中文题名: |
水稻关键转录调控因子OsSHI1 的功能研究
|
姓名: |
段二超
|
学号: |
T2018075
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
090102
|
学科名称: |
农学 - 作物学 - 作物遗传育种
|
学生类型: |
博士后
|
学校: |
南京农业大学
|
院系: |
农学院
|
专业: |
作物遗传育种
|
研究方向: |
水稻分子生物学
|
第一导师姓名: |
万建民
|
第一导师单位: |
南京农业大学
|
完成日期: |
2023-06-29
|
答辩日期: |
2023-06-29
|
外文题名: |
Functional Characterization of the Key Transcription Factor OsSHI1 in Rice
|
中文关键词: |
OsSHI1 ; 株型 ; 花发育 ; 激素 ; 生长 ; 耐逆
|
外文关键词: |
OsSHI1 ; plant architecture ; floral organ ; plant hormone ; growth and development ; stress resilience
|
中文摘要: |
︿
植物的生长发育及逆境适应性是由遗传因子与环境因素共同决定,其中基因表达转录调控及激素交互作用途径尤为重要。深入研究植物生长及耐逆的调控机理,对提高作物产量及环境适应性具有重要的指导意义。在本研究中,通过筛选籼稻 9311 辐射诱变体库,获得了一个植株形态发生显著变异的突变体,并将其命名为 short internode1(shi1)。对 shi1 突变体的表型进行了详细鉴定,克隆了候选基因 OsSHI1,并对其参与水稻生长及耐逆调控的分子机制进行了深入分析,具体结果如下:
1. OsSHI1 对水稻株型发育调控机理研究
1.1. 种子萌发两周后,野生型幼苗逐渐形成分蘖芽并在基部开始发育。但是shi1突变体的分蘖芽发育迟缓,植株的分蘖数显著减少。与野生型植株相比,shi1 成熟植株的穗型也发生了以下显著变化:shi1 穗型直立紧凑,成熟后期逐渐呈现黑褐色,其一级枝梗、二级枝梗和小穗数均显著增加。此外,shi1 突变体的茎秆更为粗壮,抗倒伏能力显著加强。
1.2. 将shi1 与粳稻02428 杂交创建了F2 定位群体,通过图位克隆的方法将突变位点精细定位到了9 号染色体末端约50 kb 的区间内。测序发现,该区间内OsSHI1基因在shi1 突变体中缺失。转基因互补及敲除进一步确认了该基因在分蘖及穗分枝的调控作用。OsSHI1 编码与拟南芥SHI 家族同源的转录因子,具有高度保守的C3HC3H锌指结构域及家族特异的IGGH 结构域,在水稻中尚未报道。OsSHI1 定位于细胞核中,转录激活活性较微弱,并且主要在腋芽及幼穗中表达。
1.3. 经酵母双杂交筛库鉴定出了一互作蛋白,IPA1(即理想株型调控因子
OsSPL14)。通过体内BiFC 及体外Pull-down 等方法进一步验证了两者之间的互作。在IPA1 下游关键基因OsTB1 及OsDEP1 的启动子中分别发现了2 个和1 个OsSHI1的结合基序:T/GCTCTAC。酵母单杂交及EMSA 实验表明,OsSHI1 可以特异性的结合到这三个识别位点。采用OsSHI1 的特异性抗体进行ChIP 实验也进一步证实OsSHI1可以富集到OsTB1 及OsDEP1 启动子中T/GCTCTAC 基序附近。
1.4. RT-qPCR 结果表明,在突变体shi1 中OsTB1 及OsDEP1 的表达明显上调。通过LUC 酶活检测发现,IPA1 可以激活OsTB1 的转录,但是和OsSHI1 的共表达会显著抑制IPA1 的转录激活活性。进一步通过EMSA 实验证实,OsSHI1 可以降低IPA1对GTAC 元件的亲和性。Actin1:OsSHI1/35S:IPA1-Flag 转基因植株幼苗中进行ChIP发现OsSHI1 的过表达可以显著抑制IPA1-Flag 在OsTB1 启动子上的富集程度。以上
结果表明,OsSHI1 通过影响IPA1 的DNA 结合能力从而抑制其对下游靶基因的转录激活。与野生型Kitaake 相比,35S:IPA1-Flag 转基因植株的分蘖数显著减少,而Actin1:OsSHI1/35S:IPA1-Flag 转基因植株由于OsSHI1 蛋白的积累而部分恢复了分蘖数目。进一步在shi1 突变体中干扰IPA1,以便降低其表达水平。我们发现转基因干扰株系的株高降低,分蘖数显著增加并且穗分枝数急剧减少,同时OsTB1 及OsDEP1的表达水平也显著降低,表明IPA1 作用于OsSHI1 的下游。以上结果表明,OsSHI1位于IPA1 的上游并通过抑制IPA1 的功能来调控水稻株型发育。
2. OsSHI1 对水稻穗发育调控机理研究
2.1 shi1 突变体的穗及花器官发育发生显著的变异。与野生型相比,其穗部直立紧凑,枝梗及小花无序排布扭曲变形,生长后期逐渐褐化且顶部小穗存在严重的退化现象。此外,shi1 各轮花器官形态也显著改变。比如,其颍壳扭曲变小以至退化,内颍变小并且边缘部分扩大,外颍顶部发生弯曲。雌蕊顶端柱头部分组织发育受阻,雄蕊形态正常但体积变小,且花粉的育性也出现不同程度的降低。shi1 成熟时期的穗部结实率极低,籽粒变小,千粒重及品质性状相关指标等均显著下降。
2.2 OsSHI1 在各轮花器官组织中均表达。通过酵母双杂交筛选发现,OsSHI1 与调控发器官发育的E 类MADS 转录因子如OsMADS1、OsMADS5、OsMADS7、OsMADS8 及OsMADS34 等互作。Pull-down, BiFC 及LCI 等实验进一步对其互作关系进行了验证。酵母双杂交发现,OsSHI 与E 类MADS 转录因子的互作主要依赖于后者的DNA 结合结构域,即MADS 结构域。该结构域中保守氨基酸位点发生突变后,两者之间的互作显著降低。
2.3. OsSHI1 与OsMADS1 之间的互作并不影响后者的转录及蛋白稳定性。然而,LUC 活性检测及EMSA 实验发现,OsSHI1 显著抑制OsMADS1 的DNA 结合能力并进而影响其转录活性。OsMADS1 转基因过表达植株的花器官发育也发生显著变异,且其下游调控基因在过表达植株及shi1 突变体中均发生显著上调。
2.4. shi 突变体穗部退化表型与PCD 过程的调控可能存在一定关联。通过转录组测序发现,shi1 突变体穗部中大量与氧化还原过程相关的调控基因的表达水平发生明显改变。其中,编码多个编码过氧化物酶基因的表达显著降低。RT-qPCR 实验进一步验证此结果。shi1 突变体中的过氧化氢及丙二醛含量显著升高,而过氧化物酶活性则显著降低。
3. OsSHI1 对水稻生长及耐逆调控机理研究
3.1. 除以上表型分析外,shi1 突变体还表现为多种与植物激素相关的表型变异。比如, 与生长素相关的侧根数减少、重力响应迟缓及对生长素敏感性降低等,与油菜素内酯相关的株型紧凑、籽粒变小及对油菜素内酯不敏感等,与脱落酸相关的种子萌发降低、耐逆性增强及对脱落酸更为敏感等。
3.2. 激素含量测定结果表明,shi1 突变体中生长素及油菜素内酯相关物质的含量显著降低。Auxin 及BR 合成相关基因如OsYUCCAs 及D11 以及ABA 信号调控基因OsNAC2 在shi1 突变体中均显著下调。酵母单杂交、ChIP-qPCR 及EMSA 等实验证实OsSHI1 可以直接调控这些基因的表达。遗传分析结果表明,OsSHI1 位于D11 及OsNAC2 上游,进而调控水稻的生长及耐逆过程。
