中文题名: | 农业保险实施合规性、认知教育与需求意愿研究 |
姓名: | |
学号: | 2021206023 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 120301 |
学科名称: | 管理学 - 农林经济管理 - 农业经济管理 |
学生类型: | 博士 |
学位: | 管理学博士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 农业经济理论与政策 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2025-06-09 |
答辩日期: | 2025-05-29 |
外文题名: | Research on Implementation Compliance, Education and Demand Improvement of Crop Insurance |
中文关键词: | |
外文关键词: | Crop insurance ; Insurance demand ; Insurance knowledge ; Information transmission ; Implementation compliance ; Education |
中文摘要: |
在百年未有之大变局下,农业保险的功能定位已突破传统风险分散工具的单一维度,演进为应对全球粮食安全挑战、赋能农业产业体系转型、保障国家战略安全的系统性制度安排。在政策支持与财政补贴的双轮驱动下,我国农业保险实现市场供给能力与保费规模水平的双重跃升,具体表现为保障品种覆盖率达89.7%、三大主粮保险覆盖率突破72%的制度建设成效。但需清醒认识到,当前农业保险发展过程中存在的种种制度性缺陷:从保险供给角度,保险机构展业行为失范导致承保管理粗放化、理赔标准执行异化以及服务供给碎片化,严重削弱农业保险风险保障的有效性;而在保险需求端,行政考核压力下的高参保率刚性要求异化了保险市场需求形成机制,基于制度性干预的被动参保模式,不仅造成农户对农业保险风险认知的偏差,更导致其保险真实需求难以被精准识别。更关键的是,农户基于认知错位形成的非理性参保决策,与农业保险风险管理的政策逻辑产生系统性偏离,削弱了国家保费补贴资金使用效率。进一步而言,上述供需双侧问题相互强化,由此形成“供给低效-需求扭曲”的供需失衡困境,对农业保险市场高质量发展构成了实质性的约束。 在推进农业保险高质量发展过程中,目标实现的关键支点在于激发农户保险的主动需求,其核心突破路径在于完善“认知提升与需求提振”的协同路径。为此,农业保险基层实践需立足于农业保险长期发展的宏观视野,以精准识别农户保险认知及需求的真实水平及其内在关联为根基,剖析制度实施层面所塑造的农户保险认知与需求的关键影响因素,并构建基于认知提升驱动需求增长的系统性策略框架。相较于农业保险初期发展的阶段性特征,当前农户已构建了以参保经验为导向的保险认知体系,并形成了与之相匹配的需求结构。然而,由于市场制度实施合规性不足的客观现实,农户现有认知与需求的真实状态仍处于模糊地带。特别是农业保险中的集体承保、保费返还等违背保险原则的操作,不仅易使农户对保险风险分散机制产生误解,还可能引发其保险有效需求形成逻辑偏离风险分散机制的制度初衷。从构建农户保险有效需求的长效机制来看,核心在于如何将宣传教育的理论有效性转化为现实实践中的应用效能。这其中要求政策决策者立足保险市场发展阶段以及中国农村环境现实特征,围绕宣传教育内容的精准性、实施主体的协同性等方面构建与现实适配的策略框架,实现宣传教育弥补农户认知短板、破解需求困境的精准对接,进而推动农业保险的高质量发展。尤为重要的是,农户既往参保经历与现行宣传教育策略存在着复杂的动态关联性,这种交互作用所形成的农户保险认知更新在很大程度上受到前期保险实施合规性差异的影响;特别是农户经历的非合规实施行为传递了与保险客观知识相悖的保险信息,在一定程度上威胁了保险后期宣传教育的有效性。进一步而言,农户的保险需求在很大程度上取决于其在保险参保经历和宣传教育过程中所获得的认知更新。因此,深入剖析参保经历和宣传教育这两种信息来源在农户保险认知与需求形成中的协同作用机制,对于农业保险需求的稳定提升具有重要的现实意义。综上,构建农业保险“信息传递—认知更新—需求提升”的理论框架,不仅为规范农业保险市场行为、优化宣传教育策略以激发农户保险需求的稳定提升提供了坚实的理论依据,亦为推动农业保险高质量发展明确了政策优化的方向指引。 基于此,本研究将立足于中国农业保险发展的阶段性特征,将农业保险实施合规性的现实制度条件与宣传教育理论可行路径纳入统一的分析框架,综合考量其对农户保险认知与需求的作用路径,旨在找准未来政策优化着力点。具体而言,本研究以江苏省2021年实施的小麦完全成本保险试点政策为依托,通过农户微观调查与宣传教育田野实验,判断当前农业保险市场执行合规性不足的制度缺陷,以及农户保险认知与真实需求意愿不足的现实表现,发现农户保险认知需求困境与保险非合规实施行为的关联。在此基础上,本研究首先分析了农户经历的农险非合规实施行为对其保险需求的影响及其认知变动的内在机理,论证实施合规性不足对农户保险需求合理形成的制约作用;其次,基于认知提升与需求提振的目标,分析当前农险发展阶段开展宣传教育的有效性与必要性,探索信息内容、教育主体协同的可行路径,旨在为农业保险宣传教育策略提供优化方向;最后,立足长期视角,探讨农户参保经历与宣传教育协同作用对农户保险认知更新的影响,以及其对农户保险需求的动态影响机制,进而为规范保险实施行为与宣传教育的协同路径、破解农户保险需求端困境提供系统的理论依据。全文分为四个部分,主要研究内容与结论如下: 研究内容一:农业保险市场需求现状:基于江苏省的事实特征 尽管我国农业保险市场在长期发展中取得了显著成效,但仍面临供给端保险实施合规性不足以及需求端农户保险认知与需求意愿不足的双重困境。来自江苏省代表农户的微观调查结果表明:其一,样本农户的农业保险真实需求意愿不足,基于调研地区首次开展的小麦完全成本保险支付意愿调查,样本农户的保险支付意愿集中于18元/亩的水平,显著低于该类保险的市场价格60元/亩。其二,农户存在着农业保险认知广度不足与认知偏差的问题。保险知识标准化测试结果显示,样本农户对农业保险风险分散的机制认知与保险政策的基础认知测试中的得分均值未达到总分中值水平,且普遍存在着将农业保险误认为投资理财产品的机制认知偏差。其三,农业保险实施合规性不足,97%的样本农户在2019~2021年参保经历中遭遇过农业保险非合规实施的问题,主要表现为未签署保险合同、未及时定损以及无灾获赔等行为。最后,相较于未经历农业保险非合规实施行为的农户群体,经历过此类事件的农户的保险认知水平较低,但其对小麦完全成本保险的支付意愿更高。进一步分析表明,农户保险认知与其小麦完全成本保险支付意愿存在着负相关关系。 研究内容二:实施合规性对农业保险需求意愿的影响及机制分析 此部分研究从农户经历的农业保险非合规实施角度出发,证实了农户经历非合规实施行为通过误导农户对保险风险分散的机制认知,进而虚估了其保险需求意愿。具体而言:其一,农户经历的农业保险非合规实施行为显著提升了其对小麦完全成本保险的支付意愿,提升幅度约为46.9%。这种提升作用主要来源于未签署保险合同与无灾获赔两种情形;相反,未及时定损与受灾未赔则显著降低了样本农户的保险支付意愿。其二,农业保险非合规实施行为对农户不同类别的保险认知产生了差异性的影响,表现为未签署保险合同与无灾获赔情景显著降低了农户的保险机制认知,以及未及时定损与受灾未赔显著降低了农户的保险基础认知;其三,在控制其他变量不变的条件下,农户的保险支付意愿随着保险机制认知的提升而显著被降低,但因保险基础认知的降低而受到抑制。这一结果在通过工具变量法排除内生性问题后依然成立,表明农业保险的非合规实施所传递的错误保险机制认知是导致农户保险支付意愿提升的重要原因。 研究内容三:宣传教育提升农业保险需求意愿的有效性 本部分结果表明农业保险宣传教育降低了农户的保险需求意愿,其原因在于宣传教育纠正了农户对保险机制的误解。此外,基于信息内容与教育主体差异所开展的教育干预,进一步强化了这一效应。具体而言,其一,基于保险合同开展的通识教育显著降低了样本农户对小麦完全保险支付意愿约20.81%,进一步的机制分析表明,通识教育对农户错误保险机制认知的纠正是导致其保险支付意愿降低的主要原因。其二,机制信息强化教育通过提升农户保险机制认知,进而使其保险支付意愿降低约5元/亩;且赔付要素信息教育的进一步的干预,增强了机制信息教育对农户保险支付意愿的抑制作用,导致农户保险支付意愿进一步下降至约10元/亩。其三,在政府背书的影响下,通识教育对农户保险支付意愿有着更为明显的降低作用,且农户保险机制认知的提升完全解释了政府背书后通识教育导致的农户保险支付意愿下降。其四,社会网络存在保险知识传递与行为示范作用,其分别表现出对农户保险需求意愿的提升作用与下降作用。 研究内容四:宣传教育提升农业保险需求意愿的条件判断:基于认知更新视角 宣传教育对农业保险的有效性受到农户所经历的赔付合规性差异及其引发的认知基础影响,而其对需求的提升则依赖于保险实施合规性的现实基础。研究表明:其一,农户在参与农业保险过程中经历的无灾获赔行为对其认知具有持续性影响,表现为后期的通识教育难以扭转因前期无灾获赔经历而导致的农户对保险机制认知的降低,以及对其保险需求意愿的虚高影响。其二,赔付合规性差异与宣传教育构成农户保险的认知更新,具体表现为合规赔付经历与宣传教育构成认知更新的同化表现,以及非合规赔付经历与宣传教育构成认知更新的异化表现。进一步反映在保险需求上,宣传教育将在合规赔付经历基础上促进农户的保险支付意愿提升;在无灾赔付经历基础上削弱农户的保险支付意愿。除此之外,从规范赔付实施行为的必要性视角来看,合规赔付能够有效弥补通识教育导致的农户保险支付意愿降低,且当合规赔付次数达到7次以上时,通识教育则可以显著提升农户保险支付意愿。 基于上述研究结论,本研究提出以下政策启示:一是,规范农业保险市场秩序,为农户保险需求稳定提升提供健康市场环境;二是,构建科学完善的农业保险宣传教育策略,破除信息传递障碍,实现农户保险认知提升与误解纠正,夯实农业保险需求根基;三是,强化保险实施合规性与宣传教育的协同效应,稳步推进保险认知与需求的提升。 |
外文摘要: |
In the context of risk upgrading, crop insurance has been positioned to function beyond its traditional role as a single risk diversification tool. Instead, it has evolved into a systematic institutional arrangement that aims to address the challenges of global food security, to empower the transformation of the agricultural industry and to safeguard the country’s strategic security. The implementation of policy support and financial subsidies has led to notable advancements in China's crop insurance, as evidenced by substantial improvements in market supply capacity and premium scale. This is demonstrated by the attainment of an 89.7% coverage rate for insured crop varieties and a participation rate that exceeds 72% for the three primary staple grains. However, it is crucial to acknowledge the systemic deficiencies that persist in the current development of crop insurance. From the perspective of insurance supply, the misconduct of insurance institutions has resulted in substandard underwriting management, the distortion of claims standards, and fragmented service delivery, which has seriously weakened the effectiveness of agricultural insurance risk protection. From a demand-side perspective, the high participation rate resulting from the pressure of administrative assessment has had a deleterious effect on the formation of demand in the insurance market. The passive insurance participation mode, based as it is on institutional intervention, engenders bias in farmers’ knowledge of crop insurance. Furthermore, it hinders the ability to accurately identify their real demand for insurance. Farmers’ participation decisions that are driven by cognitive biases deviate systematically from the policy logic of crop insurance risk management. This diminishes the efficiency of national premium subsidies. Furthermore, the interplay between supply and demand gives rise to structural contradictions, which reciprocally exacerbate the consequences of inefficiencies and distortions in supply and demand. Consequently, these factors impose a substantial constraint on the high-quality and sustainable development of the crop insurance market. In the