中文题名: | 天然产物MIA诱导植物抵抗温度胁迫的初步研究 |
姓名: | |
学号: | 2019816109 |
保密级别: | 秘密 |
论文语种: | chi |
学科代码: | 085238 |
学科名称: | 工学 - 工程 - 生物工程 |
学生类型: | 硕士 |
学位: | 工程硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 植物诱抗剂 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2021-06-16 |
答辩日期: | 2021-06-01 |
外文题名: | Preliminary study on natural product MIA inducing plant resistance to temperature stress |
中文关键词: | |
外文关键词: | MIA ; High temperature stress ; Physiological mechanism ; Natural product ; Plant inducer |
中文摘要: |
温度是影响植物生理过程的重要生态因子之一。当环境温度超出适宜植物生长的温度阈值范围时则会引起胁迫,从而对植物的形态结构、生长发育以及生产力造成不可逆转的损害。近年来,随着人类工业化进程不断加速,温室气体大量排放,极端气候日益增加,温度胁迫预计将对植物生长产生普遍的负面影响。通过增强植物内源性免疫和促进植物健康生长以对抗温度胁迫的策略具有很大的潜力,这种方法不仅可以减少农药和化肥的需求量,还能降低环境污染的风险,是植物保护领域未来发展的重要方向之一。 MIA是从链格孢菌(Alternaria alternata)的次生代谢物中分离纯化得到的一种新型天然产物。本研究将结合室内和田间实验,对MIA诱导多种植物抵抗温度胁迫的活性进行评价,并探究MIA预处理在高温胁迫下对黑麦草(Lolium perenne L.)的光合系统、渗透调节系统和抗氧化系统的影响,为MIA进一步的研究和应用提供理论依据。主要研究结果如下: 1. MIA具有诱导植物抵抗温度胁迫的活性。首先,选择五种热敏感植物为实验材料对MIA诱导抵抗高温胁迫的活性进行评价。其中,在45 ℃高温胁迫条件下,经过MIA预处理后,黑麦草、剪股颖、小麦和鸡毛菜与空白对照组在表型和地上部生物量水平上均出现了显著的差异,表现出优秀的诱抗效果。在42 ℃高温胁迫条件下,MIA对番茄幼苗有较好的诱抗效果,可以提高显著其地上部生物量,降低其热害指数。在-4 ℃低温条件下,MIA对冷敏感植物‘白叶一号’茶树和草莓幼苗也表现出良好的诱抗活性,可以显著提高该茶树的叶绿素荧光参数PIABS和FV/FM,降低草莓幼苗的冷害指数。进一步优化其缓解黑麦草高温热害的应用条件,得出其最佳用药浓度为1000 nM,最佳用药时间为胁迫前2 d,最佳用药频率为24 h内用药两次。 2. MIA处理能够缓解高温胁迫对黑麦草光合系统的伤害。为了进一步探究MIA诱导植物抵抗高温胁迫的光合生理机制,以黑麦草为实验材料,测定了叶绿素含量、快速叶绿素荧光诱导动力学OJIP曲线并进行了JIP-test分析。结果显示:(1)MIA预处理显著提高了高温胁迫下黑麦草叶片中的叶绿素a和b的含量。(2)高温胁迫会导致黑麦草叶绿素荧光动力学曲线严重变形,失去O-J-I-P多相瞬态,而MIA预处理则可以缓解这种趋势,提高P点荧光值,维持植物光合系统的稳定性。(3)JIP-test分析发现,高温胁迫导致黑麦草的叶绿素荧光参数FV/FM、PIABS、ETO/CSM、ABS/CSM和φEo显著下降,而ABS/RC、DIO/RC和φDo显著升高,说明高温胁迫导致黑麦草叶片的光系统Ⅱ活性中心受到伤害,光能转换效率和电子传递能力下降。而外源MIA预处理显著提高了黑麦草叶片的FV/FM、PIABS、ETO/CSM、ABS/CSM和φEo,降低了ABS/RC、DIO/RC和φDo,表明在高温胁迫下,MIA预处理可增强PSⅡ反应中心的稳定性,有利于提高黑麦草PSⅡ反应中心的光能转换效率和电子传递链活性,同时减轻高温胁迫对光合作用的抑制,从而提高了黑麦草的光合能力和耐热性。 3. MIA预处理提高了高温胁迫下黑麦草的抗氧化能力。植物渗透调节系统和抗氧化系统与逆境生理密切相关。通过对这些生理指标的测定,我们发现,在高温胁迫下:(1)100 nM MIA预处理缓解了黑麦草叶片的电解质渗漏,显著降低相对电导率和丙二醛含量。(2)1000 nM MIA预处理可以显著提高黑麦草叶片中的超氧化物歧化酶活性和脯氨酸含量,抑制过量活性氧ROS积累,缓解植株氧化伤害。 4. MIA预处理缓解了田间高温下茶树光合活性的下降。在茶园喷施MIA以抵抗夏季高温胁迫,结果显示浓度为100 nM的MIA诱抗效果最佳,显著缓解了高温对放氧复合体造成的伤害和光系统Ⅱ活性的下降,提高了该茶树的耐热性。 总之,本文对新型天然产物MIA诱导植物抵抗温度胁迫的活性和生理机制进行研究,结果表明MIA在100-1000 nM浓度下具有优秀的诱导植物抗温度胁迫的能力,并通过缓解黑麦草光系统活性的降低幅度和细胞氧化伤害的水平来提高其耐热性,具有开发为植物诱抗剂的潜力。 |
外文摘要: |
Temperature is one of the important ecological factors affecting plant physiological process. Stress occurs when the ambient temperature exceeds the temperature threshold range suitable for plant growth. And it will cause irreversible damage to the morphological structure, growth and development as well as productivity of plants. In recent years, as the process of human industrialization continues to accelerate, large amounts of greenhouse gases are emitted and extreme climates are increasing. Now temperature stress is expected to have a general negative impact on plant growth. It has great potential to resist environmental stress by enhancing plant immunity and promoting healthy growth of plants. This method can not only reduce the demand of pesticides and fertilizers, but also reduce the risk of environmental pollution. Therefore, techniques to boost plant immunity represent one of the important directions of plant protection in the future. MIA is a new natural product isolated and purified from the secondary metabolites of the fungus Alternaria alternata. In this study, we aimed to evaluate the activity of MIA in inducing a variety of plants to resist temperature stress in indoor and field, and clarify how it affects the photosynthetic system, osmotic regulation activity and antioxidant capacity of perennial ryegrass (Lolium perenne L.) under high temperature stress. These results will provide theoretical basis and technical support application of MIA in