- 无标题文档
查看论文信息

中文题名:

 草地贪夜蛾和斜纹夜蛾感受5种植物挥发物的比较研究     

姓名:

 王吉祥    

学号:

 2020102070    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090402    

学科名称:

 农学 - 植物保护 - 农业昆虫与害虫防治    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 南京农业大学    

院系:

 植物保护学院    

专业:

 农业昆虫与害虫防治    

研究方向:

 昆虫生理生化与分子生物学    

第一导师姓名:

 董双林    

第一导师单位:

 南京农业大学    

完成日期:

 2023-05-23    

答辩日期:

 2023-05-26    

外文题名:

 Comparative Study of Olfactory Responses to Five Host-Plant Volatiles in Two Spodoptera Species    

中文关键词:

 植物气味 ; 触角电位 ; 行为反应 ; 气味受体    

外文关键词:

 Host-plant volatile ; Electroantennography ; Behavior ; Odorant receptor    

中文摘要:

昆虫拥有一套高度灵敏的嗅觉系统,来识别环境中纷繁复杂的气味物质,如种内或种间信息素、植物挥发物等,借此高效完成定位寄主、寻找配偶和躲避天敌等一系列重要行为。触角是昆虫最重要的嗅觉器官,表面密布嗅觉感器;嗅觉感器中感受神经元树突膜上的气味受体(Odorant receptor,OR)负责将化学信号转换成电信号,因而在嗅觉感受的灵敏性和特异性中起关键作用。草地贪夜蛾和斜纹夜蛾均是灰翅夜蛾属重要害虫,但二者的寄主范围有所差异,草地贪夜蛾偏好玉米、水稻、牧草等禾本科植物,而斜纹夜蛾偏好烟草、大豆、棉花等双子叶植物。不同的寄主偏好性暗示两种夜蛾可能在植物挥发物的感受上存在分化。研究并明确这种分化及其分子机制,有助于深入理解近源种寄主分化的机制,并对研发基于嗅觉的行为调控技术具有重要意义。为此,本研究以两种夜蛾为对象进行比较研究,首先利用触角电位(Electroantennography,EAG)、Y型嗅觉仪和产卵选择等技术,测定并比较了二者对5种常见植物挥发物(壬醛、苯乙酮、苯甲醇、水杨酸甲酯和顺-3-己烯基乙酸酯)的电生理和行为反应的异同;然后通过系统发育分析获得两种夜蛾感受这些植物挥发物的候选OR基因,并利用qPCR技术明确了这些OR基因在雌雄触角中的表达水平;最后利用爪蟾卵母细胞-双极电压钳系统测定了这些候选OR基因的功能,探讨了两种夜蛾同源OR基因在感受常见寄主植物挥发物中的差异。主要结果如下:
1、草地贪夜蛾和斜纹夜蛾对5种寄主植物挥发物的电生理和行为反应
利用触角电位技术测定了两种昆虫雌雄蛾对5种植物挥发物的EAG反应,发现两种昆虫对于4种挥发物(壬醛、苯乙酮、苯甲醇和水杨酸甲酯)均可产生显著的EAG反应,且具有剂量依赖效应;但两种夜蛾对于顺-3-己烯基乙酸酯的EAG反应有差异,斜纹夜蛾雌雄蛾均可产生显著反应,而草地贪夜蛾只有雌虫可产生显著的反应。利用Y型嗅觉仪进行双向选择实验,发现两种昆虫均对壬醛、苯乙酮、顺-3-己烯基乙酸酯有显著的趋向行为,此外草地贪夜蛾还对水杨酸甲酯有显著的趋向行为。进一步利用产卵选择实验,测定了两种雌蛾对5种挥发物的产卵选择行为,结果壬醛、苯乙酮和水杨酸甲酯均能显著吸引两种雌蛾产卵,而顺-3-己烯基乙酸酯仅能吸引斜纹夜蛾产卵,对草地贪夜蛾没有显著影响。可见,两种夜蛾对5种植物挥发物无论在电生理还是在行为反应上均存在一定的差异。
2、两种夜蛾感受5种植物挥发物的OR同源基因的序列和性别表达差异分析