pursuit of achieving the aspiration of optimal development in the domain of crop insurance, it assumes paramount importance to elicit the farmers’ active demand for insurance. A symbiotic enhancement in the domain of both knowledge and demand is regarded as the pivotal breakthrough path to facilitate this objective. To this end, grassroots practices of crop insurance must be grounded in a macroscopic vision for its long-term development. This involves accurately identifying the true levels of farmers’ insurance knowledge and demand and their interrelationships, analyzing the key factors affecting farmers' insurance knowledge and demand from the market implementation level and constructing a systematic strategic framework driven by knowledge enhancement to promote demand. In comparison with the phased characteristics of the initial development of crop insurance, farmers have now established an insurance cognition system oriented by their participation experience and have formed a corresponding demand structure. Nevertheless, given the objective reality of inadequate compliance in market implementation, there remains great uncertainty regarding the true state of farmers' current cognition and demand. In particular, collective underwriting and premium rebates in crop insurance appear to violate the principles of insurance, leading to farmers' misunderstanding of the risk-sharing mechanism of insurance. Moreover, such practices may result in the formation basis of farmers' effective insurance demand deviating from the intrinsic logic of the risk-sharing mechanism. From the perspective of establishing a long-term mechanism for farmers' effective insurance demand, the pivotal issue is the transformation of theoretical effectiveness of education into practical application efficacy. It is imperative that policymakers base their decisions on the development stage of the insurance market and the real characteristics of the rural environment in China. A strategy framework must be constructed that fits reality, with a focus on the precision of education content and the synergy of implementing entities. This will enable education to compensate for farmers' cognitive shortcomings and solve demand dilemmas accurately, thereby promoting the high-quality development of crop insurance. Of particular significance is the intricate and evolving relationship between farmers’ prior insurance experiences and contemporary educational initiatives. The updating of farmers’ insurance knowledge as a consequence of this interaction is predominantly influenced by variations in compliance with prior insurance implementation. From this standpoint, the uncertainty surrounding the updating of farmers' insurance cognition further challenges the stability of insurance demand. Consequently, there is an evident necessity for research to elucidate the synergistic mechanism of the two information sources — farmers’ insurance participation experiences and education — in the formation of farmers’ insurance knowledge and demand. In summary, constructing a theoretical framework for crop insurance that links "information transmission–cognitive updating–demand enhancement" will provide a theoretical basis and policy optimization direction for regulating market behavior in crop insurance and precisely promoting its high-quality development through education. As previously indicated, this study is grounded in the phased characteristics of the development of crop insurance in China. It integrates the market realities of the implementation of crop insurance, together with the theoretical feasibility of educational initiatives. This approach enables a comprehensive examination of their influence on farmers’ knowledge and demand for insurance. The aim is to identify key focal points for the future optimisation of policy. Specifically, this study takes the pilot policy of full-cost wheat insurance implemented in Jiangsu Province in 2021 as a basis. Through micro-level surveys of farmers and field experiments on education, it systematically explores the compliant implementation of crop insurance, the effectiveness of education strategies, and the real-world scenarios of farmers’ insurance cognition updates and resulting changes in insurance demand, which are shaped by these two factors. The study’s primary objective is to identify and address institutional deficiencies in the current noncompliant implementation of crop insurance market behaviour and to examine the real manifestations of insufficient insurance knowledge and demand among farmers. On this basis, the study first analyzes the impact of noncompliant implementation on farmers’ insurance demand and the underlying mechanisms of their knowledge changes. It demonstrates how inadequate implementation compliance at the institutional level constrains the rational formation of farmers’ insurance demand. Second, aiming at enhancing knowledge and stimulating demand, the study examines the effectiveness and necessity of education in the current stage of crop insurance development. It explores feasible pathways for coordinated information content and educational entities, with the goal of providing an optimized direction for crop insurance education strategies. Finally, from a dynamic systems perspective, the study investigates the impact of the combined effect of insurance participation experience and education on farmers’ insurance cognition updates and the dynamic mechanisms influencing their insurance demand. This provides a systematic theoretical basis for regulating the synergistic pathways of insurance implementation and education and publicity and for resolving the dilemmas on the demand side of farmers’ insurance. The paper is divided into four parts, with the main research content and conclusions as follows: Research Content I: Characterisation of Crop Insurance Market Demand Despite the substantial achievements of China's crop insurance market over the long term, it still faces a dual dilemma of insufficient enforcement compliance on the supply side and insufficient insurance knowledge and genuine demand among farmers on the demand side. Micro-level survey results from a representative sample of farmers in Jiangsu Province reveal the following key findings: First, the genuine demand for crop insurance among sampled farmers is insufficient. Based on a willingness-to-pay (WTP) survey for full-cost wheat insurance conducted for the first time in the surveyed region, the WTP of sampled farmers is concentrated at 18 yuan per mu, which is lower than