the future.The main results are as follows: 1. MIA has the activity of inducing plants to resist temperature stress. First, five kinds of heat-sensitive plants were used as experimental materials to evaluate the activity of MIA inducing resistance to high temperature stress. The experiment results showed that perennial ryegrass, turfgrass, wheat, and Chinese little greens seedlings pretreated by MIA had obvious differences in phenotype and above-ground biomass compared with that of blank control group when under 45 ℃ high temperature stress. MIA had a good inducement effect on tomato seedlings at 42 ℃, which could increase the above-ground biomass and reduce the heat injury index. MIA also showed good inducing activity to the cold-sensitive plant ‘Baiyeyihao’ tea plant and strawberry seedlings when under -4 ℃ low temperature conditions. It significantly increased the chlorophyll fluorescence parameters PIABS and FV/FM of the tea plant, and reduced the chilling injury index of the strawberry seedlings. In order to explore the best application method, ryegrass was used for further experiments. The results showed that the best concentration was 1000 nM, the best medication time was 2 days before stress, and the best medication frequency was twice within 24 hours. 2. MIA treatment alleviated the damage to photosynthesis system of perennial ryegrass by high temperature stress. In order to further explore the photosynthetic physiological mechanism of MIA inducing plant resistance to high temperature stress, we measured the chlorophyll content, the fast chlorophyll fluorescence kinetics OJIP curve and analyzed the data by JIP-test. The results showed that: (1) The content of chlorophyll a and b in perennial ryegrass leaves significantly increased after pretreated by MIA under high temperature stress. (2) High temperature stress led to a significant change of fluorescence rise OJIP curve of ryegrass and the fast induction fluorescence rise lost completely the O-J-I-P polyphasic transient. While, after MIA pretreatment, the maximum fluorescence value increased, and the stability of plant photosynthetic organs remained. (3) Based on JIP-test, we found that the chlorophyll fluorescence parameters FV/FM, PIABS, ETO/CSM, ABS/CSM and φEo of perennial ryegrass decreased significantly, while ABS/RC, DIO/RC and φDo increased significantly under high temperature stress. This result indicates that the photosystem Ⅱ active center of ryegrass leaves was damaged under high temperature stress, and the light energy conversion efficiency and electron transfer ability decreased. However, the FV/FM, PIABS, ETO/CSM, ABS/CSM and φEo of perennial ryegrass leaves significantly increased after MIA pretreatment, and reduced ABS/RC, DIO/RC and φDo. Such results suggest that MIA pretreatment can enhance the stability of PSⅡ reaction center under high temperature stress, which was beneficial to improve the light energy conversion efficiency and electron transfer chain activity of perennial ryegrass. At the same time, it can reduce the inhibition of photosynthesis under high temperature stress, thereby improving the photosynthetic capacity and heat tolerance of ryegrass. 3. MIA pretreatment enhanced the antioxidant capacity of perennial ryegrass under high temperature stress. Plant osmotic regulation system and antioxidant system are closely related to plant stress physiology. Through the determination of these physiological indicators, we found that under high temperature stress: (1) The leaf electrolyte leakage, relative electrical conductivity and malondialdehyde content in perennial ryegrass reduced after 100 nM MIA pretreatment. (2) 1000 nM MIA pretreatment significantly increased the superoxide dismutase activity and the content of proline in plants, for inhibiting excessive ROS accumulation in perennial ryegrass leaves and alleviating plant oxidative damage. 