中文题名: | 人工智能技术应用对收入分配的影响研究——基于劳动力流动视角 |
姓名: | |
学号: | 2022106007 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 020205 |
学科名称: | 经济学 - 应用经济学 - 产业经济学 |
学生类型: | 硕士 |
学位: | 经济学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 人工智能与收入分配 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2025-03-20 |
答辩日期: | 2025-05-19 |
外文题名: | Research on the Impact of Artificial Intelligence Technology Applications on Income Distribution——Based on the Perspective of Labor Mobility |
中文关键词: | |
外文关键词: | Artificial Intelligence ; Labor Mobility ; Employment Structure ; Income Distribution ; Common Prosperity |
中文摘要: |
人工智能作为第四次工业革命的核心驱动力,对于国家经济与社会的发展起着至关重要的技术推动作用,为我国产业转型升级和经济高质量发展提供了新的动能。人工智能与经济的深度融合也对劳动力市场产生深刻影响,其通过替代标准化和重复性岗位释放劳动力资源的同时,也通过创造效应和生产率效应催生了大量新岗位,引导劳动力要素向高附加值的产业和新兴经济发达的地区流动,实现劳动力要素的重新配置。这种结构性调整会促使人力资本偏向于数字化技能,从而使得收入分配格局呈现出技能溢价扩大的趋势。近年来,我国经济发展稳中有进,居民收入水平不断提升,但发展的不平衡不充分问题仍然存在。当下,中国正处于全体人民迈向共同富裕的重要阶段,关注人工智能对收入分配的影响具有重要现实意义。 基于上述背景,本文结合共同富裕的内涵,将收入分配从劳动收入水平、劳动收入份额,以及不同劳动者间的收入差距等四个维度界定,并将劳动力流动分类为行业间流动和区域间流动两个方面,利用2013-2022年中国制造业行业面板数据和2009-2022年中国省级面板数据,从理论分析和经验事实两方面考察了人工智能技术应用对劳动力流动及收入分配的影响与作用机制。 结果表明:人工智能技术应用提高劳动收入水平,增加了劳动收入份额,但同时会扩大了不同劳动者之间的收入差距。一方面,扩大了行业间和地区间的收入差距,主要是因为不同行业和地区在在智能化水平和技能水平上存在差异,技能密集型和智能化水平较高的行业和地区因技术聚集和要素适配,显著提高了生产效率,而落后的行业和地区技术与技能不匹配,要素配置效率低,从而扩大行业间和地区间收入差距。另一方面,扩大了行业内和地区内收入差距,主要是因为相较于非技能劳动者,技能劳动者与人工智能的互补性更强,其更易从人工智能应用中获益,从而扩大了技能溢价。机制分析表明,劳动力流动是人工智能技术应用影响收入分配的主要渠道,人工智能技术应用通过技能溢价和环境改善吸引技能劳动者集聚,同时迫使非技能劳动者迁移,优化行业和地区的就业技能结构,从而影响收入分配格局。异质性分析显示,在技术密集型行业和高竞争水平行业中,人工智能技术应用对制造业的行业收入水平、行业劳动收入份额、行业间收入差距和行业内收入差距的影响更显著;在东部发达地区,人工智能技术对行业收入水平、行业劳动收入份额、行业间收入差距和行业内收入差距的影响更显著,同时可能因为西部地区传统产业占比高,低技能劳动力密集,人工智能技术对就业的冲击作用更大,从而降低了西部地区劳动收入份额。拓展讨论发现,无论是在行业层面还是在地区层面,人工智能技术不仅能在短期内提升劳动收入水平和劳动收入份额,还有效提升劳动生产率,从而保障了收入水平和劳动收入份额提升的可持续性。 基于研究结论,本文提出以下政策建议:第一,加强人工智能技术创新,提升人工智能技术应用水平,通过人工智能技术应用促进经济发展,实现劳动收入增长。第二,加强职业技能培训,提高劳动者就业质量,适应人工智能发展必需的技能需求。第三,促进行业间和地区间合作交流,营造公平竞争的市场环境,更好地发挥人工智能技术的增收效应。第四,做好劳动力保障工作,防范社会不平等现象加剧。 |
外文摘要: |
As the core driving force of the Fourth Industrial Revolution, Artificial Intelligence is crucial for national economic and social development. It fuels industrial upgrades and high-quality economic growth in China. The deep integration of AI and the economy profoundly impacts the labor market by displacing standardized and repetitive jobs while creating new ones through productivity gains. This drives labor to high-value industries and emerging economic zones, reallocating resources. This structural shift boosts digital skills and widens skill-based income gaps. Despite China's steady economic progress and rising incomes, development imbalances persist. As