通过构建草地贪夜蛾、斜纹夜蛾、海灰翅夜蛾、棉铃虫、烟青虫和家蚕的OR系统发育树,根据后四种昆虫中OR的文献报道,将感受壬醛等5种植物挥发物的OR分支中对应的草地贪夜蛾和斜纹夜蛾的OR基因作为候选OR基因。序列分析表明,两种昆虫共5对候选OR同源基因所编码蛋白间的氨基酸相似性均很高:SfruOR47和SlituOR9为98.24%,SfruOR24和SlituOR55为89.66%,SfruOR25和SlituOR56为96.15%,SfruOR28和SlituOR69为95.36%,SfruOR58和SlituOR22为88.86%。利用qPCR对候选OR基因在雌雄触角中的表达差异分析发现,5对同源基因的性别表达差异完全相同,其中SfruOR47和SlituOR9均为雌蛾显著高于雄蛾,其余候选OR基因在雌雄蛾触角间的表达量没有显著差异。然而,两种夜蛾间5对同源基因在触角中的表达量存在明显不同,雌蛾触角中各候选OR基因的表达水平均为斜纹夜蛾显著高于草地贪夜蛾,雄蛾触角中除SfruOR58和SlituOR22的表达量无显著差异外,其他4对OR基因也表现为斜纹夜蛾显著高于草地贪夜蛾。
3、两种夜蛾感受5种植物挥发物的OR同源基因的功能分析
利用爪蟾卵母细胞-双极电压钳系统测定了5对候选OR基因对70种化合物的电生理反应。结果发现,同源基因SfruOR47和SlituOR9均对壬醛、癸醛、壬醇、癸醇4种化合物有电生理反应,并以壬醛的电生理反应最强,EC50值也基本相同;SfruOR25和SlituOR56都对苯乙酮等15种化合物有电生理反应,且都对苯乙酮的电生理反应最强,但两者的敏感性明显不同,前者的EC50值是后者的2倍左右;SfruOR24和SlituOR55都对苯甲醇、苯乙醇等6种化合物有电生理反应,且都对苯甲醇的电生理反应最强,前者的EC50值是后者的3倍左右;SfruOR58和SlituOR22都对水杨酸甲酯有特异性反应,但前者的EC50值仅是后者的1/6左右;SfruOR28和SlituOR69都对顺-3-己烯基乙酸酯、壬醛、癸醛、顺-3-己烯醇4种植物挥发物有电生理反应,且都对顺-3-己烯基乙酸酯的电生理反应最强,但前者的EC50值仅是后者的1/5左右。可见两种夜蛾5对同源OR的配体反应谱基本相同,但对最适配体的敏感性存在明显差异。
4、SfruOR47和SlituOR9与壬醛的相互作用
通过构建SfruOR47和SlituOR9的3D模型和分子对接确定了壬醛与两个OR结合的关键氨基酸位点。两个OR都存在His57和Glu61两个氨基酸位点与壬醛形成氢键,是壬醛与两个OR结合的主要作用力。进一步通过点突变,将His或Glu突变为Ala,或者同时将His和Glu突变为Ala,然后进行爪蟾卵母细胞-双电极电压钳系统检测点突变后的SfruOR47和SlituOR9对壬醛的电生理反应。结果显示,His57点突变后(SfruOR47-His57Ala和SlituOR9-His57Ala),两个OR对壬醛的电生理反应和敏感性都显著降低,EC50分别升高了103倍和388倍;Glu61点突变后(SfruOR47-Glu61Ala和SlituOR9-Glu61Ala),两个OR对壬醛的电生理反应降低,EC50分别升高了3倍和18倍;His57和Glu61同时突变后(SfruOR47-His57Ala-Glu61Ala和SlituOR9-His57Ala-Glu61Ala),两个OR对壬醛的电生理反应和敏感性都基本消失。点突变结果验证了His57和Glu61是两个OR结合壬醛所必需的氨基酸位点。
综上,本研究在触角电生理、行为学和OR表达量及配体反应等方面,揭示了草地贪夜蛾和斜纹夜蛾对5种常见植物挥发物的嗅觉分化。在电生理和行为反应上,两种夜蛾对顺-3-己烯基乙酸酯、水杨酸甲酯存在一定差异;两种夜蛾间5对同源OR的氨基酸序列相似性均很高(> 88%),但在触角中的表达量斜纹夜蛾普遍高于草地贪夜蛾;同源OR基因编码的蛋白的配体反应谱基本相同,但对最适配体的敏感性存在明显差异;His57和Glu61是两种夜蛾感受壬醛的受体(SfruOR47和SlituOR9)所必需的氨基酸位点。研究结果为深入解析两种昆虫主要寄主植物分化的嗅觉机制提供了数据,同时为开发更加经济高效、环境友好的行为防治技术奠定了基础。