4. MIA pretreatment alleviated the decrease of photosynthetic activity of tea plants under high temperature in the field. MIA was sprayed in tea garden to resist high temperature stress in summer. The results showed that MIA with the concentration of 100 nM had the best effect of inducing resistance. It significantly alleviated the damage to oxygen evolving complex and the decrease of photosystem II activity caused by high temperature, as well as improving the heat resistance of the tea tree. In conclusion, this study aimed to clarify the activity and physiological mechanism of MIA, a new natural product, inducing plant resistance to temperature stress. The results show that MIA has excellent ability to induce plant resistance to temperature stress at the concentration of 100-1000 nM. It can enhance the heat resistance of perennial ryegrass by alleviating the decrease of photosystem activity and the level of cell oxidative damage, and has the potential to be developed as plant resistance inducer. |
参考文献: |
1Araus J L, Slafer G A, Reynolds M P, et al. Plant breeding and drought in C3 cereals: what should we breed for? [J]. Annals of Botany, 2002, 89(7):925-940. 2Ball L, Accotto G P, Bechtold U, et al. Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis[J]. The Plant Cell, 2004, 16(9):2448-2462. 3Barnett N M, Naylor A W. Amino acid and protein metabolism in Bermuda grass during water stress[J]. Plant Physiology, 1966, 41:1222-1230. 4Banowetz G M, Ammar K, Chen D. Temperature effects on cytokinin accumulation and kernel mass in a dwarf wheat[J]. Annals of Botany, 2006, 3:303-307. 5Biswal B, Joshi P N, Raval M K, et al. Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation[J]. Current Science, 2011, 101(1):47-56. 6Bita C E, Gerats T. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops[J]. Frontiers in Plant Science, 2013, 4:273. 7Boyer J S. Plant productivity and environment[J]. Science, 1982, 218:443-448. 8Centritto M, Brilli F, Fodale Roberta, et al. Different sensitivity of isoprene emission, respiration and photosynthesis to high growth temperature coupled with drought stress in black poplar (Populus nigra) saplings[J]. Tree Physiology, 2011, 31(3):275-286. 9Chen S, Yang J, Zhang M, et al. Classification and characteristics of heat tolerance in Ageratina adenophora populations using fast chlorophyll a fluorescence rises O-J-I-P[J]. Environmental and Experimental Botany, 2016, 122:126-140. 10Chinnusamy V, Zhu J, Zhu J. Cold stress regulation of gene expression in plants[J]. Trends in Plant Science, 2007, 12(10):444-451. 11Christensen J H, Christensen O B. A summary of the prudence model projections of changes in European climate by the end of this century[J]. Climatic Change, 2007, 81(1):7-30. 12Chrystalla A, Giannis C, Rafaella X, et al. Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism[J]. Journal of Pineal Research, 2017, 62(4): 12401. 13Cortleven A, Leuendorf J E, Frank M, et al. Cytokinin action in response to abiotic and biotic stress in plants[J]. Plant, Cell and Environment, 2019, 42:998-1018. 14Daudi A, Jose A. Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves[J]. Bio-protocol, 2012, 2(18):263. 15Daymi C, Pedro R, Angeles M, et al. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility[J]. Journal of Plant Physiology, 2005, 162(3):281-289. 16De R J, Cress W A, Krüger G H, et al. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress[J]. Journal of Plant Physiology, 2004, 161(11):1211-1224. 