3.3. 外源激素处理结果表明,auxin 及ABA 促进而BR 则抑制OsSHI1 的表达。对OsSHI1 启动子序列进行分析发现,存在多种相关激素途径转录因子如ARF、ZIP及LIC 等的结合位点。酵母单杂交、ChIP-qPCR 及EMSA 等实验证实OsARF12、OsARF17、OsARF19、OsARF25、OsZIP26、OsZIP86 及LIC 等转录因子可以直接结合OsSHI1 的启动子,进而调控其表达。遗传分析结果证实,OsZIP86 及LIC 作用于
OsSHI1 上游发挥功能。表明OsSHI1 通过整合不同激素途径过程,协同调控水稻生长及耐逆过程。
﹀
|
外文摘要: |
︿
Plant growth and adaptation to stresses are determined by genetic and environmental factors, among which the transcriptional regulation and plant hormone pathways play important roles. Therefore, the illumination of the regulatory mechanisms for plant growth and adaptation is of great values for our understanding of plant morphogenesis and the crop yield improvement. In this study, we obtained a rice mutant shi1 with dramatical phenotypic variations, cloned the candidate gene and demonstrated its roles in regulating plant growth and adaptation. The main contents and conclusions are as follows:
1. Regulation of plant architecture
1.1. The shi1 mutant was initially isolated by screening our 9311 60Co irradiation-mutation pool. Compared with the wild type, the tiller numbers of shi1 are significantly reduced. In addition, shi1 mutant has dense and erect panicles accompanied with substantially increased primary and secondary branch numbers, its culm diameters are significantly increased with enhanced lodging resistance and it has shortened and widened dark-green leaves with elevated chlorophyll contents.
1.2. Genetic analysis suggested that the shi1 mutant phenotype was controlled by one recessive nuclear locus. Map-based cloning anchored the mutant locus to a 50 kb region on the long arm of chromosome 9 with 4 ORFs. Sequencing, RT-PCR and western blot analysis revealed that ORF2 was deleted in the shi1 mutant. The genetic complementation and knockout transgenic plants confirmed that ORF2 was indeed responsible for the mutant phenotypes. Sequence analysis revealed that ORF2 encodes a homologous transcription factor of the Arabidopsis short internode (SHI) family with the same C3HC3H zinc finger domain and the SHI family-specific IGGH domain and is referred to as OsSHI1. Transient expression analysis in rice protoplasts showed that OsSHI1-GFP fusion protein was predominantly located in the nucleus. Yeast two-hybrid assays indicated that OsSHI1 exhibits quite weak transcriptional activation activity and can form homodimer via its C terminus. RT-qPCR and western blot analyses validated that both the OsSHI1 mRNA and OsSHI1 protein are mainly expressed in axillary bud and young panicle tissues.
1.3. Yeast two-hybrid screening assay identified IPA1 as an interaction protein of OsSHI1. Further, bimolecular fluorescence complementation (BiFC) and pull-down assays confirmed that OsSHI1 physically interacted with IPA1 both in vitro and in vivo. Two and one putative SHI-recognition T/GCTCTAC motifs were found in the promoter regions of OsTB1 and OsDEP1, respectively, two direct downstream targets of IPA1. Yeast one-hybrid assays and electrophoretic mobility shift assays (EMSA) suggested that OsSHI1 could bind specifically to these motifs. Followingly, Chromatin immunoprecipitation assay (ChIP) assay revealed that OsSHI1 could be specifically recruited to the P3 promoter regions of OsTB1 and OsDEP1.