China advances towards common prosperity, understanding AI's impact on income distribution is vital. Based on the above context, this study combines the connotation of common prosperity. It defines income distribution across four dimensions: labor income level, labor income share, and income gaps among workers. Labor mobility is categorized into inter - industry and inter - regional flows. Using 2013 - 2022 Chinese manufacturing industry panel data and 2009 - 2022 Chinese provincial panel data, the study examines AI's impact on labor mobility and income distribution theoretically and empirically. The results indicate that AI technology boosts labor income levels and increases the labor income share, yet it also widens income gaps among different workers. On one hand, it enlarges income gaps between industries and regions. This is mainly due to disparities in intelligence and skill levels. Industries and regions with higher levels of skill - intensity and intelligence have better technological agglomeration and factor matching, significantly enhancing production efficiency. In contrast, backward industries and regions suffer from technological - skill mismatch and low factor - allocation efficiency, thus increasing income gaps. On the other hand, it widens income gaps within industries and regions. This is because skilled workers have stronger complementarity with AI than unskilled workers, making them more likely to benefit from AI applications and expanding skill premiums. Mechanism analysis reveals that labor mobility is the key channel through which AI affects income distribution. AI attracts skilled workers via skill premiums and better environments and forces unskilled workers to move, optimizing employment - skill structures and influencing income distribution. Heterogeneity analysis shows that in technology - intensive and highly - competitive industries, AI has a more significant impact on manufacturing regarding industry income levels, labor income shares, and both inter - and intra - industry and regional income gaps. In eastern developed regions, AI's impact is also more significant, while in western regions with a high proportion of traditional industries and low - skill labor, AI has a greater employment shock, reducing the labor income share. Further discussion finds that AI not only raises labor income levels and shares in the short term but also effectively increases labor productivity, ensuring the sustainability of these improvements. Based on the research findings, this paper proposes the following policy recommendations: First, enhance AI innovation and application to boost economic growth and labor income. Second, strengthen vocational training to improve employment quality and meet AI - era skill demands. Third, promote inter - industry and inter - regional cooperation to create a fair competitive market environment and maximize AI's income - increasing effects. Fourth, improve labor protection to prevent rising inequality. |