17Dhanda S S, Munjal R. Heat tolerance in relation to acquired thermotolerance for membrane lipids in bread wheat[J]. Field Crops Research, 2012, 135:30-37. 18Edreva A. Generation and scavenging of reactive oxygen species in chloroplasts: a subcellular approach [J]. Agriculture Ecosystems and Environment, 2005, 106:119-133. 19Essemine J, Govindachary S, Ammar S, et al. Enhanced sensitivity of the photosynthetic apparatus to heat stress in digalactosyl-diacylglycerol deficient Arabidopsis[J]. Environmental and Experimental Botany, 2012, 80:16-26. 20Fracheboud Y, Jompuk C, Ribaut J M, et al. Genetic analysis of cold-tolerance of photosynthesis in maize[J]. Plant Molecular Biology, 2004, 56(2):241-253. 21Foyer C H, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications[J]. Antioxidants and Redox Signaling, 2009, 11(4):861-905. 22Fu J, Sun X, Wang J, et al. Research progress on the quantification of phytohormones[J]. Science Bulletin, 2010, 33:3163-3176. 23Giaveno C, Ferrero J. Introduction of tropical maize genotypes to increase silage production in the central ares of Santa Fe, Argentina [J]. Crop Breed and Applied Biotechnology, 2003, 3(2):89-94. 24Hall A E. Breeding for heat tolerance-an approach based on whole-plant physiology[J]. Hortscience, 1990, 25(1):17-19. 25Hedhly A. Sensitivity of flowering plant gametophytes to temperature fluctuations[J]. Environmental and Experimental Botany, 2011, 74(12):9-16. 26Hormaetxe K, Becerril J M, Hernández A, et al. Plasticity of photoprotective mechanisms of Buxus sempervirens L. leaves in response to extreme temperatures[J]. Plant Biology, 2007, 9(1): 59-68. 27Howarth C J, Ougham H J. Tansley review No. 51. gene expression under temperature stress[J]. New Phytologist, 1993, 125(1):1-26. 28Howarth C J. Genetic improvements of tolerance to high temperature[C]//Ashraf M, Harris P J. Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches. New York: Haworth Press, 2005:277-300. 29Jones J D, Dangl J L. The plant immune system[J]. Nature, 2006, 444(7117):323-329. 30Jones P D, Wigley T. Estimation of global temperature trends: what is important and what isn't[J]. Climatic Change, 2010, 100:59-69. 31Julia K, Claudia J. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks[J]. Journal of Experimental Botany, 2012, 63(4):1593-1608. 32Kalaji H M, Jajoo A, Oukarroum A, et al. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions[J]. Acta Physiologiae Plantarum, 2016, 38(4):1-11. 33Khan M, Iqbal N, Masood A, et al. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation[J]. Plant Signal and Behavior, 2013, 8(11):263-274. 34Kotak S, Vierling E, B?umlein H, et al. A novel transcriptional cascaderegulating expression of heat stress protein during seed development of Arabidopsis[J]. The Plant Cell, 2007, 19(1):182-189. 35Kothari A, Lachowiec J. Roles of brassinosteroids in mitigating heat stress damage in cereal crops[J]. International Journal of Molecular Sciences, 2021, 22(5):2706. 36Kulye M, Liu H, Zhang Y, et al. Hrip1, a novel protein elicitor from necrotrophic fungus, Alternaria tenuissima, elicits cell death, expression of defence-related genes and systemic acquired resistance in tobacco[J]. Plant, Cell and Environment, 2012, 35(12):2104-2120. 37Kumar D, Yusuf M A, Singh P, et al. Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings[J]. Bio-protocol, 2014, 4(8): 1108. 38Lan J, Zhang L, Shao S, et al. Research on the growth and development characteristics in turf-type perennial ryegrass[J]. Pratacultural Science, 2003, 5:43-45. 39Larkindale J, Hall J D, Knight M R, et al. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermo tolerance[J]. Plant Physiology, 2005, 138(2):882-97. 40Lightner J, Wu J, Browse J. A mutant of Arabidopsis with increased level of stearic acid[J]. Plant Physiology, 1994, 106(4):1443-1451. 