1.4. RT-qPCR analysis revealed that the expression levels of OsTB1 and OsDEP1 were significantly upregulated in shi1 mutant compared to the wild-type. Transient expression assays in rice protoplasts showed that IPA1 greatly enhanced the transcriptional activity of OsTB1 promoter. However, when co-expressed with OsSHI1, the transcriptional activation activity of IPA1 was significantly repressed. EMSA assays revealed that the binding ability of IPA1 to target probes was repressed gradually by increasing amounts of OsSHI1 protein in the IPA1-DNA reactions. Furthermore, ChIP-qPCR assay with 35S:IPA1-Flag transgenic young seedlings indicated that IPA1-Flag was predominantly enriched to the P3 promoter region of OsTB1. However, due to the presence of excess OsSHI1 protein in Actin1:OsSHI1/35S:IPA1-Flag transgenic young seedlings, the enrichment of IPA1-Flag protein to the P3 promoter region was significantly reduced. Compared with WT, the tiller number of 35S:IPA1-Flag transgenic plants was dramatically reduced due to the excess accumulation of IPA1-Flag proteins which can evidently enhance the OsTB1 expression. In contrast to the repressed tillering of 35S:IPA1-Flag transgenic plants, the Actin1:OsSHI1/35S:IPA1-Flag transgenic plants display obviously reduced plant height and somewhat recovered tillering ability. The expression level of OsTB1 in Actin1:OsSHI1/35S:IPA1-Flag transgenic plants was significantly reduced compared with that in 35S:IPA1-Flag transgenic plants, even though still higher than that in the WT. Taken together, we concluded that OsSHI1 acts antagonistically on IPA1 to regulate plant morphogenesis in rice.
2. Regulation of panicle development
2.1 During the reproductive stage, shi1 exhibits conspicuously abnormal panicle morphology and spikelet development. Panicles of shi1 were erect and compact and in most cases, the apical parts of panicles were aborted before flowering. The arrangement of spikelet in shi1 was obviously disorganized, due to the twisted rachis branches. In addition, most spikelets of shi1 mutant were remarkably smaller and aberrant with crooked lemma and diminished palea, compared with the wild type. Glumes of shi1 were frequently twisted due to the highly compact organization of panicle. Scanning electron microscopy suggests that the development of palea of shi1 was dramatically repressed and the marginal region of palea was significantly enlarged in shi1. The stigmatic tissue of pistils of shi1 was greatly depressed. Stamens of shi1 were normal in appearance but with smaller size and the pollen sterility was significantly reduced. Due to the severe defects of panicle and grain development, the grain yield of shi1 was dramatically reduced. Compared with WT, the grain appearance and nutrition quality of shi1 was substantially compromised.
2.2. RT-qPCR, mmunoblot, histochemical staining and in situ mRNA hybridization assays showed that OsSHI1 is constitutively expressed in each whorl of floral organs. Yeast two-hybrid screening assay identified that OsSHI1 interacts with the class E MADS transcription factors. Further, BiFC and pull-down assays confirmed that OsSHI1 physically interacted with OsMADS1、OsMADS5、OsMADS7、OsMADS8 and OsMADS34 both in vitro and in vivo. We found that the conserved MADS-box domains specified the interactions between OsSHI1 and class E members and mutations of the MADS-box domains almost abolished the interactions between OsSHI1 and all the five class E members.
2.3. OsSHI1 does not affect the expression and protein accumulation levels of MADS transcription factors. However, OsSHI1 regulates the transcriptional activity of OsMADS1 by influent the DNA binding ability of OsMADS1. In addition, various floral organ defects are observed in OsMADS1 overexpression transgenic plants and the expression levels of OsMADS1 direct downstream target genes are increase in both OsMADS1 overexpression transgenic plants and shi1.
2.4 In addition to the variation of floral organ development, panicles of shi1 mutant displayed various degrees of apical panicle abortion from the booting stage, and up to half part of the panicle was aborted at the most severe level. Besides, panicles gradually turn brown towards the mature stage. These phenotypes remind us of the programmed cell death (PCD) caused by the excessive accumulation of reactive oxygen species (ROS). Indeed, RNA-sequencing (RNA-seq) analysis revealed that the most highly enriched gene ontology (GO) terms in the differentially expressed genes (DEG) were involved in oxidation-reduction processes. Expression levels of many peroxidase-encoding genes were dramatically reduced in shi1, which was also confirmed by RT-qPCR analysis. In agreement with RNA-seq result, the contents of endogenous H2O2 and malondialdehyde (MDA, an indicator of ROS production) were obviously increased in the panicle of the shi1 mutant, accompanied with the reduced peroxidase activity.
3. Regulation of plant growth and adaptation
3.1. Besides the above phenotypes, shi1 also exhibites typical hormone related morphological variations. For instance, the lateral root number, gravotropic response and auxin sensitivity of shi1 are reduced (auxin related phenotypes); shi1 displays erect plant architecture, small seeds and reduced BR sensitivity (BR related phenotypes); the germination rate and seedling growth of shi1 are sensitivity to ABA treatment and shi1 is more resistance to drought stress (ABA related phenotypes).
3.2. The auxin and BR contents are significantly reduced in shi1. RT-qPCR analysis showed the the expression levels of OsYUCCAs and D11, two group genes essential for the biosynthesis of auxin and BR, respectively, are decreased in shi1. However, the expression level of OsNAC2, a negative regulator of ABA signaling, is increased in shi1. Yeast one-hybrid, EMSA and ChIP-qPCR assays demonstrated that OsSHI1 binds directly to the promoter regions of these genes. Genetic evidences confirmed that OsSHI1 acts upstream of D11 and OsNAC2 to regulate plant growth and adaptation in rice.
3.3. Exougenous hormone treatment showed that auxin and ABA induce while BR represses the expression level of OsSHI1. Sequence analysis revealed the existence of multiple recognition motifs of ARF, ZIP and LIC transcription factors in the promoter region of OsSHI1. Yeast one-hybrid, EMSA and ChIP-qPCR analyses confirmed the direct binding of OsARF12, OsARF17, OsARF19, OsARF25, OsZIP26, OsZIP86 and LIC to the promoter of OsSHI1. The expression level of OsSHI1 is differentially altered in arf19, zip26, zip86 and lic mutants. Further genetic results validated that OsSHI1 functions downstream of OsZIP86 and LIC. These evidences suggest that OsSHI1 acts as an essential hub to integrate multiple hormone pathways to regulate plant growth and adaptation.