the market price of 40 yuan per mu for this type of insurance. Second, there is a lack of breadth in farmers’ knowledge of crop insurance as well as a cognitive bias. Results from a standardized insurance knowledge test indicate that the average scores of sampled farmers in both insurance mechanism knowledge and basic knowledge tests did not reach the median level of the total score. Moreover, there is a widespread cognitive bias among farmers who mistakenly regard crop insurance as a form of investment or financial management. Third, the implementation of crop insurance lacks sufficient compliance. As many as 97% of sampled farmers encountered non-compliant implementation issues in their insurance participation experiences from 2019 to 2021. These issues are mainly manifested in the absence of signed insurance contracts, untimely loss assessment, and claims payments in the absence of losses. Lastly, compared with farmers who have not experienced noncompliant implementation of crop insurance, those who have encountered such issues exhibit lower levels of insurance knowledge but higher WTP for full-cost wheat insurance. Further analysis indicates a negative correlation between insurance knowledge and WTP for full-cost wheat insurance. Research Content Ⅱ: Mechanisms of Crop Insurance Implementation Compliance on Insurance Demand The findings of this part of the study demonstrate that noncompliant implementation of crop insurance distorts farmers' cognition of the risk-sharing mechanism of insurance, thereby inflating their demand for insurance. Specifically: First, the noncompliant implementation of crop insurance that farmers have experienced significantly increases their WTP for full-cost wheat insurance by approximately 46.8%. This increase is primarily driven by the scenarios of not signing insurance contracts and receiving claims payments without losses. In contrast, untimely loss assessment and no claims payment after losses significantly reduce the WTP of sampled farmers. Second, noncompliant implementation of crop insurance differentially affects various types of insurance knowledge. The scenarios of not signing insurance contracts and receiving claims payments without losses significantly reduce farmers’ mechanism knowledge. Conversely, untimely loss assessment and no claims payment after losses significantly diminish farmers’ basic knowledg. Third, holding other variables constant, farmers’ insurance WTP is significantly reduced with an increase in their knowledge of the insurance mechanism but is suppressed by a decrease in their basic insurance knowledge. This result remains robust after addressing endogeneity issues using the instrumental variable method, indicating that the erroneous insurance mechanism knowledge conveyed by noncompliant implementation is a significant cause of the increased WTP among farmers. Research Content Ⅲ: Effectiveness of Education: Based on Knowledge and Demand Education enhances farmers’ knowledge of crop insurance while reducing their demand. Moreover, educational interventions based on differences in information content and implementing entities further amplify this effect. The study reveals the following findings: First, general education based on insurance contracts significantly increases farmers’ knowledge of insurance mechanism, basic concepts, and product features by approximately 63.75%, 40.68%, and 447.84%, respectively. However, it also reduces their insurance WTP by about 20.81%. Further analysis indicates that correcting farmers’ misconceptions about the insurance mechanism through general education is the primary driver of the reduced WTP. Second, mechanism-focused education significantly improves farmers’ knowledge of the insurance mechanism, thereby reducing their WTP for insurance by about 5 yuan per mu. Additionally, element education further intensifies the suppressive effect of mechanism-focused education on WTP, resulting in a further reduction to approximately 9 yuan per mu. Thirdly, government endorsement significantly enhances the effectiveness of general education in improving farmers’ insurance knowledge. The increase in farmers’ mechanism knowledge fully accounts for the reduction in WTP following government-endorsed general education. Lastly, social networks play a dual role in disseminating insurance knowledge and demonstrating behaviors. These functions respectively enhance farmers’ insurance knowledge and increase their insurance WTP. Research Content Ⅳ: Insurance Demand in a Cognitive Updating Perspective: Synergies between Participation Experience and Education This study investigates how insurance claim experiences and education jointly drive updates in farmers’ insurance knowledge and changes in their insurance demand. It demonstrates that the enhancement of crop insurance demand relies on the foundation of compliant implementation. First, the experience of receiving claims without losses has a lasting impact, as subsequent general education cannot reverse the initial negative effect of such experiences on farmers’ mechanism knowledge and the resulting inflated demand. Second, the experience of receiving claims without losses exerts an intrinsic anchoring effect, significantly reducing farmers’ mechanism knowledge by approximately 3% compared to compliant claim experiences. Third, differences in claim compliance experiences interact with education to produce distinct cognitive updates. Compliant claim experiences, combined with education, lead to a convergent update in farmers’ insurance knowledge, while noncompliant claim experiences, combined with education, result in a divergent update. This interaction is further reflected in insurance demand: education enhances farmers’ insurance WTP when based on compliant claim experiences but diminishes their WTP when based on experiences of receiving claims without losses. Finally, from the perspective of compliant claim implementation, compliant claims effectively offset the reduction in farmers’ WTP resulting from general education. When farmers experience compliant claims seven or more times, general education significantly increases their WTP for insurance. This study highlights the necessity of compliant claim implementation in enhancing the effectiveness of education and promoting sustainable demand for crop insurance. Drawing on the foregoing conclusions, this study proposes the following policy insights: First, regulating the market order of crop insurance is imperative to provide a robust and healthy market environment that supports the stable growth of farmers’ insurance demand. Second, the development of a comprehensive education strategy for crop insurance is crucial. Such a strategy should aim to eliminate barriers in information dissemination, enhance farmers’ insurance knowledge, and correct misconceptions, thereby solidifying the foundation of insurance demand. Third, the synergistic relationship between compliant insurance implementation and education should be reinforced to ensure the steady advancement of insurance knowledge and demand. |