 

外文摘要:

Insect has a highly sensitive olfactory system to identify complex odorants in the environment, such as inter- and intra-specific pheromones, plant volatiles, which allow them a high efficiency in many important behaviors such as locating hosts, searching for mates, and avoiding predators. Antennae are the major olfactory organs, on which thousands of olfactory sensilla are located. The olfactory receptors on the dendritic membranes of the sensory neurons in the olfactory sensilla are responsible for converting chemical signals into electrical signals, and thus play a key role in the sensitivity and specificity of olfactory perception. The two important pests Spodoptera frugiperda and S. litura are congeneric, but differentiate in the host plants. S. frugiperda prefers to eat gramineous plants such as corn, rice, and forage plants, while S. litura prefers to dicotyledons such as tobacco, soyabean, and cotton. This difference in host preferences suggests a divergence in the perception of plant odors. Studying and clarifying this divergence and its molecular mechanisms can help us to deepen the understanding of the mechanism of host divergence among closely related species, and have important implications for developing behavioral technologies based on olfactory perception. Therefore, a comparative study between the two Spodoptera species was conducted. First, by using electroantennography (EAG), Y-tube olfactometer, and egg-laying selection equipment, the electrophysiological and behavioral responses of moths to five common plant volatiles (nonanal, acetophenone, benzyl alcohol, methyl salicylate, and cis-3-hexenyl acetate) were measured. Second, by means of construction of evolutionary tree of ORs, the homologous OR genes that were reported to tune for the five plant volatiles were obtained as candidate OR genes of the two Spodoptera species, and in addition, expression levels of these candidate OR genes in the male and female antennae were determined by qPCR. Finally, the ligand responses of these OR genes were clarified by the Xenopus oocyte-two electrode voltage clamp system. The main results are as follows:
1. The electrophysiological and behavioral responses to five host plant volatiles by adults of the two Spodoptera species
Both S. frugiperda and S. litura showed significant EAG responses to nonanal, acetophenone, benzyl alcohol and methyl salicylate, in a dose-dependent manner. However, significant difference was observed to cis-3-hexenyl acetate. Both male and female S. litura responded to cis-3-hexenyl acetate, while only female S. frugiperda showed a significant response. In a two-choice experiment using Y-tube olfactometer, females of both species showed a significant preference for nonanal, acetophenone and cis-3-hexenyl acetate, and S. frugiperda was also attracted by methyl salicylate. In further egg-laying assay, both species preferred laying eggs on soybean plants treated with nonanal, acetophenone, and methyl salicylate; in addition, S. litura also preferred laying eggs on plants with cis-3-hexenyl acetate.
2. The amino acid sequence and sex expression profile of the homologous OR genes between the two Spodoptera species
To obtain the candidate OR genes tuned the 5 host plant volatiles in the two species, a phylogenetic tree of ORs was constructed with 388 ORs from six moth species was built. Five OR clads were clearly showed, with each clad containing at least one OR for one of the 5 plant volatiles previously reported in S. littoralis, H. armigera, H. assulta or Bombyx mori. The 5 pairs of OR orthologous genes of S. frugiperda and S. litura in the 5 clads were considered to be candidate OR genes for the plant volatiles. Sequence analysis showed that homologous genes between the two insects shared with high amino acid identity of 98.24% between SfruOR47 and SlituOR9, 89.66% between SfruOR24 and SlituOR55, 96.15% between SfruOR25 and SlituOR56, 95.36% between SfruOR28 and SlituOR69, and 88.86% between SfruOR58 and SlituOR22. The qPCR results showed that the sex expression patterns of these candidate OR genes was exactly the same between the two species. Both SfruOR47 and SlituOR9 were significantly female biased, while other four pairs of candidate OR genes were all unbiased between sex. However,the expression levels of candidate OR genes in female and male antennae of S. litura were generally higher than those in S. frugiperda.
3. Response profiles of homologous OR genes to the 5 plant volatiles in the two Spodoptera species
The functions of candidate OR genes to 70 compounds were measured by Xenopus oocyte-two electrode voltage clamp system. The results showed that SfruOR47 and SlituOR9 had similar electrophysiology responses to four compounds (nonanal, decanal, nonanol, and decanol), with the strongest response to nonanal. SfruOR25 and SlituOR56 had similar electrophysiology responses to 15 compounds, with the strongest response to acetophenone, but for this compound, the EC50 value of SfruOR25 was about 2 times that of SlituOR56. SfruOR24 and SlituOR55 also had similar electrophysiological responses to 6 compounds including benzyl alcohol and Phenethyl alcohol, and both ORs had the strongest response to benzyl alcohol; but EC50 value of the former is about 3 times higher than that of the latter. SfruOR58 and SlituOR22 both specifically responded to methyl salicylate, but the EC50 value of the former was only about 1/6 of that of the latter. SfruOR28 and SlituOR69 had electrophysiological responses to 4 plant volatiles (cis-3-hexenyl acetate, nonanal, decanal, and cis-3-hexenol), and both had the strongest electrophysiological response to cis-3-hexenyl acetate. However, the EC50 value of the former is significantly lower than that of the latter, only about 1/5 of the latter. 
4. Interaction of attractant nonanal with SfruOR47 and SlituOR9
The key amino acid sites of SfruOR47 and SlituOR9 for binding nonanal were identified by constructing 3D models of the two ORs and molecular docking. Two amino acid sites, His57 and Glu61, are present in both ORs to form hydrogen bonds with nonanal, which is the main force for binding nonanal. Further site-directed mutagenesis results showed single mutant of His57Ala or Glu61Ala significantly reduced the binding affinity of SfruOR47 to nonanal, increasing the EC50 value to 1.986×10-3 M and 6.519×10-5 M (2.811×10-6 M for intact OR), respectively, and the double mutant further increased the EC50 value to 3.472×10-2M. Similarly, for SlituOR9, the EC50 value for single mutation of His57Ala or Glu61Ala increased to 2.11×10-3 and 9.829×10-5 M (2.792×10-6 M for intact SlituOR9), respectively; and the double mutant resulted in loss of the binding ability to nonanal. These results revealed the His57 and Glu61 residues in both SfruOR47 and SlituOR9 are essential for nonanal binding.
In summary, this study revealed the olfactory differentiation between S. frugiperda and S. litura to five common host-plant volatiles, in terms of antennal electrophysiology, behavioral response, and OR expression and ligand response profile. Differences were observed in EAG and behavioral response to cis-3-hexenyl acetate and methyl salicylate; the 5 pairs of homologous ORs shared high amino acid identity (> 88%), but the expression levels were generally higher in S. litura than in S. frugiperda; furthermore, homologous ORs between the two species shared with similar ligand specificity, but they showed significant differences in the sensitivity to the optimal ligand. By 3D structure prediction, molecular docking and site-directed mutagenesis, we revealed that the His57 and Glu61 residues in both SfruOR47 and SlituOR9 are essential for nonanal binding. This study provides data for further clarification of the mechanism underlying the host plants difference between the two congeneric species, and lays a foundation for developing more economically efficient and environmentally friendly behavioral control techniques for these two pests.