41Mahmood S, Wahid A, Javed F, et al. Heat stress effects on forage quality characteristics of maize (Zea mays) cultivars[J]. International Journal Agriculture Biology, 2010, 12(5):701-706. 42Marcum K B. Cell membrane thermo stability and whole plant heat tolerance of kentucky bluegrass[J]. Crop Science, 1998, 38(5):1214-1218. 43Martineau J, Specht J, Williams J, et al. Temperature tolerance in soybeans. Ⅱ. evaluation of a technique for assessing cellular membrane thermo stability[J]. Crop Science, 1979, 19(1):75-78. 44Medina E, Kim S H, Yun M, et al. Recapitulation of the function and role of ROS generated in response to heat stress in plants[J]. Plants, 2021, 10(2):371. 45Meenakshi T, Singh B S. Role of elicitors in inducing resistance in plants against pathogen infection: a review[J]. International Scholarly Research Network Biochemistry, 2013, 2013:762412. 46Mehrotra S, Verma S, Kumar S, et al. Transcriptional regulation and signalling of cold stress response in plants: an overview of current understanding[J]. Environmental and Experimental Botany, 2020, 180:104243. 47Meng D, Yu X, Ma L, et al. Transcriptomic response of Chinese Yew (Taxus chinensis) to cold stress.[J]. Frontiers in Plant Science, 2017, 8:468. 48Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants[J]. Trends in Plant Science, 2004, 9(10):490-498. 49Mittler R, Vanderauwera S, Suzuki N, et al. ROS signaling: the new wave? [J]. Trends in Plant Science, 2011, 16(6):300-309. 50Muhammad I, Shalmani A, Muhammad A, et al. Mechanisms regulating the dynamics of photosynthesis under abiotic stresses[J]. Frontiers in Plant Science, 2021, 11:615942. 51Panta S, Flowers T, Lane P, et al. Halophyte agriculture: success stores[J]. Environmental and Experimental Botany, 2014, 107:71-83. 52Pastore A, Martin S R, Politou A, et al. Unbiased cold denaturation: low-and high-temperature unfolding of yeast frataxin under physiological conditions[J]. Journal of the American Chemical Society, 2007, 129(17):5374-5375. 53Paul P, Mesihovic A, Chaturvedi P, et al. Structural and functional heat stress responses of chloroplasts of Arabidopsis thaliana[J]. Genes, 2020, 11(6):650. 54Peet M M, Willits D H. The effect of night temperature on greenhouse grown tomato yields in warm climates[J]. Agricultural and Forest Meteorology, 1998, 92(3):191-202. 55Peng S, Huang J, Sheehy J, et al. Rice yields decline with higher night temperature from global warming[J]. Proceedings of the National Academy of Sciences, 2004, 101(27):9971-9975. 56Porter J R, Semenov M A. Crop responses to climatic variation[J]. Philosophical Transactions of the Royal Society B-Biological Science, 2005, 360(1463):2021-2035. 57Qiu D, Dong Y, Zhang Y, et al. Plant immunity inducer development and application[J]. Molecular Plant-microbe Interactions, 2017, 30(5):355-360. 58Rexroth S, Mullineaux C W, Ellinger D, et al. The plasma membrane of the cyanobacterium Gloeobacter violaceus contains segregated bioenergetic domains[J]. The Plant Cell, 2011, 23(6):2379-2390. 59Reda F, Mandoura H. Response of enzymes activities, photosynthetic pigments, proline to low or high temperature stressed wheat plant (Triticum aestivum L.) in the presence or absence of exogenous proline or cysteine[J]. International Journal of Academic Research, 2011, 3:108-115. 60Rivero R M, Ruiz J M, Garcia P C, et al. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants[J]. Plant Science. 2001, 160(2):315-321. 61Rojas A, Almoguera C, Jordano J. Transcriptional activation of a heat shock gene promoter in sunflower embryos: synergism between ABI3 and heat shock factors[J]. The Plant Journal, 1999, 20(5):601-610. 