参考文献: |
[1]蔡跃洲,陈楠.新技术革命下人工智能与高质量增长、高质量就业[J].数量经济技术经济研究,2019(05):3-22. [2]曹静,周亚林.人工智能对经济的影响研究进展[J].经济学动态,2018(01):103-115. [3]曹章露,王林辉,赵贺.人工智能技术与劳动力迁出决策——来自全国流动人口动态监测调查的经验证据[J].北京工商大学学报(社会科学版),2023(02):1-14+27. [4]钞小静,沈路,廉园梅.人工智能技术对制造业就业的产业关联溢出效应研究[J].现代财经(天津财经大学学报),2022(12):3-20. [5]钞小静,周文慧.人工智能对劳动收入份额的影响研究——基于技能偏向性视角的理论阐释与实证检验[J].经济与管理研究,2021(02):82-94. [6]陈岑,张彩云,周云波.信息技术、常规任务劳动力与工资极化[J].世界经济,2023(01):95-120. [7]陈东,郭文光.数字化转型如何影响劳动技能溢价——基于A股上市公司数据的经验研究[J].数量经济技术经济研究,2024(03):173-192. [8]陈凤仙.人工智能发展水平测度方法研究进展[J].经济学动态,2022(02):142-158. [9]陈琳,高悦蓬,余林徽.人工智能如何改变企业对劳动力的需求?——来自招聘平台大数据的分析[J].管理世界,2024(06):74-93. [10]陈晓,郑玉璐,姚笛.工业智能化、劳动力就业结构与经济增长质量——基于中介效应模型的实证检验[J].华东经济管理,2020(10):56-64. [11]陈彦斌,林晨,陈小亮.人工智能、老龄化与经济增长[J].经济研究,2019(07):47-63. [12]邓翔,黄志.人工智能技术创新对行业收入差距的效应分析——来自中国行业层面的经验证据[J].软科学,2019(11):1-5+10. [13]丁焕峰,张蕊,周锐波.工业智能化、要素流动与创新经济地理格局[J].统计研究,2023,40(08):71-85. [14]方明月,林佳妮,聂辉华.数字化转型是否促进了企业内共同富裕?——来自中国A股上市公司的证据[J].数量经济技术经济研究,2022(11):50-70. [15]龚遥,彭希哲.人工智能技术应用的职业替代效应[J].人口与经济,2020(03):86-105. [16]郭凯明.人工智能发展、产业结构转型升级与劳动收入份额变动[J].管理世界,2019(07):60-77+202-203. [17]何勤,刘明泽.人工智能对就业规模及劳动收入的影响——来自Meta分析的证据[J].首都经济贸易大学学报,2023(04):54-68. [18]何小钢,刘叩明.机器人、工作任务与就业极化效应——来自中国工业企业的证据[J].数量经济技术经济研究,2023(04):52-71. [19]何小钢,朱国悦,冯大威.工业机器人应用与劳动收入份额——来自中国工业企业的证据[J].中国工业经济,2023(04):98-116. [20]何玉长,方坤.人工智能与实体经济融合的理论阐释[J].学术月刊,2018(05):56-67. [21]洪永淼,史九领.人工智能的政治经济学分析[J].学术月刊,2024(01):43-59. [22]胡晟明,王林辉,董直庆.工业机器人应用与劳动技能溢价——理论假说与行业证据[J].产业经济研究,2021(04):69-84. [23]胡晟明,王林辉,赵贺.人工智能应用、人机协作与劳动生产率[J].中国人口科学,2021(05):48-62+127. [24]黄晓凤,朱潇玉,王金红.人工智能提升了中国制造业企业的全要素生产率吗[J].财经科学,2023(01):138-148. [25]黄旭,刘红英,闫雪凌.生成式人工智能的就业效应与应对策略[J/OL].当代经济管理,2025(03):1-18. [26]黄志,程翔.人工智能对劳动收入水平和收入差距的影响——理论解读与实证检验[J].经济理论与经济管理,2023(01):78-95. [27]惠炜.人工智能与劳动收入份额——来自中国城市数据的经验证据[J].北京工业大学学报(社会科学版),2022(06):99-112. [28]冀承,丁守海.数字化转型、行业间技术溢出与技能工资溢价[J].科学学研究,2024(07):1-18. [29]姜昊,董直庆.人工智能技术应用会存在选择性偏向吗?——行业属性与就业偏向[J].南方经济,2023(12):37-61. [30]姜琪,李吉志,倪硕.人工智能会加剧学历工资差距吗[J].财经科学,2024(06):61-76. [31]孔高文,刘莎莎,孔东民.机器人与就业——基于行业与地区异质性的探索性分析[J].中国工业经济,2020(08):80-98. [32]李磊,王小霞,包群.机器人的就业效应:机制与中国经验[J].管理世界,2021(09):104-119. [33]李实,朱梦冰.推进收入分配制度改革 促进共同富裕实现[J].管理世界,2022(01):52-61+76+62. [34]李实.共同富裕的目标和实现路径选择[J].经济研究,2021(11):4-13. [35]李钰靖.发展新质生产力背景下技能劳动力需求特征及职业教育供给思路——基于人工智能劳动介入的研究视角[J].