参考文献:

[1]陈萍, 刘丹丹, 修小鉴等.对草地贪夜蛾有嗅觉生理活性的玉米和水稻挥发物组分[J].植物保护, 2022, 48(03): 90-97.

[2]曹利军,杨帆,唐思莹等.适合三种鳞翅目昆虫的一种人工饲料配方[J].应用昆虫学报, 2014, 51(05): 1376-1386.

[3]关雄, 金化亮, 梁景华等.一种草地贪夜蛾成虫引诱剂及包含引诱剂的诱捕装置[P/OL], CN111685118B, 2021.

[4]郭井菲, 张永军, 王振营.中国应对草地贪夜蛾入侵研究的主要进展[J].植物保护, 2022, 48(04): 79-87.

[5]郭线茹, 原国辉, 李为争等.螟蛾引诱剂[P/OL], CN1887083, 2007.

[6]侯茂林, 盛承发.成虫取食对棉铃虫雌蛾繁殖的影响[J].生态学报, 2000(04): 601-605.

[7]黄翠虹, 游秀峰, 王珏等.菜粉蝶对十字花科植物挥发物的触角电位反应及引诱剂配方的大田诱捕试验[J].环境昆虫学报, 2015, 37(06): 1219-1226.

[8]黄钧鸿, 张铭淇, 冯启理等.草地贪夜蛾与斜纹夜蛾嗅觉味觉相关基因的比较分析[J].环境昆虫学报, 2019, 41(05): 937-946.

[9]贾小俭, 马娟, 高波等.甘薯蚁象对不同甘薯品种植物挥发物的EAG和嗅觉反应[J].昆虫学报, 2017, 60(11): 1285-1291.

[10]蒋兴川, 谢兴伟, 董文霞等.甘蔗和玉米不同生育时期叶片挥发物组成及其对亚洲玉米螟的电生理活性[J].植物保护, 2014, 40(03): 10-19.

[11]李为争, 李慧玲, 王珏等.蛾类花香型广谱引诱剂配方的均匀设计[J].中国农学通报, 2014, 30(04): 304-311.

[12]李祥, 张小娇, 肖春等.不同性别和交配状态的马铃薯块茎蛾对马铃薯挥发物的触角电位反应[J]. 中国农业科学, 2021, 54(03): 547-555.

[13]刘锦霞, 李晶, 张丹丹等.11种植物源杀虫活性成分对草地贪夜蛾的毒力测定[J].植物保护, 2023, 49(01): 351-356.

[14]陆宴辉, 王立颖, 李晶晶.一种夜蛾科害虫引诱剂及其制备方法与应用[P/OL], CN105613495A, 2016.

[15]秦厚国, 汪笃栋, 丁建等.斜纹夜蛾寄主植物名录[J].江西农业学报, 2006(05): 51-58.

[16]张立娟. 绿盲蝽寄主选择性及其机理研究[D].保定: 河北农业大学, 2010: 16-24.

[17]赵胜园, 罗倩明, 孙小旭等.草地贪夜蛾与斜纹夜蛾的形态特征和生物学习性比较[J].中国植保导刊, 2019, 39(05): 26-35.

[18]Andersson M N, Newcomb R D. Pest control compounds targeting insect chemoreceptors: Another silent spring? [J]. Frontiers in Ecology and Evolution, 2017, 5: 5.

[19]Bartlet E, Blight M M, Lane P, et al. The responses of the cabbage seed weevil Ceutorhynchus assimilis to volatile compounds from oilseed rape in a linear track olfactometer [J]. Entomol Exp Appl, 1997, 85(3): 257-262.

[20]Benton R, Sachse S, Michnick S W, et al. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo [J]. Plos Biol, 2006, 4(2): 240-257.

[21]Bernasconi M L, Turlings T C J, Ambrosetti L, et al. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis [J]. Entomol Exp Appl, 1998, 87(2): 133-142.

[22]Bruce T J A, Wadhams L J, Woodcock C M. Insect host location: a volatile situation [J]. Trends Plant Sci, 2005, 10(6): 269-274.

[23]Brand P, Robertson H M, Lin W, et al. The origin of the odorant receptor gene family in insects [J]. Elife, 2018, 7: e38340.

[24]Bushdid C, de March C A, Topin J, et al. Mammalian class I odorant receptors exhibit a conserved vestibular-binding pocket [J]. Cell Mol Life Sci, 2019, 76(5): 995-1004.

[25]Butterwick J A, del Marmol J, Kim K H, et al. Cryo-EM structure of the insect olfactory receptor Orco [J]. Nature, 2018, 560(7719): 447-452.

[26]Cao S, Liu Y, Guo M B, et al. A conserved odorant receptor tuned to floral volatiles in three heliothinae species [J]. Plos One, 2016, 11(5): e0155029.

