- 无标题文档
查看论文信息

中文题名:

 冷藏生鲜牛肉新鲜度等级评定研究    

姓名:

 刘香    

学号:

 2022808131    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 086003    

学科名称:

 工学 - 生物与医药 - 食品工程    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 南京农业大学    

院系:

 食品科技学院    

专业:

 食品工程(专业学位)    

研究方向:

 肉品加工与质量控制    

第一导师姓名:

 叶可萍    

第一导师单位:

 南京农业大学    

第二导师姓名:

 赵弇锋    

完成日期:

 2025-06-15    

答辩日期:

 2025-05-20    

外文题名:

 Research on freshness grade evaluation of refrigerated chilled beef    

中文关键词:

 生鲜牛肉 ; 新鲜度 ; Fisher判别分析 ; BP神经网络 ; 挥发性气味物质    

外文关键词:

 freshness grade ; chilled beef ; Fisher discriminant analysis (FDA) ; backpropagation neural network (BPNN) ; Volatile organic compounds (VOCs)    

中文摘要:

牛肉富含丰富的蛋白质、脂肪、维生素和矿物质,可为人类提供必需氨基酸、矿物质和维生素等必需营养素,近年来牛肉在我国的生产和消费率逐年增长,在我国肉类消费中占据重要地位,且冷鲜肉在消费比例中占据主导地位。然而,牛肉在生产、运输和销售各环节极易遭到微生物污染,导致新鲜度下降。利用牛肉理化品质多指标综合评价,实现牛肉新鲜度等级(新鲜、次新鲜和腐败)准确地评定是目前牛肉品质研究中的重要目标。因此,本研究以4℃贮藏的牛肉为研究对象,对其进行感官评价和理化品质测定,筛选出表征牛肉新鲜度变化的标志性理化指标,结合Fisher判别模型和BP神经网络模型,通过结构优化和参数优化得到具有最佳性能的模型,以此准确地评定生鲜牛肉新鲜度等级。在此基础上,以吸附-热脱附-气质联用法(ATD-GC-MS)和固相微萃取-气质联用法(SPME-GC-MS)为检测方法,鉴定不同新鲜度等级下牛肉的关键挥发性气味物质。该研究为生鲜牛肉的新鲜度等级评定提供了科学的方法,主要的研究结果如下:
1.4℃贮藏下生鲜牛肉新鲜度品质关键性指标的研究
本章开展4℃贮藏生鲜牛肉的感官评价和理化品质指标测定试验,结合感官评分和理化指标进行分析,筛选出表征新鲜度变化的标志性理化指标。生鲜牛肉在冷藏过程中的新鲜度品质不断下降,主要体现在色泽、组织形态、粘弹性和气味上,并依据这四个方面划分生鲜牛肉新鲜度等级(新鲜、次新鲜和腐败)。根据感官评价与理化指标结果之间的相关性分析,TVB-N、TBARS和TCA可溶性肽含量三个指标与感官评价具有强相关性和稳定性,可以显著表征生鲜牛肉的新鲜度等级变化。
2.生鲜牛肉新鲜度等级评定模型的构建与优化
本章以Fisher判别分析和BP神经网络模型为建模方法,进行结构优化和参数优化。Fisher判别模型的输入参数为TVB-N含量和TBARS值时,模型具有最优评定新鲜度等级性能,建模组分类效果为85.2%,验证组分类效果为87.8%。BP神经网络模型当输入参数为TVB-N值和TBARS值,训练函数为trainlm,传递函数组合为logsig和purelin,学习率为0.9,隐藏层神经元个数为10时,新鲜度等级评定模型具有最优性能。
3.吸附-热脱附-GC-MS和SPME-GC-MS法分析不同新鲜度牛肉关键挥发性气味物质
本章以新鲜、次新鲜和腐败牛肉为研究对象,利用吸附-热脱附-气质联用法(ATD-GC-MS)和固相微萃取-气质联用法(SPME-GC-MS)为检测方法,鉴定出牛肉中关键挥发性气味物质。吸附-热脱附-GC-MS法检测结果分析,正己烷和2-丁酮为新鲜牛肉组关键挥发性气味物质,2,3-丁二醇和2,3-丁二酮为次新鲜牛肉组关键挥发性气味物质,乙酸为腐败组的关键性气味物质。SPME--GC-MS法检测结果分析,苯甲醚和十五醛为新鲜牛肉关键性挥发性气味物质,9-十八烯酸甲酯和十六醛为次新鲜牛肉关键性气味物质,十六酸甲酯和十四酸甲酯为腐败牛肉关键性气味物质。