中国职业技术教育,2024(15):13-24. [36]梁会君,史长宽.数字经济、家庭创业与行业收入差距——基于CFPS的经验证据[J].南京审计大学学报,2023(05):102-111. [37]林晨,陈小亮,陈伟泽等.人工智能、经济增长与居民消费改善:资本结构优化的视角[J].中国工业经济,2020(02):61-83. [38]林淑君,郭凯明,龚六堂.产业结构调整、要素收入分配与共同富裕[J].经济研究,2022,(07):84-100. [39]刘海云,石小霞.中国对外直接投资对工业部门收入差距的影响研究[J].国际贸易问题,2018(01):101-111. [40]刘红英,朱琪.人工智能发展会扩大收入差距吗——理论假说与省级证据[J].云南财经大学学报,2022(06):1-14. [41]刘甲楠,邢春冰.人工智能、劳动力需求与人力资本投资[J].人口研究,2024(01):68-84. [42]刘军,陈嘉钦.智能化能促进中国产业结构转型升级吗[J].现代经济探讨,2021(07):105-111. [43]刘培林,钱滔,黄先海等.共同富裕的内涵、实现路径与测度方法[J].管理世界,2021(08):117-129. [44]刘晓麒.中国在人工智能国际竞争中所处地位与优势塑造[J].陕西师范大学学报(哲学社会科学版),2023(05):152-167. [45]刘志东,李钦,荆中博,何晓奇.高铁开通与制造业就业结构[J].管理评论,2024(04). [46]芦婷婷,祝志勇.人工智能是否会降低劳动收入份额——基于固定效应模型和面板分位数模型的检验[J].山西财经大学学报,2021(11):29-41. [47]卢倩倩,许光建,许坤.城镇化、经济周期与地区收入分配差距——基于面板门限模型的分析[J].经济问题,2020(02):25-32. [48]罗润东,郭怡笛.人工智能技术进步会促进企业员工共同富裕吗?[J].广东社会科学,2022(01):54-63. [49]马草原,倪修凤.“低技能排斥”下的劳动力跨地区流动——产出效应与收入分配[J].南开经济研究,2024(03):99-119. [50]明娟,胡嘉琪.工业机器人应用、劳动保护与异质性技能劳动力就业[J].人口与经济,2022(04):106-121. [51]宁光杰,崔慧敏,付伟豪.信息技术发展如何影响劳动力跨行业流动?——基于工作任务与技能类型的实证研究[J].管理世界,2023(08):1-21. [52]潘丽群,李静,余梦琳.人工智能如何影响劳动力需求和结构?——基于上市公司年报数据的实证检验[J].经济与管理研究,2024(10):77-98. [53]彭树宏.人工智能应用与企业就业吸纳——来自中国上市公司年报文本分析的证据[J].经济管理,2024(08):42-64. [54]戚聿东,丁述磊,刘翠花.数字经济时代新职业发展与新型劳动关系的构建[J].改革,2021(09):65-81. [55]石玉堂,王晓丹.企业数字化转型对劳动力就业的影响研究——基于就业规模、就业结构的双重视角[J].经济学家,2023(10):109-118. [56]史丹,叶云岭.人工智能、就业结构与高质量发展[J].当代财经,2023(05):3-14. [57]宋旭光,杜军红.智能制造如何影响劳动收入份额——基于中国省级面板数据的实证研究[J].经济理论与经济管理,2021(11):79-96. [58]孙凤娥.数字化转型提升还是降低了劳动收入份额?——来自中国A股上市公司的证据[J].证券市场导报,2023(04):3-14. [59]孙群力,彭有为.数字化会扩大行业收入差距吗?——基于人力资本和生产效率的中介机制检验[J].经济经纬,2023(03):88-97. [60]孙文凯,郭杰,赵忠等.我国就业结构变动与技术升级研究[J].经济理论与经济管理,2018(06):5-14. [61]孙雪,宋宇,赵培雅.人工智能如何影响劳动收入——基于个人能力的微观解析与实证检验[J].山西财经大学学报,2022(08):17-29. [62]孙早,韩颖.人工智能会加剧性别工资差距吗?——基于我国工业部门的经验研究[J].统计研究,2022(03):102-116. [63]孙早,侯玉琳.工业智能化如何重塑劳动力就业结构[J].中国工业经济,2019(05):61-79. [64]屠年松,郑雅哲,官波.人工智能的劳动力空间流动效应[J].财经科学,2024(07):96-108. [65]王林辉,胡晟明,董直庆.人工智能技术、任务属性与职业可替代风险:来自微观层面的经验证据[J].管理世界,2022(07):60-79. [66]王林辉,姜昊,董直庆.工业智能化会重塑企业地理格局吗[J].中国工业经济,2022(02):137-155. [67]王林辉,钱圆圆,周慧琳,董直庆.人工智能技术冲击和中国职业变迁方向[J].管理世界,2023(11):74-95. [68]王敏,李敏丽.留抵退税政策、企业流动性与劳动要素收入提升[J].管理世界,2024(04):60-88. [69]王文.数字经济时代下工业智能化促进了高质量就业吗[J].经济学家,2020(04):89-98. [70]王晓娟,朱喜安,王颖.工业机器人应用对制造业就业的影响效应研究[J].数量经济技术经济研究,2022(04):88-106. [71]肖土盛,孙瑞琦,袁淳等.企业数字化转型、人力资本结构调整与劳动收入份额[J].管理世界,2022(12):220-237. [72]谢杰,过重阳,陈科杰,等.最低工资、工业自动化与技能溢价[J].中国工业经济,2022(09):102-120. [73]徐晔,朱婕,陶长琪.智能制造、劳动力技能结构与出口技术复杂度[J].财贸研究,2022(03):16-27. [74]闫雪凌,朱博楷,马超.工业机器人使用与制造业就业:来自中国的证据[J].统计研究,2020(01):74-87. [75]杨思莹,李政,李嘉辰.工业智能化转型的环境效应及其机制研究[J].南开经济研究,2023(11):186-209. [76]杨伟国,邱子童,吴清军.