62Ruelland E, Zachowski A. How plants sense temperature[J]. Environmental and Experimental Botany, 2010, 69 (3):225-232. 63Ryals J, Lawton K A, Delaney T P, et al. Signal transduction in systematic acquired resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(10):4202- 4205. 64Sakamoto A, Murata N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants[J]. Plant, Cell and Environment, 2002, 25:163-171. 65Sakata T, Oshino T, Miura S, et al. Auxins reverse plant male sterility caused by high temperatures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19):8569-8574. 66Santarius K A. Sites of heat sensitivity in chloroplasts and differential inactivation of cyclic and noncyclic photophosphorylation by heating [J]. Journal of Thermal Biology, 1976, 1(2):101-107. 67Sato S, Kamiyama M, Iwata T, et al. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development[J]. Annals of Botany, 2006, 97(5):731-738. 68Shah N, Paulsen G. Interaction of drought and high temperature on photosynthesis and grain-filling of wheat[J]. Plant and Soil, 2003, 257(1):219-226. 69Shipton C A, Barber J. Characterisation of photoinduced breakdown of the D1-polypeptide in isolated reaction centres of photosystem II[J]. Biochimica et Biophysica Acta, 1992, 1099(1):85-90. 70Shiu S H, Bleecker A B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis [J]. Plant Physiology, 2003, 132 (2):530-543. 71Shiu S H, Karlowski W M, Pan R S, et al. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice[J]. The Plant Cell, 2004, 16(5):1220-1234. 72Shi Y, Wang L, Liu J, et al. Semi-lethal high temperature and heat tolerance of twelve varieties of Lolium perenne[J]. Pratacultural Science, 2010, 27(2):104-108. 73Siddique K, Loss S P, Regan K L, et al. Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia[J]. Australian Journal of Agricultural Research, 1999, 50(3):375-388. 74Singh T N, Aspinal D, Paleg L G. Proline accumulation and varietal adaptability to drought in barley: potential metabolic measure of drought resistance[J]. Nature New Biology, 1972, 236(67):188-190. 75Singh A K, Singh M K, Singh V, et al. Debilitation in tomato (Solanum lycopersicum L.) as result of heat stress[J]. Journal of Pharmacognosy and Phytochemistry, 2017, 6(6):1917-1922. 76Strasser B J, Strasser R J. Measuring Fast Fluorescence Transients to Address Environmental Questions: The JIP-test[M]. Netherland: Kluwer Academic Publishers Press, 1995:977-980. 77Strasser R J, Tsimilli-Michael M, Srivastava A. Analysis of the Chlorophyll a Fluorescence Transient[M]. Netherlands: Kluwer Academic Publishers Press, 2004:1-45. 78Strasser R J, Srivastava A, Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobateria[J]. Photochemistry and Photobiology, 1995, 61(1):32-42. 79Strasser R J, Srivastava A, Tsimilli-Michael M. The Fluorescence Transient as a Tool to Characterize and Screen Photosynthetic Samples[M]. London: Taylor and Francis Press, 2000:445-483 80Sudha G, Ravishankar G. Involvement and interaction of various signaling compounds on the plant metabolic events during defense response, resistance to stress factors, formation of secondary metabolites and their molecular aspects[J]. The Plant Cell, 2002, 71(3):181-212. 81Suleyman I, Allakhverdiev, Vladimir D, et al. Heat stress: an overview of molecular responses in photosynthesis[J]. Photosynthesis Research, 2008, 98(3):541-550. 82Suziki R, Koussevitzky S, Mittler R, et al. ROS and redox signalling in the response of plants to abiotic stress[J]. Plant, Cell and Environment, 2012, 35(2):259-270. 83Szabados L, Savouré A. Proline: a multifunctional amino acid[J]. Trends in Plant Science, 2010, 15(2):89-97. 84Taiz L, Zeiger E. Stress Physiology in Plant Physiology[M]. Massachusetts: Sinauer Associates Incorporated, 2006:671-681. 