﹀
|
参考文献: |
︿
Angenent GC, Franken J, Busscher M, van Dijken A, van Went JL, Dons HJ, van Tunen AJ (1995) A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell. 7, 1569-1582. Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 51, 1019-1029. Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant and Cell Physiol. 50, 1416-1424. Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O (2006) The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr. Biol. 16, 553-563. Bernardi J, Lanubile A, Li Q, Kumar D, Kladnik A, Cook, S, Ross J, Marocco A, Chourey P. (2012) Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize. Plant Physiol. 160, 1318-1328. Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JD, Kamiya Y (1999) The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc. Natl. Acad. Sci. 96, 1761-1766. Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14, 1232-1238. Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev. Cell. 8, 443-449. Brandt R, Salla-Martret M, Bou-Torrent J, Musielak T, Stahl M, Lanz C, Ott F, Schmid M, Greb T, Schwarz M, Choi S, Barton M, Reinhart B, Liu T, Quint M, Palauqui J, Martinez- Garcia J, Wenkel S. (2012) Genome-wide binding-site analysis of REVOLUTA reveals a link between leaf patterning and light-mediated growth responses. Plant J. 72, 31-42. Callens C, Tucker MR, Zhang DB, Wilson ZA. (2018) Dissecting the role of MADS-box genes in monocot floral development and diversity. J. Exp. Bot. 69, 2435-2459. Chen CB, Wang SP, Huang H (2000) LEUNIG has multiple functions in gynoecium development in Arabidopsis. Genesis. 26, 42-54. Chen G, Courey AJ (2000) Groucho/TLE family proteins and transcriptional repression. Gene. 249, 1-16. Chen L, Tong J, Xiao L, Ruan Y, Liu J, Zeng M, Huang H, Wang J, Xu L. (2016) YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis. J. Exp. Bot. 67, 4273-4284. Cheng, W.H., Endo, A., Zhou, L., Penney, J., Chen, H.C., Arroyo, A., Leon, P., Nambara, E., Asami, T., Seo, M. et al. (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14, 2723-2743. Cheng Y, Dai X, Zhao Y. (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 20, 1790-1799. Cheng Y, Dai X, Zhao Y. (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell. 19, 2430-2439. Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22alpha-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell. 10, 231-243. Chongloi GL, Prakash S, Vijayraghavan (2019) Rice shoot and floral meristem development: An overview of developmental regulators of meristem maintenance and organ identity. J. Exp. Bot.2019. Cnops G, Jover-Gil S, Peters JL, Neyt P, De Block S, Robles P, Ponce MR, Gerats T, Micol JL, Van Lijsebettens M (2004) The rotunda2 mutants identify a role for the LEUNIG gene in vegetative leaf morphogenesis. J. Exp. Bot. 55, 1529-1539. Coen ES and Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature. 353, 31–37. Conner J, Liu Z (2000) LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development. Proc. Natl Acad. Sci. 97, 12902-12907. Courey AJ, Jia S (2001) Transcriptional repression: the long and the short of it. Gene. Dev. 15, 2786-2796. Cui D, Zhao J, Jing Y, Fan M, Liu J, Wang Z, Xin W, Hu Y. (2013) The Arabidopsis IDD14, IDD15, and IDD16 cooperatively regulate lateral organ morphogenesis and gravitropism by promoting auxin biosynthesis and transport. Plos Genet. 9, e1003759. Daniels DL, Weis WI (2005) Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat. Struct. Mol. Biol. 12, 364-371. Davie JK, Edmondson DG, Coco CB, Dent SY (2003) Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo. J. Biol. Chem. 278, 50158-50162. Davie JK, Trumbly RJ, Dent SY (2002) Histone-dependent association of Tup1-Ssn6 with repressed genes in vivo. Mol. Cell. Biol. 22, 693-703 Deng Z, Zhang X, Tang W, Oses-Prieto JA, Suzuki N, Gendron JM, Chen H, Guan S, Chalkley RJ, Peterman TK, Burlingame AL, Wang ZY (2007) A proteomics study of brassinosteroid response in Arabidopsis. Mol. Cell Proteomics 6, 2058-2071. Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann J, Jürgens G, Estelle M. (2005) Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell. 9, 109-119. Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14, 1935–1940. Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat. Rev. Mol. Cell. Bio. 12, 211-221. Dong T, Park Y, Hwang I (2015) Abscisic acid: biosynthesis, inactivation, homoeostasis and signalling. Essays Biochem. 58, 29-48. Duan E, Wang Y, Li X, Lin Q, Zhang T, Zhang H, Wang Y, Zhou C, Jiang L, Wang J, Lei C, Zhang X, Guo X, Wang H, Wan J. (2019) OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1 in rice. The Plant Cell. 31, 1026-1042. Eberharter A and Becker B. (2002) Histone acetylation: a switch between repressive and permissive chromatin. EMBO Reports. 3, 224-229. Eklund DM, Staldal V, Valsecchi I, Cierlik I, Eriksson C, Hiratsu K, Ohme-Takagi M, Sundstrom JF, Thelander M, Ezcurra I, Sundberg E (2010) The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. Plant Cell. 22, 349-363. Finet C, Berne-Dedieu A, Scutt P, Marletaz F. (2013) Evolution of the ARF gene family in land plants: old domains, new tricks. Mol. Biol. Evol.. 30, 45-56. Finlayson SA, Krishnareddy SR, Kebrom TH, Casal JJ (2010) Phytochrome regulation of branching in Arabidopsis. Plant Physiol. 152, 1914-1927. Franklin KA (2008) Shade avoidance. New phytol. 179, 930-944. Franks RG, Liu Z, Fischer RL (2006) SEUSS and LEUNIG regulate cell proliferation, vascular development and organ polarity in Arabidopsis petals. Planta. 224, 801-811. Fridborg I, Kuusk S, Moritz T, Sundberg E (1999) The Arabidopsis dwarf mutant shi exhibits reduced gibberellin responses conferred by overexpression of a new putative zinc finger protein. Plant Cell. 11, 1019-1031. Fridborg I, Kuusk S, Robertson M, Sundberg E (2001) The Arabidopsis protein SHI represses gibberellin responses in Arabidopsis and barley. Plant Physiol. 