外文摘要:

Beef is rich in proteins, fats, vitamins, and minerals, providing humans with essential nutrients such as amino acids, minerals, and vitamins. However, beef is highly susceptible to microbial contamination during production, transportation, and retail, leading to a decline in freshness. A comprehensive evaluation of beef’s physicochemical properties to accurately assess its freshness grade (fresh, sub-fresh, or spoiled) remains a critical objective in beef quality research. This study focuses on beef stored at 4, conducting sensory evaluations and physicochemical analyses to identify key indicators of freshness changes. By integrating Fisher discriminant analysis and a BP neural network model, optimized through structural and parameter adjustments, we developed a high-performance model for precise freshness grading. Furthermore, adsorption-thermal desorption-gas chromatography-mass spectrometry (ATD-GC-MS) and solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) were employed to identify critical volatile organic compounds (VOCs) associated with different freshness levels. This research establishes a scientific methodology for freshness assessment of raw beef, with key findings as follows:
1. Study on key indicators of fresh beef quality during 4℃ storage
This chapter investigated the sensory evaluation and physicochemical properties of fresh beef stored at 4℃. By analyzing the correlation between sensory scores and physicochemical parameters, we identified key indicators that effectively characterize freshness deterioration. During refrigerated storage, the freshness quality of beef progressively declines, primarily manifested in color, texture, viscoelasticity, and odor. Based on these attributes, beef freshness was classified into three grades: fresh, sub-fresh, and spoiled. Correlation analysis revealed that TVB-N, TBARS, and TCA-soluble peptide content exhibited strong and stable associations with sensory evaluation. These three indicators serve as robust markers for distinguishing freshness levels in beef.

参考文献:

[1]白婷,周星辰,何丹等.天然植物提取物对四川腊肉产品特性的影响研究[J].中国调味品, 2021, 46(06): 77-82.

[2]沈海军,张汤磊,许振兴等.基于Fisher判别分析对苹果新鲜度的识别研究[Z].食品工业科技, 2023: 361-368.

[3]沈华明.200份食品微生物检测中PCR检测技术运用及结果分析[Z].食品安全导刊,2023: 63-65.

[4]陈泓帆,聂鑫,宋川等.不同种类白酒对广式香肠质构和风味的影响分析[Z].食品科技,2022: 104-112.

[5]陈来华,李娟,王亚辉.中国肉牛产业发展概况分析、存在问题及对策[Z].中国食物与营养,2022: 5-9.

[6]陈少淮,张甫,杨宇祥.肉类新鲜度检测方法研究进展[Z].食品安全质量检测学报,2024: 92-101.

[7]陈卫明,李庆霞,张芳等.加速溶剂萃取-气相色谱/气相色谱-质谱法测定土壤中7种多氯联苯[Z].岩矿测试,2011: 33-39.

[8]陈永芳,周光宏.肉丸制品胀袋原因及其控制技术研究[D].南京农业大学. 2022.

[9]杜林.冷藏肉品中的病原微生物[J].肉品卫生, 1999(09): 11-12.

[10]方靖,徐清霞,冼灿标.半自动凯氏定氮仪法测定挥发性盐基氮含量[J].广州化工, 2019, 47(07): 108-109+156.

[11]冯旭日,张晶晶.基于Fisher判别法的P2P网络借贷平台信誉等级评价模型[J].金融理论与实践, 2014(11): 51-56.

[12]葛萍,崔晓钢;薄涛.不同酒曲甜型黍米黄酒酿造工艺开发及其风味形成机制研究[D].山西大学. 2024.

[13]郭依萍,李冉,叶可萍等.气调包装协同低温等离子体杀菌对狮子头保鲜效果的影响[J].核农学报, 2022a, 36(09): 1815-1825.

[14]郭依萍,叶可萍;朱小兵.温度波动对冰温及微冻贮藏生鲜猪肉品质和保鲜效果的影响[D].南京农业大学. 2022b.

[15]郭宗敏,徐冰峰.优化BP和RBF预测模型对污水厂控磷的研究[D].昆明理工大学. 2020.

[16]胡三梅.肉及肉制品微生物检测新技术研究进展[J].肉类研究, 2022, 36(05): 62-67.

[17]胡亚萍,康立超,朱荣光等.羊肉在不同储存温度下挥发性盐基氮的变化研究[Z]食品安全导刊,2022: 98-100+104.

[18]贾红丽,张艳艳,王萍等.吸附管采样—热脱附/冷阱捕集—气相色谱—质谱法测定室内空气中烷烃类化合物[J].分析仪器, 2023(02): 43-46.

