索(第三版)[M]. 合肥: 中国科学技术大学出版社, 2001.

[7] 李德成, 张甘霖. 中国土壤系统分类土系描述的难点与对策[J]. 土壤学报, 2016, 53(06): 1563-1567.

[8] 张甘霖, 王秋兵, 张凤荣, 等. 中国土壤系统分类土族和土系划分标准[J]. 土壤学报, 2013, 50(04): 826-834.

[9] 鞠兵, 吴克宁, 李玲, 等. 河南省典型淋溶土土系划分研究[J]. 土壤学报, 2015, 52(01): 38-47.

[10] 雷学成, 潘剑君, 黄礼辉, 等. 土系划分方法研究——以江苏省新沂样区为例[J]. 土壤, 2012, 44(02): 319-325.

[11] 曲潇琳, 龙怀玉, 曹祥会, 等. 宁夏山地土壤的发育规律及系统分类研究[J]. 土壤学报:2019,56(01) 65-77.

[12] 曲潇琳, 龙怀玉, 谢平, 等. 宁夏引黄灌区灌淤土的成土特点及系统分类研究[J]. 土壤学报, 2017, 54(05): 1102-1114.

[13] 曲潇琳, 龙怀玉, 谢平, 等. 宁夏中部地区典型灰钙土的发育特性及系统分类研究[J]. 土壤学报, 2018, 55(01): 75-87.

[14] 张楚, 袁大刚, 宋易高, 等. 川西地区具有机土壤物质特性土壤的系统分类[J]. 土壤学报, 2018, 55(05): 1085-1097.

[15] 杜国华, 张甘霖, 赵文君. 土系的基本特点与划分[J]. 土壤通报, 1999, 30(S1): 10-12.

[16] 张甘霖. 土系研究与制图表达[M]. 合肥: 中国科学技术大学出版社, 2001.

[17] 张甘霖, 卢瑛. 中国土系志: 广东卷[M]. 北京: 科学出版社, 2017.

[18] 张甘霖, 黄标, 潘剑君, 等. 中国土系志: 江苏卷[M]. 北京: 科学出版社, 2017.

[19] 张甘霖, 李德成, 王华, 等. 中国土系志: 安徽卷[M]. 北京: 科学出版社, 2017.

[20] 张甘霖, 杨金玲. 中国土系志: 上海卷[M]. 北京: 科学出版社, 2017.

[21] 王恒钦, 潘剑君, 余文飞, 等. 景观解译对小区域土系调查的作用研究[J]. 土壤通报, 2015, 46(02): 257-264.

[22] 卢浩东, 潘剑君, 付传城, 等. 面向土系调查制图的小尺度区域景观分类——以宁镇丘陵区中一小区域为例[J]. 生态学报, 2014, 34(09): 2356-2366.

[23] 杨志强, 潘剑君, 黄礼辉, 等. 面向土壤系统分类的土壤调查制图方法的初步研究[J]. 土壤, 2010, 42(05): 842-848.

[24] Ma Y X, Minasny B, Malone B P, et al. Pedology and digital soil mapping (DSM)[J]. European Journal Of Soil Science, 2019, 70(02): 216-235.

[25] 杨琳, 朱阿兴, 李宝林, 等. 应用模糊c均值聚类获取土壤制图所需土壤-环境关系知识的方法研究[J]. 土壤学报, 2007, 44(05): 784-791.

[26] 黄魏, 罗云, 汪善勤, 等. 基于传统土壤图的土壤—环境关系获取及推理制图研究[J]. 土壤学报, 2016, 53(01): 72-80.

[27] Bhargavi P, Jyothi D S. Fuzzy C-Means Classifier for Soil Data[J]. International Journal of Computer Applications, 2010, 6(04): 1-5.

[28] 孙亚洲, 陈杰, 吴克宁, 等. 基于模糊k-均值算法模型的土壤数值化分类——以河南省境内分布的雏形土为例[J]. 土壤, 2017, 49(06): 1262-1267.

[29] Ioa O, Mcbratney A B, Chittleborough D J. Fuzzy-c-Means and Kriging for Mapping Soil as a Continuous System[J]. Soil Science Society of America Journal, 1992, 56(06): 1848-1854.