127, 937-948. Fuchs, S., Tischer, S. V., Wunschel, C., Christmann, A. & Grill, E. (2014) Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors. Proc. Natl Acad. Sci. 111, 5741-5746. Fujii, H. et al. (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660-664. Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu. Rev. Plant Biol. 54, 137-164. Furihata, T. et al. (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl Acad. Sci. 103, 1988-1993. Gallavotti A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt R, McSteen P. (2008) sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. P. Natl. Acad. Sci. 105, 15196-15201. Gao ZY, Qian Q, Liu XH, Yan MX, Feng Q, Dong GJ, Liu J, Han B (2009) Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol. Biol. 71, 265-276. Gilkerson J, Hu J, Brown J, Jones A, Sun P, Callis J. (2009) Isolation and characterization of cul1-7, a recessive allele of CULLIN1 that disrupts SCF function at the C terminus of CUL1 in Arabidopsis thaliana. Genetics. 181, 945-963. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature. 455, 189-194. Gonzalez D, Bowen AJ, Carroll TS, Conlan RS (2007) The transcription corepressor LEUNIG interacts with the histone deacetylase HDA19 and mediator components MED14 (SWP) and CDK8 (HEN3) to repress transcription. Mol. Cell. Biol. 27, 5306-5315. Gray M, Hellmann H, Dharmasiri S, Estelle M. (2002) Role of the Arabidopsis RING-H2 protein RBX1 in RUB modification and SCF function. The Plant Cell. 14, 2137-2144. Gray M, Kepinski S, Rouse D, Leyser O, Estelle M. (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature. 414, 271-276. Greb T, Clarenz O, Schafer E, Muller D, Herrero R, Schmitz G, Theres K (2003) Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Gene Dev. 17, 1175-1187. Guilfoyle J. (2015) The PB1 domain in auxin response factor and Aux/IAA proteins: a versatile protein interaction module in the auxin response. The Plant Cell. 27, 33-43. Guo SY, Xu YY, Liu HH, Mao ZW, Zhang C, Ma Y, Zhang QR, Meng Z, Chong K (2013) The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat. Commu. 4, 1566 Hamiaux C, Drummond RSM, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an alpha/beta hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr. Biol. 22, 2032-2036. He JX, Gendron JM, Sun Y, Gampala SS, Gendron N, Sun CQ, Wang ZY (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science. 307, 1634-1638. He JX, Gendron JM, Yang Y, Li J, Wang ZY (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc. Natl. Acad. Sci. 99, 10185-10190. Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) The Rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell. 17, 2243-2254. Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M (2002) Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J. 32, 495-508. Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell. 15, 2900-2910. Hothorn M, Belkhadir Y, Dreux M, Dabi T, Noel JP, Wilson IA, Chory J (2011) Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature. 474, 467-471. Ishii T, Numaguchi K, Miura K, Yoshida K, Thanh PT, Htun TM, Yamasaki M, Komeda N, Matsumoto T, Terauchi R, Ishikawa R, Ashikari M (2013) OsLG1 regulates a closed panicle trait in domesticated rice. Nat. Genet. 45, 462-465. Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant and Cell Physiol. 46, 79-86. Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol. 46, 23-47. Jaillais Y, Hothorn M, Belkhadir Y, Dabi T, Nimchuk ZL, Meyerowitz EM, Chory J (2011) Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes Dev. 25, 232-237. Jiang L, Liu X, Xiong GS, Liu HH, Chen FL, Wang L, Meng XB, Liu GF, Yu H, Yuan YD, Yi W, Zhao LH, Ma HL, He YZ, Wu ZS, Melcher K, Qian Q, Xu HE, Wang YH, Li JY (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature. 504, 401-405. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet. 42, 541-544. Kebrom TH, Burson BL, Finlayson SA (2006) Phytochrome B represses teosinte branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol. 140, 1109-1117. Kebrom TH, Chandler PM, Swain SM, King RW, Richards RA, Spielmeyer W (2012) Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiol. 160, 308-318. Kebrom TH, Spielmeyer W, Finnegan EJ (2013) Grasses provide new insights into regulation of shoot branching. Trends Plant Sci. 18, 41-48. Kieffer M, Stern Y, Cook H, Clerici E, Maulbetsch C, Laux T, Davies B (2006) Analysis of the transcription factor WUSCHEL and its functional homologue in Antirrhinum reveals a potential mechanism for their roles in meristem maintenance. Plant Cell. 18, 560-573. Kim TW, Guan S, Burlingame AL, Wang ZY (2011) The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Mol. Cell. 43, 561-571. Kim TW, Guan S, Sun Y, Deng Z, Tang W, Shang JX, Burlingame AL, Wang ZY (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol. 11, 1254-1260. Kinoshita T, Cano-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, Chory J (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature. 433, 167-171. Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol. 155, 974-987. Koka CV, Cerny RE, Gardner RG, Noguchi T, Fujioka S, Takatsuto S, Yoshida S, Clouse SD (2000) A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiol. 122, 85-98. Korasick A, Westfall S, Lee G, Nanao H, Dumas R, Hagen G, Guilfoyle J, Jez M, Strader C. (2014) Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. P. Natl. Acad. Sci. 111, 5427-5432. Kuusk S, Sohlberg JJ, Eklund DM, Sundberg E (2006) Functionally redundant SHI family genes regulate Arabidopsis gynoecium development in a dose-dependent manner. Plant J. 47, 99-111. Kuusk S, Sohlberg JJ, Long JA, Fridborg I, Sundberg E (2002) STY1 and STY2 promote the formation of apical tissues during Arabidopsis gynoecium development. Development. 