[19]金伟平,黄志强,刘群群等.顶空固相微萃取-气质联用法分析单增李斯特菌污染冷藏牛肉的挥发性物质[J].食品科学, 2012, 33(02): 243-247.

[20]孔凡真.冷却肉的腐败变质与保鲜包装技术[J].肉类工业, 2006(11): 3-4.

[21]李瀚洋, 融亦鸣;李学崑.面向光泽度创成的管类零件多序抛光工艺建模及实现技术[D].哈尔滨理工大学. 2018.

[22]李思懿,粘颖群,谭建庄等.基于电子鼻快速检测生鲜猪肉的异味[Z].食品工业科技,2023: 338-348.

[23]李艳亮,金邦荃,诸永志.低温肉制品中腐败菌的分离鉴定[J].内蒙古农业科技, 2009(03): 62-63+77.

[24]李正堂,李柏林,欧杰等.市售冷却牛肉中主要细菌的常规分离与鉴定[J].微生物学通报, 2009, 36(02): 198-204.

[25]刘承友,刘梦,唐晗昱等.热脱附-气相色谱-三重四极杆质谱法测定环境空气中17种挥发性持久性有机污染物[Z].分析试验室,2025: 47-54.

[26]刘丹飞,李晓璇,蒲玉梅等.冷藏条件下鸡胸肉品质变化及新鲜度评价模型的构建[Z].食品安全质量检测学报,2023: 152-159.

[27]刘金山,夏强.应用多元统计分析[M]. 人民邮电出版社, 202108: 239.

[28]刘洋帆,王迪,李春生等.冷藏鲣鱼优势腐败产胺菌分离鉴定及其致腐产胺能力分析[Z].食品工业科技,2022: 168-175.

[29]刘子宇,周伟.冷却猪肉中主要微生物的分离与初步鉴定[J]. 肉品卫生, 2005(06): 17-19.

[30]卢峰,刘靳波.基于检验组学及机器学习的乳腺癌诊断预后模型研究[D].西南医科大学. 2024.

[31]陆逸峰,何子豪,曾宪明等.基于BP神经网络的鸡蛋货架期和贮藏时间预测模型研究[J]. 食品科学, 2023, 44(21): 44-53.

[32]罗颂荣,程军圣.基于变量预测模型模式识别的旋转机械故障诊断研究[D].湖南大学. 2015.

[33]罗欣,朱燕. Nisin在牛肉冷却肉保鲜中的应用研究[J]. 食品科学, 2000(03): 53-57.

[34]马艳丽,杜鹏飞,王守经等.4℃冷藏温度下羊肉新鲜度评价模型的构建[Z].食品科技,2023: 100-105.

[35]潘晓倩,赵燕,张顺亮等.新鲜牛肉冷藏过程中挥发性成分的变化[Z].肉类研究,2016: 15-19.

[36]潘扬昌,黄璐璐,梁勇等.活性炭吸附–热脱附–气相色谱法测定室内空气中5种挥发性卤代烃[J]. 化学分析计量, 2018, 27(04): 21-24.

[37]彭易杭.基于边缘云计算的无线网络设备健康状态评估[Z].九江学院学报(自然科学版),2024: 70-74.

[38]孙晓明,张海妍,张松山等.市售鸡肉产品的食源性致病微生物检测的研究[J]. 肉类研究, 2010(07): 50-53.

[39]田晓静,王俊.质构分析在肉制品检测中的应用[Z].食品安全质量检测学报,2014: 1654-1660.

[40]王官琴,金锦雨,李通等.HS-SPME-GC-MS结合电子鼻分析松茸常温贮藏期间挥发性物质的变化[J]. 保鲜与加工, 2025, 25(03): 117-124.

[41]王璐,肖珊.蛋白核小球藻及其活性肽对即食香肠品质的影响研究[D].大连工业大学. 2021.

[42]王明利. 2022年肉牛产业发展形势及2023年展望[J]. 中国畜禽种业, 2023, 19(04): 41-45.

[43]王文秀,彭彦昆.生鲜猪肉品质的多参数同时实时光谱检测技术与装置研究[D].中国农业大学. 2018.

[44]王兆明,贺稚非,李洪军.脂质和蛋白质氧化对肉品品质影响及交互氧化机制研究进展[J]. 食品科学, 2018, 39(11): 295-301.

[45]魏萌,张丽,张一敏等.我国肉牛屠宰加工产业发展现状及对策研究[Z].吉林农业大学学报,2023: 429-436.