参考文献: |
蔡晴茵. 参保经验对农户生猪保险需求及偏好的影响——基于自然实验及选择实验的研究[D]. 杭州: 浙江大学, 2020. [2] 曾玉珍. 政策性农业保险内涵、功能及作用路径的新诠释[J]. 经济问题, 2011(04): 96-101. [3] 曾玉珍, 穆月英. 农业保险市场需求状况调查[J]. 农村金融研究, 2009(5): 65-68. [4] 柴智慧. 农业保险的农户收入效应、信息不对称风险[D]. 内蒙古农业大学, 2014. [5] 柴智慧, 赵元凤. 农险市场中的保险公司道德风险研究[J]. 保险研究, 2019(7): 45-52. [6] 晁娜娜. 新疆棉花收入保险定价研究[D]. 中国农业大学, 2018. [7] 晁娜娜, 杨汭华. 耕地规模、农业保险认知及其潜在需求的多样化——基于全国6492个粮食种植户的考察[J]. 财经科学, 2017(5): 67-79. [8] 陈风. 试析我国医疗保险的现实与潜在需求[J]. 中国卫生经济, 1988(11): 48-51+65+1. [9] 陈少平. 洪灾保险的经济学分析与中国洪灾保险模式探讨[D]. 南昌大学, 2008. [10] 陈奕蓉, 张文政. 风险感知、保险认知对农户政策性农业保险参保行为的影响——基于甘肃2市6县的调研数据[J]. 中国农业资源与区划, 2024, 45(8): 254-265. [11] 陈忠, 张莉. 我国农业保险研究[J]. 郑州航空工业管理学院学报, 2006(04): 73-76. [12] 成晓光. 班杜拉的社会学习理论中的认知因素[J]. 辽宁师范大学学报, 2003(6): 30-33. [13] 程青, 晁娜娜, 杨汭华. 粮食种植户的农业保险产品潜在需求研究——基于物化成本保险经历者的角度[J]. 农村金融研究, 2019(12): 22-32. [14] 仇焕广, 黄季焜, 杨军中. 关于消费者对转基因技术和食品态度研究的讨论[J]. 中国科技论坛, 2007(3): 105-108, 51. [15] 仇童伟, 沈怡, 马贤磊. 土地产权环境对农民产权安全认知偏差的影响——基于不同类型农户的比较分析[J]. 南京农业大学学报(社会科学版), 2016, 16(1): 92-104, 165. [16] 丛胜美, 罗必良. 农地确权与农户政策性农业保险购买意愿——对农业保险的策略性手段考察[J]. 中南财经政法大学学报, 2022(06): 107-118. [17] 崔佳宁, 安石. 农户对农业保险的认知与购买意愿研究——以黑龙江省泰来县为例[J]. 农业经济, 2022(3): 108-110. [18] 丁少群, 魏晓盛, 马琳琳. 嵌入性视角下政策性农业保险的隐忧及其可持续发展[J]. 保险研究, 2012(05): 10-15. [19] 段应元, 杨汭华, 龙文军. 农业保险服务农业现代化的挑战与对策研究[J]. 农业现代化研究, 2024, 45(3): 422-433. [20] 费友海. 我国农业保险发展困境的深层根源——基于福利经济学角度的分析[J]. 金融研究, 2005(3): 133-144. [21] 冯康. 认知科学的发展及研究方向[J]. 计算机工程与科学, 2014, 36(5): 906-916. [22] 冯文丽. 我国农业保险市场失灵与制度供给[J]. 金融研究, 2004(4): 124-129. [23] 冯文丽, 郭亚慧. 基于Copula方法的河北省玉米收入保险费率测算[J]. 保险研究, 2017(8): 19-28. [24] 冯文丽, 苏晓鹏. 农业保险助推乡村振兴战略实施的制度约束与改革[J]. 农业经济问题, 2020(4): 82-88. [25] 盖豪, 颜廷武, 周晓时. 政策宣传何以长效?——基于湖北省农户秸秆持续还田行为分析[J]. 中国农村观察, 2021(6): 65-84. [26] 高康, 何蒲明. 农业保险能保障农民收入吗?——基于情景依赖下的保险失效与有效研究[J]. 浙江农业学报, 2022, 34(10): 2296-2309. [27] 谷政, 卢亚娟, 张维, 等. 基于险种和承保水平视角的农业保险需求分析[J]. 保险研究, 2012(11): 75-81. [28] 顾建强, 薛庆根. 政策支持、认知耦合与政策性农业保险采用行为——基于新型农业经营主体视角的分析[J]. 河北金融, 2018(9): 25-29. [29] 顾景枝, 余国新. 基于效用理论的农业保险需求分析——来自新疆475户农户的调查[J]. 江苏农业科学, 2015, 43(11): 599-603. [30] 郭翠菊. 行为与认知的统一—评介托尔曼的目的行为主义[J]. 殷都学刊, 1992(4): 72-74. [31] 郭军, 谭思, 孔祥智. 农户农业保险排斥的区域差异:供给不足还是需求不足——基于北方6省12县种植业保险的调研[J]. 农业技术经济, 2019(2): 85-98. [32] 韩洪云, 孔杨勇. 农户农业互助保险参与行为影响因素分析——以浙江临安山核桃种植户为例[J]. 中国农村经济, 2013(7): 24-35. [33] 何小伟, 曹杨, 刘怡鑫. 专项转移支付对地方政府农业支出的激励效应——以农业保险为例[J]. 保险研究, 2022a(12): 52-73. [34] 何小伟, 王京虹, 朱俊生. 农业保险市场违法违规行为的特征及其治理——基于法院判决及监管处罚案例的分析[J]. 保险研究, 2022b(2): 33-47. [35] 黄英君. 我国农业保险发展的市场运行机制研究[J]. 保险研究, 2009(11): 44-51. [36] 黄英君. 机制设计与发展创新:破解农业保险困局[M]. 商务印书馆, 2011a. [37] 黄英君. 中国农业保险发展的历史演进:政府职责与制度变迁的视角[J]. 经济社会体制比较, 2011b(6): 174-181. [38] 黄颖. 政府支持、保险认知对苹果种植户政策性农业保险参与影响研究[D]. 西北农林科技大学, 2021. [39] 旷浩源. 农村社会网络与农业技术扩散的关系研究——以G乡养猪技术扩散为例[J]. 科学学研究, 2014, 32(10): 1518-1524. [40] 李丹, 刘从敏. 保险经营视角下政策性粮食作物保险的农户需求——基于黑龙江省“两大平原”地区740个种粮农户的问卷调查[J]. 保险研究, 2014(12): 70-77. [41] 李丹, 魏帅. 农业保险高质量发展探究——基于财政补贴、市场竞争、产品管理视角[J]. 理论探讨, 2021(1): 105-111. [42] 李猛, 覃彬雍, 胡继亮. 关于政策性农业保险错配的研究——基于湖北省微观数据[J]. 农村经济, 2019(7): 80-88. [43] 李婷, 肖海峰. 农户对中国政策性农业保险开展状况的评价——基于吉林、江苏两省农户问卷调查的分析[J]. 中国农村经济, 2009(6): 83-89. [44] 李文娟. 巨灾保险需求及其影响因素研究[D]. 武汉大学, 2009. [45] 李幸. 农业保险对农户福利影响分析——基于信息不对称的视角[J]. 西部金融, 2014(8): 81-84. [46] 林乐芬, 陈燕. 农户对政策性农业保险理赔评价及影响因素分析——以江苏省养殖业为例[J]. 南京农业大学学报(社会科学版), 2017, 17(3): 143-154, 160. [47] 刘超, 尹金辉. 我国政策性生猪保险需求特殊性及影响因素分析——基于北京市养殖户实证数据[J]. 农业经济问题, 2014, 35(12): 101-105. [48] 刘从敏, 张祖荣. 保费补贴条件下农业保险中的双向道德风险及其治理对策[J]. 金融理论与实践, 2021(7): 104-110. [49] 刘飞, 陶建平. 风险认知、抗险能力与农险需求——基于中国31个省份动态面板的实证研究[J]. 农业技术经济, 2016(09): 92-103. [50] 刘国强. 我国消费者金融素养现状研究——基于2017年消费者金融素养问卷调查[J]. 金融研究, 2018(3): 1-20. [51] 刘佶鹏. 农业保险保费补贴实施效果评价与对策建议——基于山西省的实地调查分析[J]. 价格理论与实践, 2013(5): 71-72. [52] 刘杰. 侦查中的认知偏差及其修正[D]. 中南财经政法大学, 2018. [53] 刘宽. 我国农业保险的现状、问题及对策[J]. 中国农村经济, 1999(10): 53-56. [54] 刘丽然. 基于统计的政策性农业保险和农户保险知识认知调查研究[J]. 现代商业, 2020(7): 112-113. [55] 刘铮, 李思怡, 宋宝辉. 社会网络对农户农业保险购买意愿的影响研究[J]. 农业经济, 2020(2): 83-85. [56] 龙文军. 联办共保:江苏探索农业保险新模式[J]. 农村工作通讯, 2010(18): 25-27. [57] 陆宇, 易福金, 王克. 农业保险市场竞争强度与风险保障水平——基于寻租视角的分析[J]. 中国农村观察, 2023(5): 104-125. [58] 吕杰, 刘浩, 薛莹, 等. 风险规避、社会网络与农户化肥过量施用行为——来自东北三省玉米种植农户的调研数据[J]. 农业技术经济, 2021(7): 4-17. [59] 吕亚荣, 陈淑芬. 农民对气候变化的认知及适应性行为分析[J]. 中国农村经济, 2010(7): 75-86. [60] 罗小娟, 冯淑怡, 黄信灶. 信息传播主体对农户施肥行为的影响研究——基于长江中下游平原690户种粮大户的空间计量分析[J]. 中国人口·资源与环境, 2019, 29(4): 104-115. [61] 马洁, 付雪, 杨汭华. 如何将农作物保险的潜在需求转变为有效需求——基于吉林省农户的调查分析[J]. 调研世界, 2012(12): 38-42. [62] 马九杰, 崔恒瑜, 吴本健. 政策性农业保险推广对农民收入的增进效应与作用路径解析——对渐进性试点的准自然实验研究[J]. 保险研究, 2020(02): 3-18. [63] 聂荣, 沈大娟. 影响农户参保农业保险决策的因素分析[J]. 西北农林科技大学学报(社会科学版), 2017, 17(1): 106-115. [64] 聂荣, 王欣兰, 闫宇光. 政策性农业保险有效需求的实证研究——基于辽宁省农村入户调查的证据[J]. 东北大学学报(社会科学版), 2013, 15(05): 471-477. [65] 宁满秀, 苗齐, 邢鹂, 等. 农户对农业保险支付意愿的实证分析——以新疆玛纳斯河流域为例[J]. 中国农村经济, 2006(6): 43-51. [66] 宁满秀钟甫宁. 影响农户购买农业保险决策因素的实证分析——以新疆玛纳斯河流域为例[J]. 农业经济问题, 2005(06): 38-44+79. [67] 牛浩, 陈盛伟. “弱竞争”的市场模式提升了农业保险发展速度吗?[J]. 保险研究, 2019(8): 52-69. [68] 牛浩, 陈盛伟, 安康, 等. 农业保险满足新型农业经营主体的保障需求了吗?——基于山东省422家省级示范家庭农场的证据[J]. 保险研究, 2020(6): 58-68. [69] 牛浩, 李政, 孙乐, 等. 市场竞争加强背景下农业保险公司的双重经营困境[J]. 保险研究, 2021(3): 32-43. [70] 皮立波, 李军. 我国农村经济发展新阶段的保险需求与商业性供给分析[J]. 中国农村经济, 2003(5): 68-75. [71] 乔丹, 刘晗, 徐涛. 互联网应用是否促进了农户政策性农业保险购买?——基于Triple-Hurdle模型[J]. 湖南农业大学学报(社会科学版), 2022, 23(5): 48-60. [72] 邱波. 我国沿海地区农业巨灾风险保障需求研究——来自浙江省308户农民的调查数据[J]. 农业经济问题, 2017, 38(11): 100-107, 112. [73] 任重, 郭焱. 环境规制、社会资本对农户低碳农业技术采纳行为的影响[J]. 自然资源学报, 2023, 38(11): 2872-2888. [74] 尚燕, 熊涛, 李崇光. 风险感知、风险态度与农户风险管理工具采纳意愿——以农业保险和“保险+期货”为例[J]. 中国农村观察, 2020(5): 52-72. [75] 尚燕, 熊涛, 李崇光. 参保经历对农户“保险+期货”采纳意愿的影响及对策探析[J]. 农村经济, 2023(11): 125-134. [76] 施红. 政府介入对政策性农业保险的运作效率影响的分析[J]. 农业经济问题, 2008(12): 56-61+111. [77] 宋博, 穆月英, 侯玲玲, 等. 基于CVM的我国农业气象指数保险支付意愿分析——以浙江柑橘种植户为例[J]. 保险研究, 2014(2): 54-63. [78] 孙嘉馨, 罗添元, 单泓睿. 风险感知、保险认知对农户参保苹果保险决策的影响[J]. 北方园艺, 2020(6): 160-168. [79] 孙香玉. 保险认知、政府公信度与农业保险的需求——江苏省淮安农户农业保险支付意愿的实证检验[J]. 南京农业大学学报(社会科学版), 2008(1): 48-54. [80] 孙香玉, 钟甫宁. 对农业保险补贴的福利经济学分析[J]. 农业经济问题, 2008(2): 4-11, 110. [81] 谭偲凤, 陶建平, 贺娟. 政策传播视角下农业保险购买行为研究[J]. 华中农业大学学报(社会科学版), 2023(5): 66-76. [82] 谭莉, 丁少群, 汪洋. 农业保险承保机构遴选中的赛马机制研究[J]. 保险研究, 2024(9): 3-14. [83] 谭莉莉, 丁少群. 多主体如何协同推进农业保险高质量发展?——基于市场运作视角的案例研究[J]. 保险研究, 2023(9): 47-60. [84] 汤颖梅, 杨月, 刘荣茂, 等. 基于Oaxaca-Blinder分解的异质性农户天气指数保险需求差异分析[J]. 