人工智能应用的就业效应研究综述[J].中国人口科学,2018(05):109-119+128. [77]杨秀云,从振楠,刘岳虎.数字经济发展能否破解服务业结构升级滞后之谜——来自中国城市面板数据的经验证据[J].山西财经大学学报,2023(04):64-78. [78]姚加权,张锟澎,郭李鹏,冯绪.人工智能如何提升企业生产效率?——基于劳动力技能结构调整的视角[J].管理世界,2024(02):101-116+133+117-122. [79]尹志锋,曹爱家,郭家宝,郭冬梅.基于专利数据的人工智能就业效应研究——来自中关村企业的微观证据[J].中国工业经济,2023(05):137-154. [80]尹志锋,曹爱家,郭家宝等.基于专利数据的人工智能就业效应研究——来自中关村企业的微观证据[J].中国工业经济,2023(05):137-154. [81]张君凯,张世伟.工业机器人应用与劳动力区位选择[J].财经科学,2024(02):73-90. [82]张相伟,陆云航.商品贸易结构变动对劳动收入份额的影响[J].数量经济技术经济研究,2014(01):59-76. [83]张小筠,刘戒骄,李斌.环境规制、技术创新与制造业绿色发展[J].广东财经大学学报,2020(05):48-57. [84]张元钊,朱佳宁,张永亮.人工智能发展与劳动力流动[J/OL].经济学动态,2025(01):128-145. [85]张云,柏培文.数智化如何影响双循环参与度与收入差距——基于省级—行业层面数据[J].管理世界,2023(10):58-83. [86]赵文涛,王岚.企业人工智能出口对全球价值链上游攀升和韧性的影响[J].南方经济,2024(07):132-150. [87]郑景丽,王喜虹,张雪梅.人工智能如何影响劳动收入份额——基于产业结构与企业升级的机制探讨[J].南开经济研究,2024(04):3-22. [88]朱琪,刘红英.人工智能技术变革的收入分配效应研究:前沿进展与综述[J].中国人口科学,2020(02):111-125+128. [89]ACEMOGLU D, RESTREPO P. Artificial Intelligence, Automation, and Work, in The Economics of Artificial Intelligence: An Agenda [M]. Chicago: University of Chicago Press, 2018. [90]GUELLEC D. Digital Innovation and the Distribution of Income [M]. Chicago: University of Chicago Press, 2017. [91]ACEMOGLU D, RESTREPO P. Artificial Intelligence, Automation, and Work[J]. University of Chicago Press eBooks, 2018: 197-236. [92]ACEMOGLU D, RESTREPO P. Automation and New Tasks: How Technology Displaces and Reinstates Labor[J]. Journal of Economic Perspectives, 2019, 33(2): 3-30. [93]ACEMOGLU D, RESTREPO P. Robots and Jobs: Evidence from US Labor Markets[J]. Journal of Political Economy, 2020: 2188-2244. [94]ACEMOGLU D, RESTREPO P. The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment[J]. American Economic Review, 2018, 108(6): 1488-1542. [95]ACEMOGLU D, RESTREPO P. The Wrong Kind of AI? Artificial Intelligence and the Future of Labor Demand[J]. Cambridge Journal of Regions, Economy and Society, 2020, 13(1): 25-35. [96]ACEMOGLU D, RESTREPO P. Unpacking Skill Bias: Automation and New Tasks[J]. AEA Papers and Proceedings, 2020, 110: 356-361. [97]AGHION P, ANTONIN C, BUNEL S, et al. What Are the Labor and Product Market Effects of Automation? New Evidence from France[J]. Le Centre pour la Communication Scientifique Directe - HAL - Université Paris Descartes, 2020. [98]ANELLI M, GIUNTELLA O, STELLA, L. Robots, Marriageable Men, Family, and Fertility[J]. Journal of Human Resources, 2024, 59(2): 443-469. [99]AUTOR D H, DORN D. The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market[J]. American Economic Review, 2013: 1553-1597. [100]AUTOR D H, SALOMONS A. Robocalypse Now: Does Productivity Growth Threaten Employment?