[46]魏祯倩,周光宏.不同温度贮藏过程中猪肉新鲜度指示肽段研究[D].南京农业大学. 2022.

[47]吴靖娜,刘智禹,苏捷等.GS-MS法分析液熏前后大黄鱼风味成分的变化[Z].福建水产,2014: 102-109.

[48]郗泽文,成策,彭盛峰等.柠檬精油乳液可食用涂膜液对冷藏卤鸭脖的保鲜效果[J]. 食品科学, 2020, 41(01): 237-243.

[49]肖旭,贺稚非,张枭等.微冻和冷藏对2种毛肚品质影响的差异性分析[Z].食品与发酵工业,2022: 257-266.

[50]谢晶,程颖,杨胜平等.腐败希瓦氏菌对凡纳滨对虾氨基酸及生物胺含量的影响[Z].中国食品学报,2018: 169-175.

[51]熊来怡,胡耀华.近红外光谱技术检测猪肉品质及其安全判别研究[D].西北农林科技大学. 2012.

[52]徐慧琳,魏嘉,张翔等.牛肉安全品质生产控制与市场需求[J]. 中国畜禽种业, 2023, 19(05): 140-143.

[53]许蓉蓉,韦淑钰,徐梓健等.高效液相色谱法定量测定广西发酵麻笋风味标志物[Z].食品安全质量检测学报,2021: 6056-6061.

[54]易守福,梁锋,何青科等.QuEChERS-气相色谱—三重四极杆质谱法同时测定黑茶中10种酰胺类除草剂残留[Z].食品与机械,2021: 57-62.

[55]于英杰,佟月英.牛肉新鲜度检验指标的研究[D].吉林大学. 2006.

[56]张鸽,尤娟,杨宏.冻结方式对猪肝理化特性和蛋白质氧化的影响[Z].食品工业科技,2025: 342-349.

[57]张国胜,张帆,邹洵等.基于Fisher判别分析的轮毂识别研究[J]. 农业装备与车辆工程, 2020, 58(05): 62-66.

[58]张晗,吕鸣春,梅卡琳等.电子束辐照对鲈鱼肉杀菌保鲜效果及品质的影响[J]. 食品科学, 2018, 39(21): 66-71.

[59]张晋豪,王浩东,邵良婷等.生鲜肉新鲜度新型快速表征技术研究进展[J]. 食品科学, 2022, 43(13): 210-217.

[60]张秀青,谢兰兰.国际牛羊肉市场发展趋势及我国面临的风险点分析[Z].价格理论与实践. 2022: 79-83+200.

[61]张雪娇,屠康.一种牛肉新鲜度指示卡的制作与应用研究[D].南京农业大学. 2018.

[62]周煦成,邹小波.基于蚕丝丝素纤维的气敏传感器开发及检测猪肉新鲜度研究[D].江苏大学. 2017.

[63]朱金虎,黄卉,李来好.食品中感官评定发展现状[Z].食品工业科技,2012: 398-401+405.

[64]庄夏芳,李闽.固体吸附/热脱附和活性炭吸附/二硫化碳解吸-气相色谱法测定环境空气中苯系物的方法比较[J]. 科学技术创新, 2021(05): 47-48.

[65]AlejandroPalacios, LéonChiriatti, SimonPoppinga, et al. Smart Bioinspired Material‐Based Actuators: Current Challenges and Prospects[J]. Advanced Intelligent Systems, 2024, 7(3): 2400396-2400396.

[66]Amjad S, Sam A D, Jianan W, et al. Aroma compounds identified in cooked meat: A review[J]. Food Research International, 2022, 157: 111385-111385.

[67]Antwi P, Li J, Boadi P O, et al. Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network[J]. Bioresource Technology, 2017, 228: 106-115.

[68]Argemí-Armengol I, Villalba D, Tor M, et al. The extent to which genetics and lean grade affect fatty acid profiles and volatile compounds in organic pork[J]. PeerJ, 2019, 7: e7322.

[69]Argyri A A, Mallouchos A, Panagou E Z, et al. The dynamics of the HS/SPME–GC/MS as a tool to assess the spoilage of minced beef stored under different packaging and temperature conditions[J]. International Journal of Food Microbiology, 2015, 193: 51-58.

[70]Brewer M S. Irradiation effects on meat flavor: A review[J]. Meat Science, 2008, 81(1): 1-14.

[71]Bogusz J S, et al. Volatile compounds profile of roasted beef from crossbred animals finished on feedlot or pasture[J]. Meat and Muscle Biology, 2017, 1(3): 103-103.