经济问题, 2018(8): 90-97. [85] 田建湘. 互联网应用对农户政策性农业保险购买的影响研究[J]. 现代营销(下旬刊), 2024(10): 38-40. [86] 田少波. 我国农业保险商业化运作初探[J]. 保险研究, 2004(09): 32-34. [87] 佟大建, 黄武, 应瑞瑶. 基层公共农技推广对农户技术采纳的影响——以水稻科技示范为例[J]. 中国农村观察, 2018(4): 59-73. [88] 庹国柱. 论农业保险市场的有限竞争[J]. 保险研究, 2017(2): 11-16. [89] 庹国柱. 从40年政策变化喜看我国农业保险蓬勃发展[J]. 保险研究, 2018(12): 84-87. [90] 庹国柱. 论地方政府在农业保险中的职责和权力[J]. 农村金融研究, 2021(03): 12-17. [91] 庹国柱. 农业保险研究的若干前沿问题[J]. 农村金融研究, 2022(8): 31-39. [92] 庹国柱, 李军. 我国农业保险试验的成就、矛盾及出路[J]. 金融研究, 2003(9): 88-98. [93] 庹国柱, 李志刚. 关于农险中农户自缴20%保费问题的探析——兼论政策性农险产品政府定价的必要性和可行性[J]. 保险理论与实践, 2020(4): 26-37. [94] 庹国柱, 朱俊生. 建立我国政策性农业保险制度的几个问题(上)[J]. 金融教学与研究, 2004(05): 62-66. [95] 庹国柱, 朱俊生. 关于我国农业保险制度建设几个重要问题的探讨[J]. 中国农村经济, 2005(06): 46-52+74. [96] 汪必旺. 我国发展农产品收入保险的效果模拟研究[D]. 中国农业科学院, 2018. [97] 汪桂霞. 政策性农业保险和农户保险知识认知调研分析——基于全国757个行政村的调查数据[J]. 科学·经济·社会, 2019, 37(3): 43-50. [98] 王国军. 新型农业经营主体农业保险的需求与供给[J]. 中国保险, 2018(2): 18-23. [99] 王国军, 王冬妮, 陈璨. 我国农业保险不对称信息实证研究[J]. 保险研究, 2017(1): 91-100. [100] 王金霞, 刘亚克, 李玉敏. 农业节水技术采用——信息和资金来源渠道及制约因素[J]. 水利经济, 2013, 31(2): 45-49, 77. [101] 王克, 吉利. 我国农业保险的发展与演变——产品形态的视角[J]. 保险研究, 2023(5): 9-19. [102] 王文哲, 林乐芬, 卜雅甜, 等. 家庭农场对有机农产品价格指数保险的需求意愿及影响因素——以山东鲁南地区为例[J]. 江苏农业科学, 2017, 45(13): 283-286. [103] 王一工. 江苏农业保险创新发展研究[J]. 江苏工程职业技术学院学报, 2023, 23(3): 65-70. [104] 王越, 何军. 风险感知、保险认知与养殖户肉鸡保险购买意愿——基于肉鸡主产区的实证分析[J]. 农业现代化研究, 2020, 41(6): 957-968. [105] 魏腾达, 穆月英. “独乐乐”还是“众乐乐”:政策性农业保险市场适度竞争的量化研究[J]. 金融经济学研究, 2024, 39(5): 22-37. [106] 魏腾达, 张峭, 王克. 新型农业经营主体的农业保险需求及提升对策——基于全国11373个新型农业经营主体的调查[J]. 保险研究, 2022(8): 48-59. [107] 温施童. 中国农产品收入保险及定价研究[D]. 华东师范大学, 2016. [108] 闫石. 关于农业保险信息不对称性的几点思考[J]. 武汉金融, 2015(5): 70-71. [109] 燕菲儿, 易福金, 张齐家. 农业保险的化肥减量效应分析——基于信贷与信息双约束视角的再考察[J]. 中国农村经济, 2024(10): 20-41. [110] 杨雪美, 冯文丽, 高峰, 等. 农户的风险意识、保险认知与政策性农业保险——基于河北试点的实证分析[J]. 农村经济, 2013(9): 70-74. [111] 叶朝晖. 关于完善我国农业保险制度的思考[J]. 金融研究, 2018(12): 174-188. [112] 叶明华. 政策性农业保险:从制度诱导到农户自主性需求——基于江苏省585户粮食种植户的问卷调查[J]. 财贸经济, 2015(11): 88-100. [113] 叶明华, 汪荣明, 吴苹. 风险认知、保险意识与农户的风险承担能力——基于苏、皖、川3省1554户农户的问卷调查[J]. 中国农村观察, 2014(6): 37-48+95. [114] 叶明华, 朱俊生. 新型农业经营主体与传统小农户农业保险偏好异质性研究——基于9个粮食主产省份的田野调查[J]. 经济问题, 2018(2): 91-97. [115] 易福金, 陆宇, 王克. 大灾小赔,小灾大赔:保费补贴“包干制”模式下的农业生产风险与赔付水平悖论——以政策性玉米保险为例[J]. 中国农村经济, 2022(3): 128-144. [116] 易福金, 许晴, 燕菲儿, 等. “谎言”与“真相”:基于列举实验的农业保险道德风险行为测度与影响研究[J]. 保险研究, 2024a(10): 73-87. [117] 易福金, 燕菲儿, 王金霞. 信贷约束下的农业保险需求高估问题:理论解释与经验证据[J]. 管理世界, 2023, 39(5): 78-97. [118] 易福金, 燕菲儿, 杨柳. 政策性农业保险的理论演进——兼论中国农业保险研究进展[J]. 保险研究, 2024b(3): 3-18. [119] 于鑫鑫, 谢金华, 杨钢桥, 等. 社会网络、保险认知对农户农业保险参保行为的影响[J]. 中国农业大学学报, 2021, 26(12): 263-278. [120] 俞锋. 农村社区公共产品的需求意愿及影响因素研究[D]. 南京农业大学, 2009. [121] 袁纯清. 农业保险高质量发展要坚持六个导向[J]. 保险研究, 2023(5): 3-8. [122] 张静. 商业保险参与政策性农业保险的现实选择——江苏政策性农险模式的实践与启示[J]. 农村经济, 2010(3): 72-76. [123] 张昆扬, 张改清. 农户农险认知、信任程度与购买意愿——基于河南省2497户农户的调研数据[J]. 河南牧业经济学院学报, 2020, 33(3): 1-7. [124] 张峭, 王克, 李越, 等. 我国农业保险风险保障:现状、问题和建议[J]. 保险研究, 2019(10): 3-18. [125] 张群. 绿色技术扩散中的社会资本因素研究[J]. 科技管理研究, 2012, 32(14): 123-125. [126] 张伟, 郭颂平, 罗向明. 风险演变、收入调整与不同地理区域农业保险的差异化需求[J]. 保险研究, 2013(10): 32-41. [127] 张小芹, 张文棋. 福建农户农业保险购买决策的行为经济学分析[J]. 农村金融研究, 2010(2): 70-75. [128] 张燕媛. 生猪养殖户政策性保险的需求偏好与效果评估研究[D]. 南京农业大学, 2017. [129] 张燕媛, 展进涛, 陈超. 专业化、认知度对养殖户生猪价格指数保险需求的影响[J]. 中国农村经济, 2017(2): 70-83. [130] 张跃华, 顾海英. 准公共品、外部性与农业保险的性质——对农业保险政策性补贴理论的探讨[J]. 中国软科学, 2004(9): 10-15. [131] 张跃华, 顾海英, 史清华. 农业保险需求不足效用层面的一个解释及实证研究[J]. 数量经济技术经济研究, 2005(4): 83-92. [132] 张跃华, 史清华, 顾海英. 农业保险需求问题的一个理论研究及实证分析[J]. 数量经济技术经济研究, 2007(4): 65-75, 102. [133] 赵翠萍, 郑艳玲, 张颖. 风险感知、保险认知与农户参保行为的实证研究[J]. 河南农业大学学报, 2022, 56(3): 500-510. [134] 赵君彦, 王健, 乔立娟. 基于Logit模型的农业保险需求影响因素分析——对河北省300农户的调查[J]. 江苏农业科学, 2013, 41(10): 387-389. [135] 赵思健, 李宏伟. 中国农业保险精确承保精准理赔存在的问题、成因与对策[J]. 农业展望, 2023, 19(10): 3-12. [136] 赵元凤, 柴智慧. 农户对农业保险赔款作用的评价——基于内蒙古500多户农户的问卷调查[J]. 中国农村经济, 2012(4): 66-75. [137] 郑沃林, 罗必良, 钟文晶. 农户气候风险认知、政策工具干预与农业保险市场扭曲[J]. 广东财经大学学报, 2020, 35(5): 101-111. [138] 周丹, 孙剑, 钟涨宝. 农业市场信息传播主体选择和影响因素分析——基于湖北省316个农户的实证研究[J]. 中国农学通报, 2010, 26(16): 393-397. [139] 周美琴, 叶涛, 史培军, 等. 我国种植业政策性保险制度:由设计到实践的挑战——以湖南省为例[J]. 农业经济问题, 2012, 33(2): 44-49, 111. [140] 朱俊生. 中国天气指数保险试点的运行及其评估——以安徽省水稻干旱和高温热害指数保险为例[J]. 保险研究, 2011(3): 19-25. [141] 左两军, 蔡键. 个体特征、认知差异与农户安全用药行为研究[J]. 江西财经大学学报, 2015(4): 68-80. [142] Adhikari S, Belasco E J, Knight T O. Spatial producer heterogeneity in crop insurance product decisions within major corn producing states[J]. Agricultural Finance Review, 2010, 70(1): 66-78. [143] Aditya K S, Kishore A, Khan M T. Exploring farmers’ willingness to pay for crop insurance products: a case of weather-based crop insurance in punjab, india[J]. Agricultural Economics Research Review, 2020, 33(2): 135-146. [144] Adjabui J A, Tozer P R, Gray D I. Willingness to participate and pay for index-based crop insurance in Ghana[J]. Agricultural Finance Review, 2019, ahead-of-print(ahead-of-print). [145] Ainembabazi J H, Mugisha J. The role of farming experience on the adoption of agricultural technologies: evidence from smallholder farmers in Uganda[J]. The Journal of Development Studies, 2014, 50(5): 666-679. [146] Akerlof G A. The market for “lemons”: quality uncertainty and the market mechanism[J]. The Quarterly Journal of Economics, 1970, 84(3): 488-500. [147] Anderson J R. Agricultural extension: good intentions and hard realities[J]. The World Bank Research Observer, 2004, 19(1): 41-60. [148] Anghelcev G, McGroarty S, Sar S, et al. Marketing processed organic foods: the impact of promotional message framing (vice vs. Virtue advertising) on perceptions of healthfulness[J]. Journal of Food Products Marketing, 2020, 26(6): 401-424. [149] Angrist J D, Krueger A B. Does Compulsory School Attendance Affect Schooling and Earnings?