85Tan W, Meng Q, Brestic M, et al. Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants[J]. Journal of Plant Physiology, 2011, 168(17):2063-2071. 86Thomas P G, Dominy P J, Vigh L, et al. Increased thermal stability of pigment-protein complexes of pea thylakoids following catalytic hydrogenation of membrane lipids[J]. Biochimica Et Biophysica Acta-biomembranes, 1986, 849(1):131-140. 87Tsukamoto S, Morita S, Hirano E, et al. A novel cis-element that is responsive to oxidative stress regulates three antioxidant defense genes in rice[J]. Plant Physiology, 2005, 137(1):317-327. 88Vranová E, Inzé D, Van B F. Signal transduction during oxidative stress[J]. Journal of Experimental Botany, 2002, 53(372):1227-1236. 89Verbruggen N, Hermans C. Proline accumulation in plants: a review[J]. Amino Acids, 2008(35):753-759. 90Vijayan P. Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation[J]. Plant Physiology, 2002, 129(2):876-85. 91Vollenweider P, Günthardt-Goerg M S. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage[J]. Environmental Pollution, 2005, 137(3):455-465. 92Wahid A, Gelani S, Ashraf M, et al. Heat tolerance in plants: an overview[J]. Environmental and Experimental Botany, 2007, 61(3):199-233. 93Wahid A. Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts[J]. Journal of Plant Research, 2007, 120(2):219-228. 94Wahid A, Close T. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves [J]. Biologia Plantarum, 2007, 51(1):104-109. 95Wang D, Li X, Zhou Z, et al. Two rubisco activase isoforms may play different roles in photosynthetic heat acclimation in the rice plant[J]. Physiologia Plantarum, 2010, 139(1):55-67. 96Wang K, Bai Z, Liang Q, et al. Transcriptome analysis of chrysanthemum (Dendranthema grandiflorum) in response to low temperature stress[J]. Biomedical Central, 2018, 19(1):319. 97Wang L, Li S. Thermo tolerance and related antioxidant enzyme activities induced by heatacclimation and salicylic acid in grape (Vitis vinifera L.) leaves[J]. Plant Growth Regulation, 2006, 48(2):137-144. 98Wang Y, Huang J, Wang J, et al. Mitigating rice production risks from drought through improving irrigation in frastructure and management in China[J]. Australian Journal of Agricultural and Resource Economics, 2018, 62:161-176. 99Wise R, Olson A, Schrader S, et al. Electron transport is the functional limitation of photosynthesis infield-grown pima cotton plants at high temperature[J]. Plant, Cell and Environment, 2004, 27(6):717-24. 100Xia X, Huang Y, Wang L, et al. Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L[J]. Pesticide Biochemistry and Physiology, 2006, 86(1):42-48. 101Xu B. The Seedling Evaluation and Vigour Test[M]. Beijing: China Agricultural University Press, 2002:53-68. 102Xu S, Li J, Zhang X, et al. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress[J]. Environmental and Experimental Botany, 2005, 56(3):274-285. 103You J, Chan Z. ROS regulation during abiotic stress responses in crop plants[J]. Frontiers in Plant Science, 2015, 6(4):690-695. 104Yu J, Chen L, Xu M, et al. Effects of elevated CO2 on physiological response of tall fescue to elevated temperature, drought stress, and the combined stress[J]. Crop Science, 2012, 52(4):1848-1858. 105Zhang F, Wang X, Zhai J. Effects of nitrogen supplement on chlorophyll synthesis and chloroplast ultra structure of poplar plants under cadmium stress[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(3):485-491. 106Zhao J, Lu Z, Wang L, et al. Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics[J]. International Journal of Molecular Sciences, 2020, 22(1):117. 107Zhuang Y, Zhang L, Li S, et al. Effects and potential of water-saving irrigation for rice production in China [J]. Agriculture Water Manage, 2019, 217:374-382. 