[72]Calkins C R, Hodgen J M. A fresh look at meat flavor[J]. Meat Science, 2007, 77(1): 63-80.

[73]Can Z, Hao Z, Ming L, et al. Effect of Breed on the Volatile Compound Precursors and Odor Profile Attributes of Lamb Meat[J]. Foods, 2020, 9(9): 1178-1178.

[74]Charen C, Waturangi D E. Assessment of antibiofilm and quorum quenching potencies of environmental bacteria in controlling biofilm of food spoilage bacteria.[J]. BMC research notes, 2025, 18(1): 71.

[75]Cheng W, Sun D W, Pu H, et al. Integration of spectral and textural data for enhancing hyperspectral prediction of K value in pork meat[J]. LWT - Food Science and Technology, 2016, 72: 322-329.

[76]College of Engineering C A U, et al. Application of multi-element viscoelastic models to freshness evaluation of beef based on the viscoelasticity principle.[J]. Journal of Texture Studies, 2019, 50(4): 306-315.

[77]Cramer T, Legako J F, Ponce J A, et al. Effects of Packaging Conditions on Volatile Compounds of Raw Beef from Two Muscles[J]. Journal of Animal Science, 2018, 96: 24-25.

[78]D.D D,Sharma V, Mangal M, et al. NIR spectroscopy prediction model for capsaicin content estimation in chilli: A rapid mining tool for trait-specific germplasm screening[J]. Journal of Food Composition and Analysis, 2025, 137(PA): 106915-106915.

[79]Escuder-Gilabert L, Peris M. Review: Highlights in recent applications of electronic tongues in food analysis[J]. Analytica Chimica Acta, 2010, 665(1): 15-25.

[80]Eun-Joo L, Han-Seung S. Development of a freshness indicator for monitoring the quality of beef during storage.[J]. Food Science and Biotechnology, 2019, 28(6): 1899-1906.

[81]Fatchurrahman D, Hilaili%ANurwahyuningsih M, Russo L, et al. Utilizing RGB imaging and machine learning for freshness level determination of green bell pepper (Capsicum annuum L.) throughout its shelf-life[J]. Postharvest Biology and Technology, 2025, 222: 113359-113359.

[82]Ghasemi-Varnamkhasti M, Mohammad-Razdari A, Yoosefian S H, et al. Selection of an optimized metal oxide semiconductor sensor (MOS) array for freshness characterization of strawberry in polymer packages using response surface method (RSM)[J]. Postharvest Biology and Technology, 2019, 151: 53-60.

[83]Gil L, Barat J M, Baigts D, et al. Monitoring of physical–chemical and microbiological changes in fresh pork meat under cold storage by means of a potentiometric electronic tongue[J]. Food Chemistry, 2011, 126(3): 1261-1268.

[84]Gong B, Ordieres-Meré J. Prediction of daily maximum ozone threshold exceedances by preprocessing and ensemble artificial intelligence techniques: Case study of Hong Kong[J]. Environmental Modelling and Software, 2016, 84: 290-303.

[85]Gram L, Dalgaard P. Fish spoilage bacteria – problems and solutions[J]. Current Opinion in Biotechnology, 2002, 13(3): 262-266.

[86]Hao J, Shi Y, Xu C, et al. Different effects of super-chilling and chilling storage on pork spoilage: Insights from dynamic microbial community changes and metabolic profiles[J]. International Journal of Food Microbiology, 2025, 434: 111153-111153.

[87]Hu M, Zhang C, Wu S, et al. Unravelling the correlations between predominant microbiota with physicochemical properties and volatile compounds in sauce-braised duck wings during cold storage[J]. LWT, 2025, 219: 117569-117569.

[88]Hunt M R, Legako J F, Dinh T T N, et al. Assessment of volatile compounds, neutral and polar lipid fatty acids of four beef muscles from USDA Choice and Select graded carcasses and their relationships with consumer palatability scores and intramuscular fat content[J]. Meat Science, 2016, 116: 91-101.

[89]Insausti K, Goñi V, Petri E, et al. Effect of weight at slaughter on the volatile compounds of cooked beef from Spanish cattle breeds[J]. Meat Science, 2004, 70(1): 83-90.

[90]Jeon H, Lee S C, Cho Y J, et al. A triple-isotope approach for discriminating the geographic origin of Asian sesame oils[J]. Food Chemistry, 2015, 167: 363-369.

[91]Jian Z, Dacheng K, Wangang Z, et al. Recent advantage of interactions of protein-flavor in foods: Perspective of theoretical models, protein properties and extrinsic factors[J]. Trends in Food Science & Technology, 2021, 111: 405-425.