*[J]. The Quarterly Journal of Economics, 1991, 106(4): 979-1014. [150] Arnau J, Bono R, Blanca M J, et al. Using the linear mixed model to analyze nonnormal data distributions in longitudinal designs[J]. Behavior Research Methods, 2012, 44(4): 1224-1238. [151] Arrow K J. 21 - uncertainty and the welfare economics of medical care[M]//Diamond P, Rothschild M. Uncertainty in Economics. Academic Press, 1978: 345-375. [152] Babcock B A. Using Cumulative Prospect Theory to Explain Anomalous Crop Insurance Coverage Choice[J]. American Journal of Agricultural Economics, 2015, 97(5): 1371-1384. [153] Bakdash J Z, Marusich L R. Repeated measures correlation[J]. Frontiers in Psychology, 2017, 8: 456. [154] Bandura A. Self-efficacy: toward a unifying theory of behavioral change[J]. Psychological Review, 1977, 84(2): 191-215. [155] Banerjee A, Chandrasekhar A G, Duflo E, et al. The diffusion of microfinance[J]. Science, 2013, 341(6144): 1236498. [156] Bardsley P, Abey A, Davenport S V. The economics of insuring crops against drought[J]. Australian Journal of Agricultural Economics, 1984, 28(1): 1-14. [157] Becker G S. http://www.jstor.org human capital, effort, and the sexual division of labor[J]. Journal of Labor Economics, 1985, 3(1,): S33-S58. [158] BenYishay A, Mobarak A M. Social Learning and Incentives for Experimentation and Communication[J]. The Review of Economic Studies, 2019, 86(3): 976-1009. [159] Bergquist M. Limiting support for environmental policies: unfairness is a more critical barrier than cost and ineffectiveness[J]. Ambio, 2025, 54(2): 350-363. [160] Binswanger H P. Empirical estimation and use of risk preferences: discussion[J]. American Journal of Agricultural Economics, 1982, 64(2): 391-393. [161] Bocquého G, Jacquet F, Reynaud A. Expected utility or prospect theory maximisers? Assessing farmers’ risk behaviour from field-experiment data[J]. European Review of Agricultural Economics, 2014, 41(1): 135-172. [162] Borch K. The safety loading of reinsurance premiums[J]. Scandinavian Actuarial Journal, 1960, 1960(3-4): 163-184. [163] Boyd M, Pai J, Zhang Q, et al. Factors affecting crop insurance purchases in China: the inner mongolia region[J]. China Agricultural Economic Review, 2011, 3(4): 441-450. [164] Brown V A. An Introduction to Linear Mixed-Effects Modeling in R[J]. Advances in Methods and Practices in Psychological Science, 2021, 4(1): 2515245920960351. [165] Brunette M, Cabantous L, Couture S, et al. The impact of governmental assistance on insurance demand under ambiguity: a theoretical model and an experimental test[J]. Theory and Decision, 2013, 75(2): 153-174. [166] Cai H, Chen Y, Fang H, et al. Microinsurance, trust and economic development: evidence from a randomized natural field experiment[A]. National Bureau of Economic Research, 2009. [167] Cai J, Janvry A D, Sadoulet E. Social Networks and the Decision to Insure[J]. American Economic Journal: Applied Economics, 2015, 7(2): 81-108. [168] Cai J, Song C. Do disaster experience and knowledge affect insurance take-up decisions?[J]. Journal of Development Economics, 2017, 124: 83-94. [169] Cecchi F, Lensink R, Slingerland E. Ambiguity attitudes and demand for weather index insurance with and without a credit bundle: experimental evidence from Kenya[J]. Journal of Behavioral and Experimental Finance, 2024, 41: 100885. [170] Che Y, Feng H, Hennessy D A. Recency effects and participation at the extensive and intensive margins in the U.S. federal crop insurance program[J]. The Geneva Papers on Risk and Insurance - Issues and Practice, 2020, 45(1): 52-85. [171] Coble K H, Barnett B J. Why Do We Subsidize Crop Insurance?[J]. American Journal of Agricultural Economics, 2013, 95(2): 498-504. [172] Coble K H, Knight T O, Pope R D, et al. Modeling Farm‐Level Crop Insurance Demand with Panel Data[J]. American Journal of Agricultural Economics, 1996, 78(2): 439-447. [173] Cole S A, Fernando A N. The value of advice: evidence from mobile phone-based agricultural extension[J]. Ssrn Electronic Journal, 2012. [174] Cole S, Giné X, Tobacman J, et al. Barriers to Household Risk Management: Evidence from India[J]. American Economic Journal: Applied Economics, 2013, 5(1): 104-135. [175] Cole S, Stein D, Tobacman J. Dynamics of Demand for Index Insurance: Evidence from a Long-Run Field Experiment[J]. American Economic Review, 2014, 104(5): 284-290. [176] Conley T G, Udry C R. Learning about a New Technology: Pineapple in Ghana[J]. American Economic Review, 2010, 100(1): 35-69. [177] Dalhaus T, Barnett B J, Finger R. Behavioral weather insurance: applying cumulative prospect theory to agricultural insurance design under narrow framing[J]. PLOS One, 2020, 15(5): e0232267. [178] de Brauw A, Eozenou P, Gilligan D O, et al. Biofortification, crop adoption and health information: impact pathways in Mozambique and Uganda[J]. American Journal of Agricultural Economics, 2018, 100(3): 906-930. [179] de Souza F A M. Perceived security of land tenure in recife, brazil[J]. Habitat International, 2001, 25(2): 175-190. [180] Dhaka B, Chayal K. Farmers’ experience with ICTs on transfer of technology in changing agri-rural environment[J]. Indian Research Journal of Extension Education, 2010. [181] Doherty E, Mellett S, Norton D, et al. A discrete choice experiment exploring farmer preferences for insurance against extreme weather events[J]. Journal of Environmental Management, 2021, 290: 112607. [182] Doherty N A, Schlesinger H. Optimal insurance in incomplete markets[J]. Journal of Political Economy, 1983, 91(6): 1045-1054. [183] Doss C R, Morris M L. How does gender affect the adoption of agricultural innovations?[J]. Agricultural Economics, 2000, 25(1): 27-39. [184] Du X, Feng H, Hennessy D A. Rationality of Choices in Subsidized Crop Insurance Markets[J]. American Journal of Agricultural Economics, 2017, 99(3): 732-756. [185] Duflo E, Kremer M, Robinson J. How high are rates of return to fertilizer? Evidence from field experiments in Kenya[J]. American Economic Review, 2008, 98(2): 482-488. [186] Enjolras G, Sentis P. Crop insurance policies and purchases in France[J]. Agricultural Economics, 2011, 42(4): 475-486. [187] Feder G, Just R E, Zilberman D. Adoption of agricultural innovations in developing countries: a survey[J]. Economic Development and Cultural Change, 1985. [188] Foster A D, Rosenzweig M R. Learning by doing and learning from others: human capital and technical change in agriculture[J]. Journal of Political Economy, 1995, 103(6): 1176-1209. [189] Fraser R W. An analysis of willingness‐to‐pay for crop insurance*[J]. Australian Journal of Agricultural Economics, 1992, 36(1): 83-95. [190] Galeotti A, Goyal S, Jackson M O, et al. Network games[J]. Review of Economic Studies, 2010, 77(1): 218-244. [191] Garson G D. Hierarchical Linear Modeling: Guide and Applications[M]. SAGE, 2013. [192] Gaurav S, Cole S, Tobacman J. Marketing complex financial products in emerging markets: evidence from rainfall insurance in India[J]. Journal of Marketing Research, 2011, 48(SPL): S150-S162. [193] Gautam M, Hazell P, Alderman H. Rural demand for drought insurance[J]. 