[27]Cao S, Liu Y, Wang G. Protocol to identify ligands of odorant receptors using two-electrode voltage clamp combined with the Xenopus oocytes heterologous expression system [J]. STAR Protoc, 2022, 3(2): 101249.

[28]Cheema J A, Carraher C, Plank N O V, et al. Insect odorant receptor-based biosensors: Current status and prospects [J]. Biotechnol Adv, 2021, 53: 107840.

[29]Chen L H, Tian K, Wang G R, et al. The general odorant receptor GmolOR9 from Grapholita molesta (Lepidoptera: Tortricidae) is mainly tuned to eight host-plant volatiles [J]. Insect Sci, 2020, 27(6): 1233-1243.

[30]Chen X F, Yang H, Wu S X, et al. BdorOBP69a is involved in the perception of the phenylpropanoid compound methyl eugenol in oriental fruit fly (Bactrocera dorsalis) males [J]. Insect Biochem Molec, 2022, 147: 103801.

[31]Chen L H, Tian K, Xu X L, et al. Detecting host-plant volatiles with odorant receptors from Grapholita molesta (Busck) (Lepidoptera: Tortricidae) [J]. J Agr Food Chem, 2020, 68(9): 2711-2717.

[32]Clyne P J, Warr C G, Freeman M R, et al. A novel family of divergent seven-transmembrane proteins: Candidate odorant receptors in Drosophila [J]. Neuron, 1999, 22(2): 327-338.

[33]Cook S M, Khan Z R, Pickett J A. The use of push-pull strategies in integrated pest management [J]. Annu Rev Entomol, 2007, 52: 375-400.

[34]Cui W T, Wang B, Guo M B, et al. A receptor-neuron correlate for the detection of attractive plant volatiles in Helicoverpa assulta (Lepidoptera: Noctuidae) [J]. Insect Biochem Molec, 2018, 97: 31-39.

[35]Cury K M, Prud'homme B, Gompel N. A short guide to insect oviposition: when, where and how to lay an egg [J]. J Neurogenet, 2019, 33(2): 75-89.

[36]de Fouchier A, Walker W B, Montagne N, et al. Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire [J]. Nature Communications, 2017, 8: 15709.

[37]Dekel A, Sar-Shalom E, Vainer Y, et al. The ovipositor cue indole inhibits animal host attraction in Aedes aegypti (Diptera: Culicidae) mosquitoes [J]. Parasit Vectors, 2022, 15(1): 422.

[38]del Marmol J, Yedlin M A, Ruta V. The structural basis of odorant recognition in insect olfactory receptors [J]. Nature, 2021, 597(7874): 126-131.

[39]de March C A, Yu Y Q, Ni M J J, et al. Conserved residues control activation of mammalian g protein-coupled odorant receptors [J]. J Am Chem Soc, 2015, 137(26): 8611-8616.

[40]Di C, Ning C, Huang L Q, et al. Design of larval chemical attractants based on odorant response spectra of odorant receptors in the cotton bollworm [J]. Insect Biochem Mol Biol, 2017, 84: 48-62.

[41]Du Y W, Shi X B, Zhao L C, et al. Chinese cabbage changes its release of volatiles to defend against Spodoptera litura [J]. Insects, 2022, 13(1): 73.

[42]Dumas P, Legeai F, Lemaitre C, et al. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species? [J]. Genetica, 2015, 143(3): 305-316.

[43]Feng B, Lin X D, Zheng K D, et al. Transcriptome and expression profiling analysis link patterns of gene expression to antennal responses in Spodoptera litura [J]. Bmc Genomics, 2015, 16(1): 269.

[44]Fleischer J, Pregitzer P, Breer H, et al. Access to the odor world: olfactory receptors and their role for signal transduction in insects [J]. Cell Mol Life Sci, 2018, 75(3): 485-508.

[45]Fox A N, Pitts R J, Robertson H M, et al. Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding [J]. P Natl Acad Sci USA, 2001, 98(25): 14693-14697.

[46]Fu J Q, Xu S J, Lu H, et al. Resistance to RNA interference by plant-derived double-stranded RNAs but not plant-derived short interfering RNAs in Helicoverpa armigera [J]. Plant Cell Environ, 2022, 45(6): 1930-1941.

[47]Gaquerel E, Weinhold A, Baldwin I T. Molecular Interactions between the Specialist Herbivore Manduca sexta (Lepidoptera, Sphigidae) and Its Natural Host Nicotiana attenuata. VIII. An Unbiased GCxGC-ToFMS Analysis of the Plant's Elicited Volatile Emissions [J]. Plant Physiol, 2009, 149(3): 1408-1423.

[48]Gouin A, Bretaudeau A, Nam K, et al. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges [J]. Sci Rep-Uk, 2017, 7(1): 11816.

[49]Guo H, Lackus N D, Kollner T G, et al. Evolution of a novel and adaptive floral scent in wild tobacco [J]. Mol Biol Evol, 2020, 37(4): 1090-1099.

[50]Guo J M, Liu X L, Liu S R, et al. Functional characterization of sex pheromone receptors in the fall armyworm (Spodoptera frugiperda) [J]. Insects, 2020, 11(3): 193.