[92]Jiang S, Wang J. Internal quality detection of Chinese pecans ( Carya cathayensis ) during storage using electronic nose responses combined with physicochemical methods[J]. Postharvest Biology and Technology, 2016, 118: 17-25.

[93]Jimoh K A, Hashim N, Shamsudin R, et al. Hyperspectral imaging for detection of macronutrients retained in glutinous rice under different drying conditions[J]. Current Research in Food Science, 2025, 10: 100963-100963.

[94]Jin X, He H, Jiang J, et al. Cotton fabric moisture content quantitative detection method based on hyperspectral imaging[J]. The Journal of The Textile Institute, 2024, 115(12): 2545-2553.

[95]Johnson D R, Decker E A. The Role of Oxygen in Lipid Oxidation Reactions: A Review[J]. Annual Review of Food Science and Technology, 2015, 6(1): 171-190.

[96]Khataee A R, Dehghan G, Ebadi A, et al. Biological treatment of a dye solution by Macroalgae Chara sp.: Effect of operational parameters, intermediates identification and artificial neural network modeling[J]. Bioresource Technology, 2009, 101(7): 2252-2258.

[97]Lhmm, J C, M T S, et al. Gases and volatile compounds associated with micro-organisms in blown pack spoilage of Brazilian vacuum-packed beef.[J]. Letters in Applied Microbiology, 2012, 55(6): 467-475.

[98]Lara M, Carlos V, Manuel L J, et al. Characterization of volatile compounds of cooked wild Iberian red deer meat extracted with solid phase microextraction and analysed by capillary gas chromatography - mass spectrometry[J]. LWT, 2022, 163.

[99]Li J chao, Zhao D ling, Ge B F, et al. A link prediction method for heterogeneous networks based on BP neural network[J]. Physica A: Statistical Mechanics and its Applications, 2018, 495: 1-17.

[100]Linjie X, Jing Z, Ruixiao W, et al. Characterization of the Volatile Compounds of Zhenba Bacon at Different Process Stages Using GC–MS and GC–IMS[J]. Foods, 2021, 10(11): 2869-2869.

[101]Liu Q, Jiang X, Wang F, et al. Evaluation and process monitoring of jujube hot air drying using hyperspectral imaging technology and deep learning for quality parameters[J]. Food Chemistry, 2025, 467: 141999-141999.

[102]Lyte J M, Legako J F, Martin J N, et al. Volatile compound characterization of modified atmosphere packaged ground beef held under temperature abuse[J]. Food Control, 2016, 59: 1-6.

[103]Marina K, Amir G, Munevera B, et al. Volatile compounds of Kupres lamb[J]. MESO: Prvi hrvatski časopis o mesu, 2020, XXII(2): 129-141.

[104]Martin D, Antequera T, Muriel E, et al. Volatile compounds of fresh and dry-cured loin as affected by dietary conjugated linoleic acid and monounsaturated fatty acids[J]. Meat Science, 2008, 81(3): 549-556.

[105]Mesery H S E, Qenawy M, Ali M, et al. Optimization of dried garlic physicochemical properties using a self-organizing map and the development of an artificial intelligence prediction model[J]. Scientific Reports, 2025, 15(1): 3105-3105.

[106]Minghui G, Cheng L, Li C, et al. Insight from untargeted metabolomics: Revealing the potential marker compounds changes in refrigerated pork based on random forests machine learning algorithm[J]. Food Chemistry, 2023, 424: 136341-136341.

[107]Mingzhu Z, Dongyin L, Wenxing Q, et al. Lipidomics and GC-MS analyses of key lipids for volatile compound formation in crayfish meat under different thermal processing treatments[J]. LWT, 2023, 189.

[108]Muthuraman S, Flint S, Palmer J. Characterization of the extracellular polymeric substances matrix of Pseudomonas biofilms formed at the air-liquid interface[J]. Food Bioscience, 2025, 64: 105918-105918.

[109]Nantawat T, Fatih O, P R M, et al. Paradoxical effects of lipolysis on the lipid oxidation in meat and meat products[J]. Food Chemistry: X, 2022, 14: 100317-100317.

[110]Nasr N, Hafez H, Naggar M H E, et al. Application of artificial neural networks for modeling of biohydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(8): 3189-3195.

[111]Niu Y, Ye L, Shi Y, et al. Development of shelf-life prediction models and programs for “Xuxiang” kiwifruit stored at different temperatures[J]. Postharvest Biology and Technology, 2025, 223: 113428-113428.