1994. [194] Genius M, Koundouri P, Nauges C, et al. Information Transmission in Irrigation Technology Adoption and Diffusion: Social Learning, Extension Services, and Spatial Effects[J]. American Journal of Agricultural Economics, 2014, 96(1): 328-344. [195] Ghosh R K, Gupta S, Singh V, et al. Demand for Crop Insurance in Developing Countries: New Evidence from India[J]. Journal of Agricultural Economics, 2021, 72(1): 293-320. [196] Giesbert L, Steiner S, Bendig M. Participation in micro life insurance and the use of other financial services in Ghana[J]. Journal of Risk and Insurance, 2011, 78(1): 7-35. [197] Ginder M, Spaulding A D, Tudor K W, et al. Factors affecting crop insurance purchase decisions by farmers in northern illinois[J]. Agricultural Finance Review, 2009, 69(1): 113-125. [198] Giné X, Townsend R, Vickery J. Patterns of rainfall insurance participation in rural india[J]. The World Bank Economic Review, 2008, 22(3): 539-566. [199] Glauber J W. Crop Insurance Reconsidered[J]. American Journal of Agricultural Economics, 2004, 86(5): 1179-1195. [200] Goodwin B K. An Empirical Analysis of the Demand for Multiple Peril Crop Insurance[J]. American Journal of Agricultural Economics, 1993, 75(2): 425-434. [201] Grossman S J, Stiglitz J E. On the impossibility of informationally efficient markets[J]. American Economic Review, 1980, 70(3): 393-408. [202] Guo M, Jia X, Huang J, et al. Farmer field school and farmer knowledge acquisition in rice production: experimental evaluation in China[J]. Agriculture Ecosystems and Environment, 2015, 209: 100-107. [203] Hazell P, Benel C, Valdes A. Crop insurance for agricultural development: issues and experience[J]. Journal of Risk and Insurance, 1986, 54. [204] Hill R V, Robles M, Ceballos F. Demand for a Simple Weather Insurance Product in India: Theory and Evidence[J]. American Journal of Agricultural Economics, 2016, 98(4): 1250-1270. [205] Hirshleifer J, Riley J G. The analytics of uncertainty and information-an expository survey[J]. Journal of Economic Literature, 1979, 17(4): 1375-1421. [206] Hogarth R M, Einhorn H J. Order effects in belief updating: the belief-adjustment model[J]. Cognitive Psychology, 1992, 24(1): 1-55. [207] Hörner D, Bouguen A, Frölich M, et al. Knowledge and adoption of complex agricultural technologies: evidence from an extension experiment[J]. The World Bank Economic Review, 2022, 36(1): 68-90. [208] Hou L, Hoag D L K, Mu Y. Testing for adverse selection of crop insurance in northern China[J]. China Agricultural Economic Review, 2011, 3(4): 462-475. [209] Huang S, Wang L, Liu L, et al. Nanotechnology in agriculture, livestock, and aquaculture in China. A review[J]. Agronomy for Sustainable Development, 2015, 35(2): 369-400. [210] Imbens G W, Angrist J D. Identification and estimation of local average treatment effects[J]. Econometrica, 1994, 62(2): 467-475. [211] Jacoby J, Olson J C, Haddock R A. Price, brand name, and product composition characteristics as determinants of perceived quality[J]. Journal of Applied Psychology, 1971, 55(6): 570-579. [212] Jacquet F, Butault J P, Guichard L. An economic analysis of the possibility of reducing pesticides in french field crops[J]. Ecological Economics, 2011, 70(9): 1638-1648. [213] Janzen S A, Carter M R. After the drought: the impact of microinsurance on consumption smoothing and asset protection[J]. American Journal of Agricultural Economics, 2019, 101(3): 651-671. [214] Jensen N D, Mude A G, Barrett C B. How basis risk and spatiotemporal adverse selection influence demand for index insurance: evidence from northern Kenya[J]. Food Policy, 2018, 74: 172-198. [215] Karlan D, Osei R, Osei-Akoto I, et al. Agricultural decisions after relaxing credit and risk constraints *[J]. The Quarterly Journal of Economics, 2014, 129(2): 597-652. [216] King M, Singh A P. Understanding farmers’ valuation of agricultural insurance: evidence from Vietnam[J]. Food Policy, 2020, 94: 101861. [217] Knight T O, Coble K H. Survey of U.S. Multiple Peril Crop Insurance Literature Since 1980[J]. Applied Economic Perspectives and Policy, 1997, 19(1): 128-156. [218] Kunreuther H, Michel-Kerjan E. Managing catastrophic risks through redesigned insurance: challenges and opportunities[M]//Dionne G. Handbook of Insurance. New York, NY: Springer, 2013: 517-546. [219] Lefebvre M, Nikolov D, Gomez-y-Paloma S, et al. Determinants of insurance adoption among bulgarian farmers[J]. Agricultural Finance Review, 2014, 74(3): 326-347. [220] Lin J, Boyd M, Pai J, et al. Factors affecting farmers’ willingness to purchase weather index insurance in the hainan province of China[J]. Agricultural Finance Review, 2015, 75(1): 103-113. [221] Liu Y, Chen K, Hill R V. Delayed premium payment, insurance adoption, and household investment in rural china[J]. American Journal of Agricultural Economics, 2020, 102(4): 1177-1197. [222] Lybbert T J, Galarza F B, McPeak J, et al. Dynamic field experiments in development economics: risk valuation in Morocco, kenya, and Peru[J]. Agricultural and Resource Economics Review, 2010, 39(2): 176-192. [223] Lyu K, Barré T J. Risk aversion in crop insurance program purchase decisions: Evidence from maize production areas in China[J]. China Agricultural Economic Review, 2017, 9(1): 62-80. [224] Maertens A, Michelson H, Nourani V. How Do Farmers Learn from Extension Services? Evidence from Malawi[J]. American Journal of Agricultural Economics, 2021, 103(2): 569-595. [225] Magezi D A. Linear mixed-effects models for within-participant psychology experiments: an introductory tutorial and free, graphical user interface (LMMgui)[J]. Frontiers in Psychology, 2015, 6. [226] Mahul O, Stutley C J. Government support to agricultural insurance: challenges and options for developing countries[C]. The World Bank, 2010. [227] Managi S. The economics of biodiversity and ecosystem services[M]. London: Routledge, 2012. [228] Manski C F. Identification of endogenous social effects: the reflection problem[J]. Review of Economic Studies, 1993, 60(3): 531-542. [229] Miguel E, Kremer M. Worms: identifying impacts on education and health in the presence of treatment externalities[J]. Econometrica, 2004, 72(1): 159-217. [230] Miranda M, Farrin K. Effective risk aversion and the demand for savings and insurance[C]. 