[J]. Proceedings of the ECB Forum on Central Banking: Investment and Growth in Advanced Economie, 2017: 45-118. [101]AUTOR D H. Why Are There Still So Many Jobs? The History and Future of Workplace Automation[J]. Journal of Economic Perspectives, 2015: 3-30. [102]BESSEN J E. AI and Jobs: The Role of Demand[J]. SSRN Electronic Journal, 2017. [103]BESSEN J E. Automation and Jobs: When Technology Boosts Employment[J]. Economic Policy, 2019: 589-626. [104]BORJAS G J, FREEMAN R B. From Immigrants to Robots: The Changing Locus of Substitutes for Workers[J]. RSF-The Russell Sage Journal of the Social Sciences, 2019: 22-42. [105]BRYNJOLFSSON E, MITCHELL T, ROCK D. What Can Machines Learn, and What Does It Mean for Occupations and the Economy?[J]. AEA papers and proceedings, 2018: 43-47. [106]CHARNOZ P, ORAND M. Technical change and automation of routine tasks: Evidence from local labour markets in France, 19992011[J]. Economie et Statistique / Economics and Statistics, 2018: 103-122. [107]CHENG C, LUO J, ZHU C, ZHANG S. Artificial Intelligence and the Skill Premium: A Numerical Analysis of Theoretical Models[J]. Technological Forecasting and Social Change, 2024, 200: 123-140. [108]CORDUCK P. Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence[J]. Leonardo, 1979, 15(3): 242. [109]DAVID B. Computer technology and probable job destructions in Japan: An evaluation[J]. Journal of the Japanese and International Economies, 2017: 77-87. [110]DAWID H, NEUGART M. Effects of Technological Change and Automation on Industry Structure and (Wage-) Inequality: Insights from a Dynamic Task-Based Model[J]. Journal of Evolutionary Economics, 2023, 33(1): 35-63. [111]FREY C B, OSBORNE M A. The future of employment: How susceptible are jobs to computerisation?[J]. Technological Forecasting and Social Change, 2017: 254-280. [112]FURMAN J, SEAMANS R. AI and the Economy[J]. Innovation Policy and the Economy, 2019: 161-191. [113]GRAETZ G, MICHAELS G. Robots at work[J]. The Review of Economics and Statistics, 2018: 753-768. [114]GREGORY T, SALOMONS A, ZIERAHN U. Racing With or Against the Machine? : Evidence from Europe[J]. Research Papers in Economics, 2016. [115]GUELLEC D. Digital Innovation and the Distribution of Income[J]. Research Papers in Economics, 2021: 323-370. [116]GUIMARAES L, GIL P M. Explaining the Labor Share: Automation Vs Labor Market Institutions[J]. Labour Economics, 2022: 102-146. [117]HUTTER C, WEBER E. Labour market effects of wage inequality and skill-biased technical change[J]. Applied Economics, 2023: 3063-3084. [118] JASON F, ROBERT S. AI and the Economy[J]. Innovation Policy and the Economy, 2019, 19: 161-191. [119]JOHN M. What is artificial intelligence?