[112]Osaili T, Waseem Z, Hasan F, et al. Unleashing the antimicrobial potential of high-pressure processing on beverages, sauces, purées, and milk: A predictive modelling approach[J]. Applied Food Research, 2025, 5(1): 100676-100676.

[113]Oto N, Oshita S, Makino Y, et al. Non-destructive evaluation of ATP content and plate count on pork meat surface by fluorescence spectroscopy[J]. Meat Science, 2013, 93(3): 579-585.

[114]Özogul Y, Özyurt G, Özogul F, et al. Freshness assessment of European eel ( Anguilla anguilla ) by sensory, chemical and microbiological methods[J]. Food Chemistry, 2004, 92(4): 745-751.

[115]Panigrahi S, Balasubramanian S, Gu H, et al. Neural-network-integrated electronic nose system for identification of spoiled beef[J]. LWT - Food Science and Technology, 2005, 39(2): 135-145.

[116]Pannier L, Tarr G, Pleasants T, et al. The construction of a sheepmeat eating quality prediction model for Australian lamb.[J]. Meat science, 2024, 220: 109711.

[117]Paolo P, Giuseppe S, Yulia K, et al. Effects of Ageing on Donkey Meat Chemical Composition, Fatty Acid Profile and Volatile Compounds[J]. Foods, 2022, 11(6): 821-821.

[118]Qian Y, Liu T, Yang L, et al. Electroactivity of Shewanella putrefaciens induced by shrimp matrix: Catalyst for spoilage acceleration[J]. International Journal of Food Microbiology, 2025, 434: 111119-111119.

[119]R B L, Lara M, Ángel S M, et al. Effect of ageing time on the volatile compounds from cooked horse meat[J]. Meat Science, 2022, 184: 108692-108692.

[120]Rosa A R D, Leone F, Cheli F, et al. Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment – A review[J]. Journal of Food Engineering, 2017, 210: 62-75.

[121]S B, W V, C C. Effect of porcine plasma protein and setting on gel properties of surimi produced from fish caught in Thailan[J]. LWT-Food Science & Technology, 2004, 37(2): 177-185.

[122]Shen X, Xing L, Pan L, et al. Prediction of chicken breast meat freshness based on hyperspectral imaging technique and high-throughput sequencing[J]. Poultry Science, 2025, 104(4): 104999-104999.

[123]Sica J, Crosato G, Molinelli Z, et al. Chemical and microbiological assessment of early wine fermentation phase can predict yeast cell viability during post-fermentation process[J]. International Journal of Food Microbiology, 2025, 429: 111011-111011.

[124]Sidira M, Kandylis P, Kanellaki M, et al. Effect of immobilized Lactobacillus casei on the evolution of flavor compounds in probiotic dry-fermented sausages during ripening[J]. Meat Science, 2015, 100: 41-51.

[125]Song S, Zhang X, Hayat K, et al. Formation of the beef flavour precursors and their correlation with chemical parameters during the controlled thermal oxidation of tallow[J]. Food Chemistry, 2010, 124(1): 203-209.

[126]Stahnke L H. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels — Part II. Volatile components[J]. Meat Science, 1995, 41(2): 193-209.

[127]Suman S P, Joseph P. Myoglobin Chemistry and Meat Color[J]. Annual Review of Food Science and Technology, 2013, 4(1): 79-99.

[128]Sun Y, Zhang M, Bhandari B, et al. Intelligent detection of flavor changes in ginger during microwave vacuum drying based on LF-NMR[J]. Food Research International, 2019, 119: 417-425.

[129]Tanimoto S, Kitabayashi K, Fukusima C, et al. Effect of storage period before reheating on the volatile compound composition and lipid oxidation of steamed meat of yellowtail Seriola quinqueradiata[J]. Fisheries Science, 2015, 81(6): 1145-1155.

[130]Tanimoto, Shimoda. Changes in Volatile Compounds of Dark and Ordinary Muscles of Yellowtail ( Seriola quinqueradiata ) During Short-Term Cold Storage[J]. Journal of Aquatic Food Product Technology, 2016, 25(2): 185-196.

[131]Tian D, Ge J, Su N. A hybrid spectral prediction model for printed images based on whale-optimized deep neural network[J]. Frontiers in Physics, 2024, 12: 1429621-1429621.

[132]Tomasevic I, Tomovic V, Milovanovic B, et al. Comparison of a computer vision system vs. traditional colorimeter for color evaluation of meat products with various physical properties[J]. Meat Science, 2018, 148: 5-12.

[133]Vanessa F, Larissa A, Stanislau B J, et al. Optimization of extraction conditions of volatile compounds of roasted beef by solid-phase microextraction[J]. Química Nova, 2020.