129, 4707-4717 Leung, J. et al. (1994) Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264, 1448-1452. Levanon D, Goldstein RE, Bernstein Y, Tang H, Goldenberg D, Stifani S, Paroush Z, Groner Y (1998) Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. P. Natl. Acad.Sci. 95, 11590-11595. Li CJ, Bangerth F (1999) Autoinhibition of indoleacetic acid transport in the shoots of two-branched pea (Pisum sativum) plants and its relationship to correlative dominance. Physiol Plantarum. 106, 415-420. Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell. 90, 929-938. Li J, Nam KH (2002) Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science. 295, 1299-1301. Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell. 110, 213-222. Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. Nature. 422,618-621. Lin H, Wang RX, Qian Q, Yan MX, Meng XB, Fu ZM, Yan CY, Jiang B, Su Z, Li JY, Wang YH (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell. 21, 1512-1525. Li L, Qin G, Tsuge T, Hou X, Ding M, Aoyama T, Oka A, Chen Z, Gu H, Zhao Y, Qu L. (2008) SPOROCYTELESS modulates YUCCA expression to regulate the development of lateral organs in Arabidopsis. New Phytol. 179, 751-764. Liu Q, Nicholas PH, Fu XD (2016) SQUAMOSA promoter binding protein-like transcription factors: important breeding research targets for improving cereal grain yield. Mol. Plant. 9, 765-767. Lin QB, Wang D, Dong H, Gu SH, Cheng ZJ, Gong J, Qin RZ, Jiang L, Li G, Wang JL, Wu FQ, Guo XP, Zhang X, Lei CL, Wang HY, Wan JM (2012) Rice APC/C-TE controls tillering by mediating the degradation of MONOCULM 1. Nat. Commu. 3, 752 Liu WZ, Wu C, Fu YP, Hu GC, Si HM, Zhu L, Luan WJ, He ZQ, Sun ZX (2009) Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta. 230, 649-658. Liu Z, Franks RG, Klink VP (2000) Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA. Plant Cell. 12, 1879-1892. Liu Z, Meyerowitz EM (1995) LEUNIG regulates AGAMOUS expression in Arabidopsis flowers. Development. 121, 975-991. Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J. 28, 465-474. Long JA, Ohno C, Smith ZR, Meyerowitz EM (2006) TOPLESS regulates apical embryonic fate in Arabidopsis. Science. 312, 1520-1523. Lopez-Raez JA, Charnikhova T, Gomez-Roldan V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Becard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 178, 863-874. Ma, Y. et al. (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064-1068. Malave TM, Dent SY (2006) Transcriptional repression by Tup1-Ssn6. Biochem. Cell biol. 84, 437-443. Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell. 110, 203-212. Mano Y and Nemoto K. (2012) The pathway of auxin biosynthesis in plants. J.Exp.Bot. 63, 2853-2872. Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, Hayashi K, Kamiya Y, Kasahara H. (2011) The main auxin biosynthesis pathway in Arabidopsis. P. Natl. Acad.Sci. 108, 18512-18517. Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L, Kobayashi K, Hanada A, Ueno K, Asami T, Yamaguchi S, Kyozuka J (2010) FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant and Cell Physiol. 51, 1127-1135. Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545-549. Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J. 37, 128-138. Mora-Garcia S, Vert G, Yin Y, Cano-Delgado A, Cheong H, Chory J (2004) Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev. 18, 448-460. Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T, Sugimoto K, Okabe K, Kajiwara H, Satoh K, Yamamoto K, Hirochika H, Kikuchi S (2002) Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol. 130, 1152-1161. Nambara, E. and Marion-Poll, A. (2005) Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56, 165-185. Navarro C, Efremova N, Golz JF, Rubiera R, Kuckenberg M, Castillo R, Tietz O, Saedler H, Schwarz-Sommer Z (2004) Molecular and genetic interactions between STYLOSA and GRAMINIFOLIA in the control of Antirrhinum vegetative and reproductive development. Development. 131, 3649-3659. Nishimura, N. et al. (2010) PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J. 61, 290-299. North, H.M., De Almeida, A., Boutin, J.P., Frey, A., To, A., Botran, L., Sotta, B. and Marion-Poll, A. (2007) The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant J. 50, 810-824. Ohnishi T, Godza B, Watanabe B, Fujioka S, Hategan L, Ide K, Shibata K, Yokota T, Szekeres M, Mizutani M (2012) CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation. J Biol Chem. 287, 31551-31560. Ohnishi T, Szatmari AM, Watanabe B, Fujita S, Bancos S, Koncz C, Lafos M, Shibata K, Yokota T, Sakata K, Szekeres M, Mizutani M (2006) C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell. 18,3275-3288. Park, S. Y. et al. (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068-1071. Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity require SEPALLATA MADS-box genes. Nature. 405, 200-203. Pinon V, Prasad K, Grigg S, Sanchez-Perez G, Scheres B. (2013) Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in Arabidopsis. P. Natl. Acad.Sci. 110, 1107-1112. Sakamoto T, Matsuoka M (2006) Characterization of CONSTITUTIVE PHOTOMORPHOGENESIS AND DWARFISM homologs in rice (Oryza sativa L.). J. Plant Growth Regul. 25, 245-251. Sakamoto T, Ohnishi T, Fujioka S, Watanabe B, Mizutani M (2012) Rice CYP90D2 and CYP90D3 catalyze C-23 hydroxylation of brassinosteroids in vitro. Plant Physiol. Biochem. 58, 220-226. Santiago, J. et al. (2009) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462, 665-668. Santiago J, Henzler C, Hothorn M (2013) Molecular mechanism for plant steroid receptor activation by somatic embryogenesis coreceptor kinases. Science. 341, 889-892. Sasse JM (2003) Physiological actions of brassinosteroids: an update. J. Plant Growth Regul. 22, 276-288. Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K (2002) The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. P. Natl. Acad.Sci. 99, 1064-1069. Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K (1999) The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. P. Natl. Acad.Sci.. 96, 290-295. Schwartz, S.H., Qin, X. and Zeevaart, J.A. (2003) Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol. 131, 1591-1601. Seo, M., Aoki, H., Koiwai, H., Kamiya, Y., Nambara, E. and Koshiba, T. (2004) Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol. 45, 1694-1703. Seo, M., Koiwai, H., Akaba, S., Komano, T., Oritani, T., Kamiya, Y. and Koshiba, T. (2000) Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J. 23, 481-488. Seto Y, Yamaguchi S (2014). Strigolactone biosynthesis and perception. Curr. Opin. Plant Biol. 21, 1-6. She J, Han Z, Kim TW, Wang J, Cheng W, Chang J, Shi S, Yang M, Wang ZY, Chai J (2011) Structural insight into brassinosteroid perception by BRI1. Nature. 474, 472-476. Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S (2001) Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol. 126, 770-779. Shimizu-Sato S, Tanaka M, Mori H (2009) Auxin-cytokinin interactions in the control of shoot branching. Plant Mol. Biol. 69, 429-435. Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B (2016) OsSPL13 controls grain size in cultivated rice. Nat. Genet. 48, 447-456. Simons JL, Napoli CA, Janssen BJ, Plummer KM, Snowden KC (2007) Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching. Plant Physiol. 143, 697-706. Smith RL, Johnson AD (2000) Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci. 25, 325-330. Smith S M, Li J (2014). Signalling and responses to strigolactones and karrikins. Curr. Opin. Plant Biol. 21, 23-29. Snowden KC, Simkin AJ, Janssen BJ, Templeton KR, Loucas HM, Simons JL, Karunairetnam S, Gleave AP, Clark DG, Klee HJ (2005) The Decreased apical dominance 1/petunia hybrida carotenoid cleavage dioxygenase 8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell. 17, 746-759. Sohlberg JJ, Myrenas M, Kuusk S, Lagercrantz U, Kowalczyk M, Sandberg G, Sundberg E (2006) STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. Plant J. 47, 112-123. Sohlberg J, Myrenas M, Kuusk S, Lagercrantz U, Kowalczyk M, Sommer H, Beltran JP, Huijser P, Pape H, Lonnig WE, Saedler H, Schwarz Z (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9, 605-613. Song X, Lu Z, Yu H, et al (2017). IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Research. 27, 1128-1141. Sorefan K, Booker J, Haurogne K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Gene. Dev. 17, 1469-1474. Stirnberg P, Furner IJ, Leyser HMO (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J. 50, 80-94. Stirnberg P, van de Sande K, Leyser HMO (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development. 129, 1131-1141. Stone S, Braybrook S, Paula S, Kwong L, Meuser J, Pelletier J, Hsieh T, Fischer R, Goldberg R, Harada J. (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: Implications for somatic embryogenesis. P. Natl. Acad.Sci. 105, 3151-3156. Sun J, Qi L, Li Y, Chu J, Li C. (2012) PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. Plos Genet. 8, e1002594. Sun Y, Fan XY, Cao DM, Tang W, He K, Zhu JY, He JX, Bai MY, Zhu S, Oh E, Patil S, Kim TW, Ji H, Wong WH, Rhee SY, Wang ZY (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev. Cell. 19, 765-777. Symons GM, Ross JJ, Jager CE, Reid JB (2008) Brassinosteroid transport. J. Exp. Bot. 59, 17-24. Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science. 319, 1384-1386. Takeda T, Suwa Y, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant and Cell Physiol. 44, 513-520. Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K, Yamaya T, Sakakibara H (2004) AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant and Cell Physiol. 45, 1053-1062. Tan, B.C., Schwartz, S.H., Zeevaart, J.A. and McCarty, D.R. (1997) Genetic control of abscisic acid biosynthesis in maize. Proc. Natl. Acad. Sci. 94, 12235-12240. Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano MYA, Kitano H, Matsuoka M, Fujisawa Y, Kato HIY (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell. 17, 776-790. Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science. 321, 557-560. Tang W, Yuan M, Wang R, Yang Y, Wang C, Oses-Prieto JA, Kim TW, Zhou HW, Deng Z, Gampala SS, Gendron JM, Jonassen EM, Lillo C, DeLong A, Burlingame AL, Sun Y, Wang ZY (2011) PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat. Cell Biol. 13, 124-131. Tiwari B, Hagen G, Guilfoyle T. (2003) The roles of auxin response factor domains in auxin-responsive transcription. The Plant Cell. 15, 533-543. Tiwari B, Hagen G, Guilfoyle T. (2004) Aux/IAA proteins contain a potent transcriptional repression domain. The Plant Cell. 16, 533-543. Tobeña-Santamaria R, Bliek M, Ljung K, Sandberg G, Mol J, Souer E, Koes R. (2002) FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture. Gene. Dev. 16, 753-763. Ulmasov T, Hagen G, Guilfoyle J. (1997) ARF1, a transcription factor that binds to auxin response elements. Science. 276, 1865-1868. Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant and Cell Physiol. 51, 1118-1126. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature. 455, 195-200. Wagner D and Weijers D. (2016) Transcriptional responses to the auxin hormone. Annu. Rev. Plant Biol. 67, 539-574. Wang H, Yang C, Zhang C, Wang N, Lu D, Wang J, Zhang S, Wang ZX, Ma H, Wang X (2011) Dual role of BKI1 and 14-3-3s in brassinosteroid signaling to link receptor with transcription factors. Dev. Cell. 21, 825-834. Wang J, Yu H, Xiong G, Lu Z, Jiao Y, Meng X, Liu G, Chen X, Wang Y, Li J (2017a) Tissue-specific ubiquitination by IPA1 INTERACTING PROTEIN1 modulates IPA1 protein levels to regulate plant architecture in rice. Plant Cell. 29, 697-707. Wang L, Sun S, Jin J, Fu D, Yang X, Weng X, Xu C, Li X, Xiao J, Zhang Q (2015a) Coordinated regulation of vegetative and reproductive branching in rice. P. Natl. Acad.Sci. 112, 15504-15509. Wang L, Xu Y, Zhang C, Ma Q, Joo SH, Kim SK, Xu Z, Chong K (2008a) OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS One. 3, e3521. Wang RC, Tischner R, Gutierrez RA, Hoffman M, Xing XJ, Chen MS, Coruzzi G, Crawford NM (2004) Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol. 136, 2512-2522. Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X (2015b) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 47, 949-954. Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44, 950-954. Wang S, Wu K, Qian Q, et al (2017b). Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield. Cell Research. 27, 1142-1156. Wang X, Chory J (2006) Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science. 313, 1118-1122. Wang X, Kota U, He K, Blackburn K, Li J, Goshe MB, Huber SC, Clouse SD (2008b) Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev. Cell. 15, 220-235. Wang Y, Li J (2008) Molecular basis of plant architecture. Annu. Rev. Plant. Biol. 59, 253-279. Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev. Cell. 2, 505-513. Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YKM, Dixon KW, Smith SM (2012) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development. 139, 1285-1295. Wu F, Yamaguchi N, Xiao J, Bargmann B, Estelle M, Sang Y, Wagner D. (2015) Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. ELife. 4, e09269. Xie K, Wu C, Xiong L (2006) Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol. 142, 280-293. Xing Y, Zhang Q (2010) Genetic and molecular bases of rice yield. Annu. Rev. Plant. Biol. 61, 421-442. Xiong, L., Ishitani, M., Lee, H. and Zhu, J.K. (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stressresponsive gene expression. Plant Cell 13, 2063-2083. Xiong, L.M., Lee, H.J., Ishitani, M. and Zhu, J.K. (2002) Regulation of osmotic stress responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J. Biol. Chem. 277, 8588-8596. Xu C, Wang YH, Yu YC, Duan JB, Liao ZG, Xiong GS, Meng XB, Liu GF, Qian Q, Li JY (2012) Degradation of MONOCULM 1 by APC/C-TAD1 regulates rice tillering. Nat. Commu. 3, 750. Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T. (2007) Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol. 143, 1362-1371. Yanofsky MF, Ma H, Bowman JL (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature. 346, 35-39. Yin D, Liu X, Shi Z, Li D, Zhu L (2018) An AT-hook protein DEPRESSED PALEA1 physically interacts with the TCP Family transcription factor RETARDED PALEA1 in rice. Biochem. Bioph. Res. Co.. 495, 487-492. Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J (2005) A new class of transcription factors mediates brassinosteroidregulated gene expression in Arabidopsis. Cell. 120, 249-259. Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell. 109, 181-191. Yoneyama K, Xie XN, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K (2007) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta. 227, 125-132. Yoshikawa T, Ito M, Sumikura T, Nakayama A, Nishimura T, Kitano H, Yamaguchi I, Koshiba T, Hibara K, Nagato Y, Itoh J. (2014) The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin related processes. Plant J. 78, 927-936. Youssef HM, Eggert K, Koppolu R, Alqudah AM, Poursarebani N, Fazeli A, Sakuma S, Tagiri A, Rutten T, Govind G, Lundqvist U, Graner A, Komatsuda T, Sreenivasulu N, Schnurbusch T (2017) VRS2 regulates hormone-mediated inflorescence patterning in barley. Nat. Genet. 49, 157-161. Yuo T, Yamashita Y, Kanamori H, Matsumoto T, Lundqvist U, Sato K, Ichii M, Jobling SA, Taketa S (2012) A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. J Exp. Bot. 63, 5223-5232. Zenser N, Ellsmore A, Leasure C, Callis J. (2001) Auxin modulates the degradation rate of Aux/IAA proteins. P. Natl. Acad.Sci. 98, 11795-11800. Zhang C, Bai M, Chong K. (2014) Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep. 33, 683-696. Zhang C, Xu Y, Guo S, Zhu J, Huan Q, Liu H, Wang L, Luo G, Wang X, Chong K (2012a) Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genet. 8, e1002686. Zhang D and Yuan Z (2014) Molecular control of grass inflorescence development. Annu. Rev. Plant Biol. 65, 553–578. Zhang L, Cheng Z, Qin R, Qiu Y, Wang J, Cui X, Gu L, Zhang X, Guo X, Wang D, Jiang L, Wu C, Wang H, Cao X, Wan J (2012) Identification and characterization of an epi-allele of FIE1 reveals a regulatory linkage between two epigenetic marks in rice. Plant Cell. 24, 4407-4421. Zhang L, Yu H, Ma B, Liu G, Wang J, Wang J, Gao R, Li J, Liu J, Xu J, Zhang Y, Li Q, Huang X, Xu J, Li J, Qian Q, Han B, He Z, Li J (2017) A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat. Commun. 8, 14789. Zhang R, Xia X, Lindsey K, da Rocha PS (2012b) Functional complementation of dwf4 mutants of Arabidopsis by overexpression of CYP724A1. J. Plant Physiol. 169, 421-428. Zhao, Y. et al. (2013) The unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress signaling. Cell Res. 23, 1380-1395. Zhao Y (2008) The role of local biosynthesis of auxin and cytokinin in plant development. Curr. Opin. Plant Biol. 11, 16-22. Zhao Y. (2010) Auxin biosynthesis and its role in plant development. Annu. Rev. Plant Biol. 61, 49-64. Zhao Y, Christensen K, Fankhauser C, Cashman R, Cohen D, Weigel D, Chory J. (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science. 291, 306-309. Zheng M, Wang Y, Wang Y, Wang C, Ren Y, Lv J, Peng C, Wu T, Liu K, Zhao S, Liu X, Guo X, Jiang L, Terzaghi W, Wan J (2015) DEFORMED FLORAL ORGAN1 (DFO1) regulates floral organ identity by epigenetically repressing the expression of OsMADS58 in rice (Oryza sativa). New Phytol. 206, 1476–1490. Zhou F, Lin QB, Zhu LH, Ren YL, Zhou KN, Shabek N, Wu FQ, Mao HB, Dong W, Gan L, Ma WW, Gao H, Chen J, Yang C, Wang D, Tan JJ, Zhang X, Guo XP, Wang JL, Jiang L, Liu X, Chen WQ, Chu JF, Yan CY, Ueno K, Ito S, Asami T, Cheng ZJ, Wang J, Lei CL, Zhai HQ, Wu CY, Wang HY, Zheng N, Wan JM (2013) D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature. 504, 406-410. Zou JH, Zhang SY, Zhang WP, Li G, Chen ZX, Zhai WX, Zhao XF, Pan XB, Xie Q, Zhu LH (2006) The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J. 48, 687-696.
﹀
|
中图分类号: |
S5
|
开放日期: |
2023-06-30
|