[30] 檀满枝, 陈杰. 模糊c-均值算法在区域土壤预测制图中的应用[J]. 土壤学报, 2009, 46(04): 571-577.

[31] 刘鹏飞, 宋轩, 刘晓冰, 等. 基于K-均值算法模型的区域土壤数值化分类及预测制图[J]. 生态学报, 2012, 32(06): 1846-1853.

[32] 陈小梅, 姚玉才, 麻万诸, 等. 闽浙两省水耕人为土的优势类型及其分布特点研究[J]. 土壤通报, 2016, 47(05): 1025-1028.

[33] 周立波. 中国土壤质量研究发展脉络解析[J]. 中国水土保持科学, 2018, 16(03): 142-152.

[34] Bünemann E K, Bongiorno G, Bai Z, et al. Soil quality – A critical review[J]. Soil Biology and Biochemistry, 2018, 120(01): 105-125.

[35] 潘剑君. 土壤资源调查与评价[M]. 北京: 中国农业出版社, 2004.

[36] 张有利, 张之一, 翟瑞常, 等. 土壤系统分类中均腐土土系质量评价——以灰色关联方法为例[J]. 土壤通报, 2010, 41(03): 513-517.

[37] 张海林. 土壤质量与土壤可持续管理[J]. 水土保持学报, 2002, 16(06): 119-122.

[38] Wu C S, Liu G H, Huang C, et al. Soil quality assessment in Yellow River Delta: Establishing a minimum data set and fuzzy logic model[J]. Geoderma, 2019, 334(01): 82-89.

[39] 张甘霖, 杜国华, 龚子同. 区域性土壤形成特征及其在土壤基层分类和土壤质量评价中的应用[J]. 山地学报, 2002, 26(02): 170-175.

[40] 杨良觎, 邱志腾, 章明奎. 潜育水耕人为土成土环境研究——以浙江省为例[J]. 安徽农学通报, 2018, 24(13): 46-48.

[41] 姚玉才, 邱志腾, 杨良觎, 等. 贵州省典型水耕人为土的发生学性状与系统分类研究[J]. 土壤通报, 2018, 49(02): 253-259.

[42] Morand D T. The World Reference Base for Soils (WRB) and Soil Taxonomy: an appraisal of their application to the soils of the Northern Rivers of New South Wales[J]. Soil Research, 2013, 51(03): 167-181.

[43] Stolt M H, Needelman B A. Fundamental Changes in Soil Taxonomy[J]. Soil Science Society Of America Journal, 2015, 79(04): 1001-1007.

[44] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000.

[45] 龚子同. 从俄罗斯黑钙土到中国黑土——纪念宋达泉先生诞辰100周年[J]. 土壤通报, 2012, 43(05): 1025-1028.

[46] 龚子同. B.B道库恰耶夫——土壤科学的奠基者——纪念B.B道库恰耶夫《俄罗斯黑钙土》发表130周年[J]. 土壤通报, 2013, 44(05): 1266-1269.

[47] 龚子同, 章扬德, 史德明, 等. 20世纪中苏土壤科学的交流[J]. 土壤通报, 2016, 47(02): 257-264.

[48] Bockheim J G, Gennadiyev A N, Hartemink A E, et al. Soil-forming factors and Soil Taxonomy[J]. Geoderma, 2014, 226-227(01): 231-237.

[49] Bhattacharyya T, Chandran P, Ray S K, et al. Soil Classification Following the US Taxonomy: An Indian Commentary[J], 2015, 56(04): 1-16.

[50] 中国科学院南京土壤研究所土壤系统分类课题组, 中国土壤系统分类课题研究协作组, Zhong G. 中国土壤系统分类: 修订方案[M]. 北京: 中国农业科技出版社, 1995.

[51] 李建维, 陈一民, 郑利远, 等. 土壤分类的发展与方向[J]. 土壤与作物, 2014, 3(04): 146-150.

[52] 龚子同. 世界土壤资源参比基础(WRB)的创立及其土壤分类[J]. 土壤学进展, 1995, 23(05): 21-27.