108陈新斌, 孙锦, 郭世荣等. 二硫苏糖醇对海水胁迫下菠菜活性氧代谢及叶绿素荧光特性的影响[J]. 园艺学报, 2012, 39(12):2457-2467. 109陈禹兴, 付连双, 王晓楠等. 低温胁迫对冬小麦恢复生长后植株细胞膜透性和丙二醛含量的影响[J]. 东北农业大学学报, 2010, 41(10):10-16. 110杜昱光, 白雪芳, 余露等. 一种植物诱抗剂[P]. 辽宁:CN1303602, 2001-07-18. 111高崇伦. 中国辣椒和柔毛辣椒对温度胁迫响应的初步分析[D]. 海南大学, 2020. 112龚恒亮, 安玉兴, 管楚雄等. 外源特异性物质诱导植物抗虫性研究及意义[J]. 甘蔗糖业, 2010, 1:1-6. 113韩瑞宏, 赵大华, 陈晶晶等. 不同苜蓿种质资源苗期耐热性综合评价[J]. 中国草地学报, 2015, 37(03):48-54. 114何辰宇, 李蓓蓓, 杨菲.高温干旱对茶叶生产的影响及应对措施[J]. 江苏农业科学, 2016, 44(04):215-217. 115霍治国, 尚莹, 邬定荣等. 中国小麦干热风灾害研究进展[J]. 应用气象学报, 2019, 30(02):129-141. 116焦健, 许念芳, 舒锐等. 植物提取物用于蔬菜生产的研究现状及前景展望[J]. 中国果菜, 2017, 37(09):12-15. 117金立桥, 车兴凯, 张子山等. 高温、强光下黄瓜叶片PSII供体侧和受体侧的伤害程度与快速荧光参数Wk变化的关系[J]. 植物生理学报, 2015, 51(06):969-976. 118孔德英, 肖崇刚. 氨基寡糖素对番茄青枯病防治作用[J]. 西南农业大学学报(自然科学版), 2005(03):327-330. 119李鹏民, 高辉远, Strasser R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物学学报, 2005(06):559-566. 120李思琦, 蒋芳玲, 周艳朝等. 叶面喷施生物刺激素对番茄幼苗高温胁迫的减缓效应[J/OL]. 西北农业学报, 2021(02):1-10. 121李霞, 孙盛年. 北京地区园林景观中的冷季型草坪及其养护管理措施[J]. 现代农业科技, 2019(21):160-161. 122李珍珍, 李荣林, 杨亦扬等. 抗性诱导与茶树病虫害生态控制技术[C].//中国科学技术协会. 第十五届中国科协年会论文集. 2013:1-7. 123林达定, 张国防, 于静波等. 芳樟不同无性系叶片光合色素含量及叶绿素荧光参数分析[J]. 植物资源与环境学报, 2011, 20(03):56-61. 124刘春英, 陈大印, 盖树鹏等. 高、低温胁迫对牡丹叶片PSⅡ功能和生理特性的影响[J]. 应用生态学报, 2012, 23(01):133-139. 125刘大林, 张华. 多年生黑麦草在高温胁迫下生理生化特性的变[J]. 草地学报, 2013, 21(01):142-146+151. 126刘凯歌. 外源6-BA对甜椒幼苗高温伤害的缓解效应[D]. 南京农业大学, 2015. 127刘辉, 李德军, 邓治. 植物应答低温胁迫的转录调控网络研究进展[J]. 中国农业科学, 2014, 47(18):3523-3533. 128刘权, 李广悦, 曾洪梅等. 微生物蛋白激发子PeaT1的获得及诱导水稻抗旱性的初步研究[J]. 中国农业科技导报, 2009, 11(3):51-55. 129刘少卿, 何守朴, 米拉吉古丽等. 不同棉花种质资源耐热性鉴定[J]. 植物遗传资源学报, 2013, 14(02):214-221. 130娄伟平, 肖强. 浙江省茶叶生产中的不利气象条件及对策建议[J]. 中国茶叶, 2016, 38(10):26+28. 131娄永根, 程家安. 植物的诱导抗虫性[J]. 昆虫学报, 1997, 8(40):320-330. 132马青, 孙辉, 杜昱光等. 氨基寡糖素对黄瓜白粉病菌侵染的抑制作用[J]. 菌物学报, 2004(03):423-428. 133漆艳香, 谢艺贤, 彭军等. 5%氨基寡糖素水剂与25%丙环唑乳油混配对香蕉褐缘灰斑病的防效研究[J]. 现代农业科技, 2020(19):100-102+105. 134邱德文. 植物免疫诱抗剂的研究进展与应用前景[J]. 中国农业科技导报, 2014, 16(01):39-45. 135全先庆, 张渝洁, 单雷等. 脯氨酸在植物生长和非生物胁迫耐受中的作用[J]. 生物技术通讯, 2007(01):159-162. 136宋涛, 高艳, 张明坤等. 水稻低温冷害研究现状探讨[J]. 现代农业科技, 2016(14):56-57. 137苏晓琼, 王美月, 束胜等. 外源亚精胺对高温胁迫下番茄幼苗快速叶绿素荧光诱导动力学特性的影响[J]. 园艺学报, 2013, 40(12):2409-2418. 138苏晓琼. 亚精胺缓解番茄幼苗高温胁迫伤害的光合机理[D]. 南京农业大学, 2014. 139孙光忠, 彭超美, 刘元明等. 氨基寡糖素对番茄晚疫病的防治效果研究[J]. 农药科学与管理, 2014, 35(12):60-62. 140田婧. 外源亚精胺缓解黄瓜幼苗高温胁迫伤害的生理调节机制和蛋白质组学研究[D]. 南京农业大学, 2012. 141田婧, 郭世荣. 黄瓜的高温胁迫伤害及其耐热性研究进展[J]. 中国蔬菜, 2012(18):43-52. 142田治国, 王飞, 张文娥等. 高温胁迫对孔雀草和万寿菊不同品种生长和生理的影响[J]. 园艺学报, 2011, 38(10):1947-1954. 143王芳, 王淇, 赵曦阳. 低温胁迫下植物的表型及生理响应机制研究进展[J]. 分子植物育种, 2019, 17(15):5144-5153. 144王飞, 马金玲, 秦丹丹等. 小麦耐热及热敏感基因型在高温胁迫下膜透性及膜脂组分的差异[J].农业生物技术学报, 2013, 21(08):904-910. 145汪明华, 李佳佳, 陆少奇等. 大豆品种耐高温特性的评价方法及耐高温种质筛选与鉴定[J]. 植物遗传资源学报, 2019, 20(04):891-902. 146王平荣, 张帆涛, 高家旭等. 高等植物叶绿素生物合成的研究进展[J].西北植物学报, 2009, 29(03):629-636. 147王日明, 熊兴耀. 高温胁迫对黑麦草生长及生理代谢的影响[J]. 草业学报, 2016, 25(08):81-90. 148辛丹丹. 外源褪黑素处理对黄瓜采后品质影响机理及抗冷性研究[D]. 西北农林科技大学, 2017. 149熊伟, 冯灵芝 ,居辉等. 未来气候变化背景下高温热害对中国水稻产量的可能影响分析[J]. 地球科学进展, 2016, 31(05):515-528. 150徐希德. 低温冷害对黑龙江省水稻的影响及其防御对策[J]. 中国农学通报, 2003(05):135-136. 151杨波, 王源超. 植物免疫诱抗剂的应用研究进展[J]. 中国植保导刊, 2019, 39(02):24-32. 152尹赜鹏, 鹿嘉智, 高振华等. 番茄幼苗叶片光合作用、PSII电子传递及活性氧对短期高温胁迫的响应[J]. 北方园艺, 2019(05):1-11. 153袁新琳, 李美华, 于丝丝等. 5%氨基寡糖素诱导棉花抗枯黄萎病研究[J]. 中国棉花, 2016, 43(03):15-18+21. 154曾正兵, 梅旭荣, 钟秀丽等. 磷脂酶Dα在拟南芥低温驯化过程中的作用途径分析[J]. 基因组学与应用生物学, 2009, 28(04):703-708. 155张路. 灰岩皱叶报春小分子热激蛋白基因的克隆及其在逆境下的功能分析[D]. 北京林业大学, 2014. 156张圣美, 刘晓慧, 尚静等. 高温胁迫对茄子花青素含量及其合成相关酶活性和基因表达的影响[J]. 上海农业学报, 2020, 36(06):6-12. 157张巨明, 解新明, 董朝霞.高温胁迫下冷季型草坪草的耐热性评价[J]. 草业科学, 2007(02):105-109. 158赵晶晶, 周浓, 郑殿峰. 低温胁迫对大豆花期叶片蔗糖代谢及产量的影响[J]. 中国农学通报, 2021, 37(09):1-8. 159周荣华. 利用瞬时荧光、延迟荧光、P700和循环电子传递信号探测干旱胁迫对苗期玉米光合的影响[D]. 扬州大学, 2019. 160朱长志, 张志仙, 檀国印等. 蔬菜作物高温胁迫研究进展[J]. 江西农业学报, 2017, 29(02):53-57. |
中图分类号: | S42 |
开放日期: | 2023-06-16 |