[51]Guo M, Krieger J, Grosse-Wilde E, et al. Variant ionotropic receptors are expressed in olfactory sensory neurons of coeloconic sensilla on the antenna of the desert locust (Schistocerca gregaria) [J]. Int J Biol Sci, 2014, 10(1): 1-14.

[52]Guo M B, Du L X, Chen Q Y, et al. Odorant receptors for detecting flowering plant cues are functionally conserved across moths and butterflies [J]. Mol Biol Evol, 2021, 38(4): 1413-1427.

[53]Guo X J, Yu Q Q, Chen D F, et al. 4-Vinylanisole is an aggregation pheromone in locusts [J]. Nature, 2020, 584(7822): 584-588.

[54]Hatano E, Saveer A M, Borrero-Echeverry F, et al. A herbivore-induced plant volatile interferes with host plant and mate location in moths through suppression of olfactory signalling pathways [J]. Bmc Biology, 2015, 13: 75.

[55]Hillier N K, Vickers N J. Physiology and antennal lobe projections of olfactory receptor neurons from sexually isomorphic sensilla on male Heliothis virescens [J]. J Comp Physiol A, 2007, 193(6): 649-663.

[56]Joseph R M, Carlson J R. Drosophila chemoreceptors: a molecular interface between the chemical world and the brain [J]. Trends Genet, 2015, 31(12): 683-695.

[57]Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold [J]. Nature, 2021, 596(7873): 583-589.

[58]Leal W S. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes [J]. Annual Review of Entomology, Vol 58, 2013, 58: 373-391.

[59]Li J, Wakui R, Tebayashi S, et al. Volatile Attractants for the common bluebottle, Graphium sarpedon nipponum, from the host, Cinnamomum camphora [J]. Biosci Biotech Bioch, 2010, 74(10): 1987-1990.

[60]Li L L, Xu J W, Yao W C, et al. Chemosensory genes in the head of Spodoptera litura larvae [J]. B Entomol Res, 2021, 111(4): 454-463.

[61]Li R T, Huang L Q, Dong J F, et al. A moth odorant receptor highly expressed in the ovipositor is involved in detecting host-plant volatiles [J]. Elife, 2020, 9: e53706.

[62]Li X, Zhang X G, Xiao C, et al. Behavioral responses of potato tuber moth (Phthorimaea operculella) to tobacco plant volatiles [J]. J Integr Agr, 2020, 19(2): 325-332.

[63]Liu C, Pitts R J, Bohbot J D, et al. Distinct olfactory signaling mechanisms in the malaria vector mosquito Anopheles gambiae [J]. Plos Biol, 2010, 8(8): e1000467.

[64]Liu H, Lan T, Fang D, et al. Chromosome level draft genomes of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), an alien invasive pest in China [J]. bioRxiv, 2019.

[65]Liu W B, Li H M, Wang G R, et al. Conserved odorant receptor, Ecoror4, mediates attraction of mated female Eupeodes corollae to 1-Octen-3-ol [J]. J Agr Food Chem, 2023, 71(4):1837-1844.

[66]Liu X L, Zhang J, Yan Q, et al. The molecular basis of host selection in a crucifer-specialized moth [J]. Curr Biol, 2020, 30(22): 4476.

[67]Liu Y B, Zeng Z J, Barron A B, et al. The involvement of a floral scent in plant-honeybee interaction [J]. The Science of Nature, 2022, 109(3): 30.

[68]Liu Y P, Cui Z Y, Wang G R, et al. Cloning and functional characterization of three odorant receptors from the chinese citrus fly Bactrocera minax (Diptera: Tephritidae) [J]. Front Physiol, 2020, 11: 246.

[69]Lu PF, Huang LQ, Wang CZ. Identification and field evaluation of pear fruit volatiles attractive to the oriental fruit moth, Cydia molesta. J Chem Ecol. 2012, 38(8):1003-1016.

[70]Lundin C, Kall L, Kreher S A, et al. Membrane topology of the Drosophila OR83b odorant receptor [J]. Febs Lett, 2007, 581(29): 5601-5604.

[71]Mallinger R E, Hogg D B, Gratton C. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems [J]. Journal of Economic Entomology, 2011, 104(1): 115-124.

[72]Missbach C, Dweck H K M, Vogel H, et al. Evolution of insect olfactory receptors [J]. Elife, 2014, 3: e05087.

[73]Miyazaki H, Otake J, Mitsuno H, et al. Functional characterization of olfactory receptors in the Oriental fruit fly Bactrocera dorsalis that respond to plant volatiles [J]. Insect Biochem Molec, 2018, 101: 32-46.

[74]Mora C, Tittensor D P, Adl S, et al. How many species are there on earth and in the ocean? [J]. Plos Biol, 2011, 9(8): e1001127.

[75]Morris G M, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility [J]. J Comput Chem, 2009, 30(16): 2785-2791.

[76]Ortiz-Carreon F R, Rojas J C, Cisneros J, et al. Herbivore-induced volatiles from maize plants attract Chelonus insularis, an egg-larval parasitoid of the fall armyworm [J]. J Chem Ecol, 2019, 45(3): 326-337.