[53] 李德成, 张甘霖. 中国土壤系统分类土系描述的难点与对策[J]. 土壤学报, 2016, 53(06): 1563-1567.

[54] 王吉智. 美国的土壤调查[J]. 宁夏农业科技, 1982, 23(05): 18-19.

[55] 张世贤, 李纯忠, 王吉智. 美国土壤调查的特点[J]. 土壤通报, 1983, 14(06): 46-47.

[56] 潘剑君. 土壤调查与制图(第三版)[M]. 北京: 中国农业出版社, 2010.

[57] 杜宇能. 加拿大农业土壤信息服务平台评述及其对中国的启示[J]. 世界农业, 2012, 34(01): 20-23.

[58] 朱阿兴, 李宝林, 杨琳, 等. 基于GIS、模糊逻辑和专家知识的土壤制图及其在中国应用前景[J]. 土壤学报, 2005, 42(5): 844-851.

[59] Boettinger J L, Howell D W, Moore A C, et al. Digital Soil Mapping[M]. 2010.

[60] 孙孝林, 赵玉国, 刘峰, 等. 数字土壤制图及其研究进展[J]. 土壤通报, 2013, 44(03): 752-759.

[61] 邱琳, 李安波, 赵玉国. 基于Fisher判别分析的数字土壤制图研究[J]. 土壤通报, 2012, 43(06): 1281-1286.

[62] Wielemaker W G, Bruin S D, Epema G F, et al. Significance and application of the multi-hierarchical landsystem in soil mapping[J]. Catena, 2001, 43(01): 15-34.

[63] Zhu A X. Mapping soil landscape as spatial continua: The Neural Network Approach[J]. Water Resources Research, 2000, 36(03) : 663-677.

[64] Jenny, Hans. E. W. Hilgard and the Birth of Modern Soil Science[J]. Soil Science, 1962, 93(01): 73.

[65] Glinka K D, Marbut C F. great soil groups of the world and their development[J]. Journal of Geology, 1927, 8(01): 49-74.

[66] Hudson, Berman D . The Soil Survey as Paradigm-based Science[J]. Soil Science Society of America Journal, 1992, 56(03):836.

[67] Huggett R J. Soil landscape systems: A model of soil Genesis[J]. Geoderma, 1975, 13(01): 1-22.

[68] Verheyen K, Adriaens D, et al. High-resolution continuous soil classification using morphological soil profile descriptions[J]. Geoderma, 2001, 101(03): 31-48.

[69] 赵量, 赵玉国, 李德成, 等. 基于模糊集理论提取土壤—地形定量关系及制图应用[J]. 土壤学报, 2007, 44(06): 961-967.

[70] 李皎, 王永翔, 高岩, 等. 土壤质量评价方法研究进展[J]. 山西科技, 2014, 29(05): 60-61.

[71] 罗梦娇, 艾宁, 曹四平, 等. 土壤质量评价的研究进展[J]. 河北林果研究, 2017, 32(3): 238-243.

[72] Warkentin, Fletcher. Soil quality for intensive agriculture[C]// 1977.

[73] Larsen, W.E. and Pierce, F.J. The Dynamics of Soil Quality as a Measure of Sustainable Management [M]. Madison, 1994, 37-51.

[74] Doran, J.W. and Parkin, T.B. Defining and Assessing Soil Quality [A]. In: Doran, J.W., et al., Eds., Defining Soil Quality for a Sustainable Environment [C]. Wiseonsin: Soil Society of America Special Publieation, 1994, 2-21.

[75] 孙波, 赵其国, 张桃林. 土壤质量与持续环境[J]. 土壤, 19977, 29(04): 169-175,184.

[76] 熊毅. 有机无机复合与土壤肥力[J]. 1982, 14(5): 3-9.

[77] 李彬彬, 许明祥, 巩晨, 等. 国际土壤质量研究热点与趋势——基于大数据的Citespace可视化分析[J]. 自然资源学报, 2017, 32(11): 1983-1998.