[134]Wang L, Kowalski E, Millet S, et al. Effect of by-products-based diet and intramuscular fat content on volatile compounds from pork[J]. Meat Science, 2025, 222: 109758-109758.

[135]Wang M, Zhang J, Zhang Z, et al. Simultaneous ultraviolet spectrophotometric determination of sodium benzoate and potassium sorbate by BP-neural network algorithm and partial least squares[J]. Optik, 2020, 201: 163529-163529.

[136]Wang R, Kong X, Xianhao F, et al. Enhanced convolutional neural network for apple shelf life prediction[J]. Journal of Physics: Conference Series, 2025, 2963(1): 012002-012002.

[137]Wang Z, Ahmad W, Zhao S, et al. Temporal analysis of non-targeted flavor component variation in green tea storage and rapid prediction of storage duration[J]. Food Chemistry, 2025, 464(P3): 141898-141898.

[138]Wei H, Shi D, Rupert E, et al. Axial compressive behavior of novel laminated bamboo tubes: Experimental tests and predictive buckling model[J]. Construction and Building Materials, 2025, 463: 139987-139987.

[139]Wu Z, Cha S, Wang C, et al. Salmon Consumption Behavior Prediction Based on Bayesian Optimization and Explainable Artificial Intelligence[J]. Foods, 2025, 14(3): 429-429.

[140]Xiao Z, Ye S J, Zhong B, et al. BP neural network with rough set for short term load forecasting[J]. Expert Systems With Applications, 2007, 36(1): 273-279.

[141]Xiaohong W, Xinyue L, Yixuan W, et al. Non-Destructive Techniques for the Analysis and Evaluation of Meat Quality and Safety: A Review[J]. Foods, 2022, 11(22): 3713-3713.

[142]Xiong Z, Sun D W, Pu H, et al. Non-destructive prediction of thiobarbituricacid reactive substances (TBARS) value for freshness evaluation of chicken meat using hyperspectral imaging[J]. Food Chemistry, 2015, 179: 175-181.

[143]Ying W, Ya-Ting J, Jin-Xuan C, et al. Study on lipolysis-oxidation and volatile flavour compounds of dry-cured goose with different curing salt content during production[J]. Food Chemistry, 2016, 190: 33-40.

[144]Yu L, Pang Y, Shen G, et al. Identification and selection of volatile compounds derived from lipid oxidation as indicators for quality deterioration of frozen white meat and red meat using HS-SPME-GC-MS combined with OPLS-DA.[J]. Food chemistry, 2024, 463(Pt 1): 141112.

[145]Zhang B, Wang Y, Wang J, et al. The establishment of ham grade, sensory scores and key flavor substances prediction models for Jinhua ham via E-nose combined with machine learning[J]. Food Chemistry, 2025, 472: 142847-142847.

[146]Zhang Y, Chen X, Chen D, et al. Machine learning-based classification and prediction of typical Chinese green tea taste profiles[J]. Food Research International, 2025, 203: 115796-115796.

[147]Zhao S, Jiao T, Adade S Y S S, et al. Digital twin for predicting and controlling food fermentation: A case study of kombucha fermentation[J]. Journal of Food Engineering, 2025, 393: 112467-112467.

[148]Zhiling W, Yixin Y, Bo H, et al. Characteristic Volatile Fingerprints of Four Chrysanthemum Teas Determined by HS-GC-IMS[J]. Molecules, 2021, 26(23): 7113-7113.

[149]Zhou J, Han Y, Zhuang H, et al. Influence of the Type of Extraction Conditions and Fiber Coating on the Meat of Sauced Duck Neck Volatile Compounds Extracted by Solid-Phase Microextraction (SPME)[J]. Food Analytical Methods, 2015, 8(7): 1661-1672.

[150]Zhu W, Cheng Y, Zhang Y, et al. Antibiofilm efficacies and mechanism of perillaldehyde against Shewanella putrefaciens[J]. Food Microbiology, 2025, 128: 104699-104699.

[151]Zhu Z, Bai X, Xiong S, et al. Predictive modeling of wine fruity ester production based on nitrogen profiles of initial juice[J]. Food Bioscience, 2025, 63: 105658-105658.

[152]Zou Y, Kang D, Liu R, et al. Effects of ultrasonic assisted cooking on the chemical profiles of taste and flavor of spiced beef[J]. Ultrasonics - Sonochemistry, 2018, 46: 36-45.

中图分类号:

 TS2    

开放日期:

 2025-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式