2020. [231] Miranda M J. Area‐Yield Crop Insurance Reconsidered[J]. American Journal of Agricultural Economics, 1991, 73(2): 233-242. [232] Mobarak A M, Rosenzweig M R. Informal Risk Sharing, Index Insurance, and Risk Taking in Developing Countries[J]. American Economic Review, 2013, 103(3): 375-380. [233] Mosnier C. Self-insurance and multi-peril grassland crop insurance: the case of french suckler cow farms[J]. Agricultural Finance Review, 2015, 75(4): 533-551. [234] Mossin J. Aspects of rational insurance purchasing[J]. Journal of Political Economy, 1968, 76(4, Part 1): 553-568. [235] Mtega W P. Communication channels for exchanging agricultural information among tanzanian farmers: a meta-analysis[J]. Ifla Journal, 2021, 47(4): 570-579. [236] Neisser U. Cognitive psychology[M]. Prentice Hall, 1967. [237] Nelson C H, Loehman E T. Further Toward a Theory of Agricultural Insurance[J]. American Journal of Agricultural Economics, 1987, 69(3): 523-531. [238] Nelson P. Advertising as information[J]. Journal of Political Economy, 1974, 82(4): 729-754. [239] Ogutu S O, Fongar A, Gödecke T, et al. How to make farming and agricultural extension more nutrition-sensitive: evidence from a randomised controlled trial in Kenya[J]. European Review of Agricultural Economics, 2020, 47(1): 95-118. [240] Osipenko M, Shen Z, Odening M. Is there a demand for multi-year crop insurance?[J]. Agricultural Finance Review, 2015, 75(1): 92-102. [241] Patt A, Peterson N, Carter M, et al. Making index insurance attractive to farmers[J]. Mitigation and Adaptation Strategies for Global Change, 2009, 14(8): 737-753. [242] Platteau J P, De Bock O, Gelade W. The demand for microinsurance: a literature review[J]. World Development, 2017, 94: 139-156. [243] Rahm M R, Huffman W E. The adoption of reduced tillage: the role of human capital and other variables[J]. American Journal of Agricultural Economics, 1984, 66(4): 405-413. [244] Raschky P A, Schwarze R, Schwindt M, et al. Uncertainty of governmental relief and the crowding out of flood insurance[J]. Environmental and Resource Economics, 2013, 54(2): 179-200. [245] Rogers R G, Everett B G, Onge J M S, et al. Social, behavioral, and biological factors, and sex differences in mortality[J]. Demography, 2010, 47(3): 555-578. [246] Sakurai T, Reardon T. Potential Demand for Drought Insurance in Burkina Faso and Its Determinants[J]. American Journal of Agricultural Economics, 1997, 79(4): 1193-1207. [247] Santeramo F G. I Learn, You Learn, We Gain Experience in Crop Insurance Markets[J]. Applied Economic Perspectives and Policy, 2019, 41(2): 284-304. [248] Santeramo F G, Goodwin B K, Adinolfi F, et al. Farmer participation, entry and exit decisions in the italian crop insurance programme[J]. Journal of Agricultural Economics, 2016, 67(3): 639-657. [249] Sarris A, Karfakis P, Christiaensen L. Producer demand and welfare benefits of rainfall insurance in Tanzania[C]. 2006. [250] Shaik S, Coble K H, Knight T O, et al. Crop Revenue and Yield Insurance Demand: A Subjective Probability Approach[J]. Journal of Agricultural and Applied Economics, 2008, 40(3): 757-766. [251] Shaik S, Coble K, Knight T. Revenue crop insurance demand[J]. 2005. [252] Sherrick B J, Barry P J, Ellinger P N, et al. Factors Influencing Farmers’ Crop Insurance Decisions[J]. American Journal of Agricultural Economics, 2004, 86(1): 103-114. [253] Sherrick B J, Schnitkey G D, Ellinger P N, et al. Farmers’ Preferences for Crop Insurance Attributes[J]. Applied Economic Perspectives and Policy, 2003, 25(2): 415-429. [254] Shikuku K M, Pieters J, Bulte E, et al. Incentives and the Diffusion of Agricultural Knowledge: Experimental Evidence from Northern Uganda[J]. American Journal of Agricultural Economics, 2019, 101(4): 1164-1180. [255] Shin S, Magnan N, Mullally C, et al. Demand for Weather Index Insurance among Smallholder Farmers under Prospect Theory[J]. Journal of Economic Behavior & Organization, 2022, 202: 82-104. [256] Smith V H, Baquet A E. The Demand for Multiple Peril Crop Insurance: Evidence from Montana Wheat Farms[J]. American Journal of Agricultural Economics, 1996, 78(1): 189-201. [257] Spence M. Job market signaling[J]. The Quarterly Journal of Economics, 1973, 87(3): 355-374. [258] Tadesse M A, Alfnes F, Erenstein O, et al. Demand for a labor-based drought insurance scheme in Ethiopia: a stated choice experiment approach[J]. Agricultural Economics, 2017, 48(4): 501-511. [259] Tadesse M A, Shiferaw B A, Erenstein O. Weather index insurance for managing drought risk in smallholder agriculture: lessons and policy implications for sub-Saharan Africa[J]. Agricultural and Food Economics, 2015, 3(1): 26. [260] Takahashi K, Ikegami M, Sheahan M, et al. Experimental Evidence on the Drivers of Index-Based Livestock Insurance Demand in Southern Ethiopia[J]. World Development, 2016, 78: 324-340. [261] Tripp R, Wijeratne M, Piyadasa V H. What should we expect from farmer field schools? A Sri Lanka case study[J]. World Development, 2005, 33(10): 1705-1720. [262] Tversky A, Kahneman D. Judgment under uncertainty: heuristics and biases[J]. Science, 1974, 185(4157): 1124-1131. [263] Vandeveer M L. Demand for area crop insurance among litchi producers in northern Vietnam[J]. Agricultural Economics, 2001, 26(2): 173-184. [264] Vandeveer M L, Loehman E T. Farmer response to modified crop insurance: a case study of corn in indiana[J]. American Journal of Agricultural Economics, 1994, 76(1): 128-140. [265] Vaughan W F. General psychology[M]. Garden City, NY, US: Doubleday, Doran & Company, 1936: xxi, 634. [266] Veettil P C, Yashodha Y, Vecci J. Hypothetical bias and cognitive ability: Farmers’ preference for crop insurance products†[J]. American Journal of Agricultural Economics, 2024: ajae.12506. [267] Wang M, Ye T, Shi P. Factors affecting farmers’ crop insurance participation in China[J]. Canadian Journal of Agricultural Economics/revue Canadienne D’agroeconomie, 2016, 64(3): 479-492. [268] Ward P S, Pede V O. Capturing social network effects in technology adoption: the spatial diffusion of hybrid rice in Bangladesh[J]. Australian Journal of Agricultural and Resource Economics, 2015, 59(2): 225-241. [269] Westbrook R A, Oliver R L. The dimensionality of consumption emotion patterns and consumer satisfaction[J]. Journal of Consumer Research, 1991, 18(1): 84-91. [270] Yamazaki S, Resosudarmo B P. Does sending farmers back to school have an impact? Revisiting the issue[J]. The Developing Economies, 2008, 46(2): 135-150. [271] Yan F, Yi F, Chen H. Effect of education on crop insurance knowledge: evidence from a RCT in China[J]. China Agricultural Economic Review, 2024, 17(1): 1-21. [272] Ye T, Wang M, Hu W, et al. High liabilities or heavy subsidies: Farmers’ preferences for crop insurance attributes in Hunan, China[J]. China Agricultural Economic Review, 2017, 9(4): 588-606. [273] Yu J, Sumner D A. Effects of subsidized crop insurance on crop choices[J]. Agricultural Economics, 2018, 49(4): 533-545. [274] Zhang Y yuan, Ju G wei, Zhan J tao. Farmers using insurance and cooperatives to manage agricultural risks: a case study of the swine industry in China[J]. Journal of Integrative Agriculture, 2019, 18(12): 2910-2918. |
中图分类号: | F84 |
开放日期: | 2025-06-11 |