[78] Garrigues E , Corson M S , Angers D A , et al. Soil quality in Life Cycle Assessment: Towards development of an indicator[J]. Ecological indicators, 2012, 18(none): 434-442.

[79] Andrews S S, Karlen D L, Cambardella C A. The Soil Management Assessment Framework: A Quantitative Soil Quality Evaluation Method[J]. Soil Science Society of America Journal, 2004, 68(06) : 1945-1962.

[80] Masto R E, Chhonkar P K, Singh D, et al. Alternative Soil Quality Indices for Evaluating the Effect of Intensive Cropping, Fertilisation and Manuring for 31 Years in the Semi-arid Soils of India[J]. Environmental Monitoring & Assessment, 2008, 136(1-3): 419-435.

[81] Zhao X N, Wu P T, Gao X D, et al. Soil Quality Indicators in Relation to Land Use and Topography in a Small Catchment on the Loess Plateau of China[J]. Land Degradation & Development, 2015, 26(01): 54-61.

[82] Guo S, Han X, Li H, et al. Evaluation of soil quality along two revegetation chronosequences on the Loess Hilly Region of China[J]. Science of the Total Environment, 2018, 633(08): 808-815.

[83] Askari M S, Holden N M. Indices for quantitative evaluation of soil quality under grassland management[J]. Geoderma, 2014, 230-231(10): 131-142.

[84] Bastida F, Zsolnay A, Hernández T, et al. Past, present and future of soil quality indices: A biological perspective[J]. Geoderma, 2008, 147(03): 159-171.

[85] Bone J, Barraclough D, Eggleton P, et al. PRIORITISING SOIL QUALITY ASSESSMENT THROUGH THE SCREENING OF SITES: THE USE OF PUBLICLY COLLECTED DATA[J]. Land Degradation & Development, 2014, 25(03): 251-266.

[86] Armenise E, Redmile-Gordon M A, Stellacci A M, et al. Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment[J]. Soil & Tillage Research, 2014, 130(06): 91-98.

[87] Peng S, Chen A, Fang H, et al. Effects of vegetation restoration types on soil quality in Yuanmou dry-hot valley, China[J]. Soil Science & Plant Nutrition, 2013, 59(03): 347-360.

[88] Smith J L, Halvorson J J, Papendick R I. Using Multiple‐Variable Indicator Kriging for Evaluating Soil Quality[J]. Soil Science Society of America Journal, 1993, 57(03): 743-749.

[89] Nabiollahi K, Golmohamadi F, Taghizadeh-Mehrjardi R, et al. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate[J]. Geoderma, 2018, 318(05): 16-28.

[90] 徐建明, 张甘霖, 谢正苗, 等. 土壤质量指标与评价[M]. 北京: 科学出版社,2010.

[91] Ss A, Dl K, Jp M. A comparison of soil quality indexing methods for vegetable production systems in northern California[J], 2002, 90(1): 25-45.

[92] Pazferreiro J, Fu S L. Biological Indices for Soil Quality Evaluation: Perspectives and Limitations[J]. Land Degradation & Development, 2016, 1(27): 14-25.

[93] Li X Y, Li H Y, Yang L M, et al. Assessment of Soil Quality of Croplands in the Corn Belt of Northeast China[J]. Sustainability, 2018, 10(1): 16.

[94] 张甘霖, 李德成. 野外土壤描述与采样手册[M]. 北京: 科学出版社, 2017: 7-9, 22-42.

[95] 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012.

[96] Odeh I O A, Mcbratney A B, Chittleborough D J. Soil Pattern Recognition with Fuzzy-c-means: Application to Classification and Soil-Landform Interrelationships[J]. Soil Science Society of America Journal, 1992, 56(2): 505-516.

[97] 张甘霖, 王秋兵, 张凤荣, 等. 中国土壤系统分类土族和土系划分标准[J]. 土壤学报, 2013, 50(04): 826-834.

[98] 马延慈, 明艳芳, 王凯, 等. 基于高分辨率人工识别地表类型的GlobeLand30产品精度评价[J]. 山东科技大学学报(自然科学版), 2018, 37(05): 1-10+26

中图分类号:

 S15    

开放日期:

 2020-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式