[77]Osei-Owusu J, Vuts J, Caulfield J C, et al. Identification of semiochemicals from cowpea, vigna unguiculata, for low-input management of the legume pod borer, Maruca vitrata [J]. J Chem Ecol, 2020, 46(3): 288-298.

[78]Pophof B. Olfactory responses recorded from sensilla coeloconica of the silkmoth Bombyx mori [J]. Physiological Entomology, 1997, 22(3): 239-248.

[79]Prieto-Godino L L, Rytz R, Cruchet S, et al. Evolution of acid-sensing olfactory circuits in Drosophilids [J]. Neuron, 2017, 93(3): 661.

[80]Raguso R A, Light D M, Pickersky E. Electroantennogram responses of Hyles lineata (Sphingidae: Lepidoptera) to volatile compounds from Clarkia breweri (Onagraceae) and other moth-pollinated flowers [J]. J Chem Ecol, 1996, 22(10): 1735-1766.

[81]Revadi S V, Giannuzzi V A, Rossi V, et al. Stage-specific expression of an odorant receptor underlies olfactory behavioral plasticity in Spodoptera littoralis larvae [J]. Bmc Biology, 2021a, 19(1):231.

[82]Revadi S V, Giannuzzi V A, Vetukuri R R, et al. Larval response to frass and guaiacol: detection of an attractant produced by bacteria from Spodoptera littoralis frass [J]. J Pest Sci, 2021b, 94(4): 1105-1118.

[83]Robertson H M, Warr C G, Carlson J R. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster [J]. P Natl Acad Sci USA, 2003, 100: 14537-14542.

[84]Saldamando-Benjumea C I, Estrada-Piedrahita K, Velasquez-Velez M I, et al. Assortative mating and lack of temporality between corn and rice strains of Spodoptera frugiperda (Lepidoptera, Noctuidae) from central colombia [J]. J Insect Behav, 2014, 27(5): 555-566.

[85]Sato K, Pellegrino M, Nakagawa T, et al. Insect olfactory receptors are heteromeric ligand-gated ion channels [J]. Nature, 2008, 452(7190): 1002-U9.

[86]Saveer A M, Kromann S H, Birgersson G, et al. Floral to green: mating switches moth olfactory coding and preference [J]. Proc Biol Sci, 2012, 279(1737): 2314-22.

[87]Schal C, Hatano E, Ahmed M S. New sex pheromone components for the fall armyworm, Spodoptera frugiperda [P/OL], WO2021178948, 2021.

[88]Schuman M C, Baldwin I T. The layers of plant responses to insect herbivores [J]. Annual Review of Entomology, Vol 61, 2016, 61: 373-394.

[89]Shanbhag S R, Muller B, Steinbrecht R A. Atlas of olfactory organs of Drosophila melanogaster - 1. Types, external organization, innervation and distribution of olfactory sensilla [J]. Int J Insect Morphol, 1999, 28(4): 377-397.

[90]Solé J, Sans A, Riba M, et al. Behavioural and electrophysiological responses of the European corn borer Ostrinia nubilalis to host-plant volatiles and related chemicals. Physiological Entomology, 2010, 35, 354–363.

[91]Song J Y, Lee G, Jung J, et al. Effect of soybean volatiles on the behavior of the bean bug, Riptortus pedestris [J]. J Chem Ecol, 2022, 48(2): 207-218.

[92]Steinbrecht R A. Pore structures in insect olfactory sensilla: A review of data and concepts [J]. Int J Insect Morphol, 1997, 26(3-4): 229-245.

[93]Suh E, Bohbot J D, Zwiebel L J. Peripheral olfactory signaling in insects [J]. Curr Opin Insect Sci, 2014, 6: 86-92.

[94]Tanaka K, Uda Y, Ono Y, et al. Highly selective tuning of a silkworm olfactory receptor to a key mulberry leaf volatile [J]. Curr Biol, 2009, 19(11): 881-90.

[95]Tsitoura P, Andronopoulou E, Tsikou D, et al. Expression and membrane topology of Anopheles gambiae Odorant receptors in lepidopteran insect cells [J]. Plos One, 2010, 5(11): e15428.

[96]Turlings T C J, Erb M. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential [J]. Annual Review of Entomology, Vol 63, 2018, 63: 433-452.

[97]Turlings T C J, Tumlinson J H, Heath R R, et al. Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia Marginiventris (Cresson), to the microhabitat of one of its hosts [J]. J Chem Ecol, 1991, 17(11): 2235-2251.

[98]Verkerk R H J, Wright D J. Interactions between the diamondback moth, Plutella Xylostella L and glasshouse and outdoor-grown cabbage cultivars [J]. Ann Appl Biol, 1994, 125(3): 477-488.

[99]Wang B, Dong W Y, Li H M, et al. Molecular basis of (E)-beta-farnesene-mediated aphid location in the predator Eupeodes corollae [J]. Curr Biol, 2022, 32(5): 951.

[100]Wang C, Li G N, Miao C J, et al. Nonanal modulates oviposition preference in female Helicoverpa assulta (Lepidoptera: Noctuidae) via the activation of peripheral neurons [J]. Pest Management Science, 2020, 76(9): 3159-3167.