[J]. The Journal Of Artificial Intelligence, 2007, 08. [120]KOCH M, MANUYLOV I. Measuring the Technological Bias of Robot Adoption and Its Implications for the Aggregate Labor Share[J]. Research Policy, 2023, 52(9): 104848. [121]LANKISCH C, PRETTNER K, PRSKAWETZ A. Robots and the skill premium: An automation-based explanation of wage inequality[J]. Research Papers in Economics, 2017. [122]LI R, LI C, GUO S. The Impact of Artificial Intelligence on the Labour Market: Evidence from China[J]. Amfiteatru Economic, 2024, 26(67): 867-883. [123]MICHAELS G, NATRAJ A, Van R J. Has ICT Polarized Skill Demand? Evidence from Eleven Countries over Twenty-Five Years[J]. Review of Economics and Statistics, 2014, 96(1): 60-77. [124]MOKYR J, VICKERS C, ZIEBARTH N L. The History of Technological Anxiety and the Future of Economic Growth: Is This Time Different?[J]. Journal of Economic Perspectives, 2015: 31-50. [125]NGUYEN H Q, VU M, CANTNER U, et al. Robot Revolution and Human Capital Accumulation: Implications for Growth and Labour Income[J]. Journal of Evolutionary Economics, 2024, 34(1): 89-126. [126]NORDHAUS W D. Are We Approaching an Economic Singularity" Information Technology and the Future of Economic Growth[J]. American Economic Journal: Macroeconomics, 2021, 13(1): 299-332. [127]OBERFIELd E, RAVAL D. Micro Data and Macro Technology[J]. Econometrica, 2021, 89(2): 703-732. [128]PER K, MUKOYAMA T, ROGERSON R, et al. Gross Worker Flows and Fluctuations in theAggregate Labor Market[J]. Review of Economic Dynamics, 2020, 37: 205-226. [129]STEMMLER H. Automated Deindustrialization: How Global Robotization Affects Emerging Economies Evidence from Brazil[J]. World Development, 2023, 171: 106349. [130]STIEL C, SCHIERSCH A. Testing the superstar firm hypothesis[J]. Journal of Applied Economics, 2022, 25(1): 583-603. [131]TRAJTENBERG M. AI as the next GPT: a Political-Economy Perspective[J]. CEPR Discussion Papers, 2018. [132]TYSON L D, ZYSMAN J. Automation, AI & Work[J]. Daedalus, 2022: 256-271. [133]WU Y, LIN Z, ZHANG Q, et al. Artificial Intelligence, Wage dynamics, and Inequality: Empirical Evidence from Chinese Listed Firms[J]. International Review of Economics & Finance, 2024, 96: 103739. ZHONG Y, XU F, ZHANG L. Influence of Artificial Intelligence Applications on Total Factor Productivity of Enterprises—Evidence from Textual Analysis of Annual Reports of Chinese-Listed Companies[J]. Applied Economics, 2024, 56(43): 5205-5223. |
中图分类号: | F24 |
开放日期: | 2025-06-14 |