[101]Wang H L, Zhao C H, Wang C Z. Comparative study of sex pheromone composition and biosynthesis in Helicoverpa armigera, H. assulta and their hybrid [J]. Insect Biochem Molec, 2005, 35(6): 575-583.

[102]Wen M, Li E T, Chen Q, et al. A herbivore-induced plant volatile of the host plant acts as a collective foraging signal to the larvae of the meadow moth, Loxostege sticticalis (Lepidoptera: Pyralidae) [J]. J Insect Physiol, 2019, 118:103941.

[103]Wicher D. Olfactory signaling in insects [J]. Prog Mol Biol Transl, 2015, 130: 37-54.

[104]Wicher D, Miazzi F. Functional properties of insect olfactory receptors: ionotropic receptors and odorant receptors [J]. Cell Tissue Res, 2021, 383(1): 7-19.

[105]Witzgall P, Kirsch P, Cork A. Sex pheromones and their impact on pest management [J]. J Chem Ecol, 2010, 36(1): 80-100.

[106]Wu H, Li R T, Dong J F, et al. An odorant receptor and glomerulus responding to farnesene in Helicoverpa assulta (Lepidoptera: Noctuidae) [J]. Insect Biochem Molec, 2019, 115:103106.

[107]Wu H, Xu M, Hou C, et al. Specific olfactory neurons and glomeruli are associated to differences in behavioral responses to pheromone components between two Helicoverpa species [J]. Frontiers in Behavioral Neuroscience, 2015, 9: 206.

[108]Xiao H, Ye X, Xu H, et al. The genetic adaptations of fall armyworm Spodoptera frugiperda facilitated its rapid global dispersal and invasion [J]. Mol Ecol Resour, 2020, 20(4): 1050-1068.

[109]Xiao Y, An X K, Khashaveh A, et al. Broadly tuned odorant receptor AlinOR59 involved in chemoreception of floral scent in adelphocoris lineolatus [J]. J Agr Food Chem, 2020, 68(47): 13815-13823.

[110]Xu H, Turlings T C J. Plant volatiles as mate-finding cues for insects [J]. Trends Plant Sci, 2018, 23(2): 100-111.

[111]Xu L, Jiang H B, Yu J L, et al. Two odorant receptors regulate 1-octen-3-ol induced oviposition behavior in the oriental fruit fly [J]. Commun Biol, 2023, 6(1): 176.

[112]Xu P X, Choo Y M, An S Y, et al. Mosquito odorant receptor sensitive to natural spatial repellents and inhibitory compounds [J]. Insect Biochem Molec, 2022, 144:103763.

[113]Yactayo-Chang JP, Mendoza J, Willms SD, et al. Zea mays volatiles that influence oviposition and feeding behaviors of Spodoptera frugiperda [J]. J Chem Ecol. 2021;47(8-9):799-809.

[114]Ye M, Glauser G, Lou Y G, et al. Molecular dissection of early defense signaling underlying volatile-mediated defense regulation and herbivore resistance in rice [J]. Plant Cell, 2019, 31(3): 687-698.

[115]You Y W, Smith D P, Lv M Y, et al. A broadly tuned odorant receptor in neurons of trichoid sensilla in locust, Locusta migratoria [J]. Insect Biochem Molec, 2016, 79: 66-72.

[116]Yu J, Yang B, Chang Y, et al. Identification of a general odorant receptor for repellents in the asian corn borer Ostrinia furnacalis [J]. Front Physiol, 2020, 11: 176.

[117]Yuvaraj J K, Corcoran J A, Andersson M N, et al. Characterization of odorant receptors from a non-ditrysian moth, Eriocrania semipurpurella sheds light on the origin of sex pheromone receptors in Lepidoptera [J]. Mol Biol Evol, 2017, 34(11): 3038-3038.

[118]Yu Y Q, de March C A, Ni M J J, et al. Responsiveness of G protein-coupled odorant receptors is partially attributed to the activation mechanism [J]. P Natl Acad Sci USA, 2015, 112(48): 14966-14971.

[119]Yuvaraj J K, Roberts R E, Sonntag Y, et al. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors [J]. Bmc Biology, 2021, 19(1): 16.

[120]Zhang J, Liu C C, Yan S W, et al. An odorant receptor from the common cutworm (Spodoptera litura) exclusively tuned to the important plant volatile cis-3-Hexenyl acetate [J]. Insect Mol Biol, 2013, 22(4): 424-432.

[121]Zhang J, Raza S A K, Wei Z Q, et al. Competing beetles attract egg laying in a hawkmoth [J]. Curr Biol, 2022, 32(4): 861.

[122]Zhang J, Yan S W, Liu Y, et al. Identification and functional characterization of sex pheromone receptors in the common cutworm (Spodoptera litura) [J]. Chemical Senses, 2015, 40(1): 7-16.

[123]Zhang S, Liu F, Yang B, et al. Functional characterization of sex pheromone receptors in Spodoptera frugiperda, S. exigua, and S. litura moths [J]. Insect Sci, 2022, 30(2), 305-320.

[124]Zhang S, Wang X Q, Wang G R, et al. An odorant receptor of the green mirid bug, Apolygus lucorum, tuned to linalool [J]. Insect Biochem Molec, 2022, 144:103764.

中图分类号:

 S43    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式