题名: | 水稻高垩白粒率 QTL 位点 qPGWC-7 候选基因的验证与功能初步分析 |
作者: | |
学号: | 2022101109 |
保密级别: | 保密两年 |
语种: | chi |
学科代码: | 090102 |
学科: | 农学 - 作物学 - 作物遗传育种 |
学生类型: | 硕士 |
学位: | 农学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 水稻分子育种 |
导师姓名: | |
导师单位: | |
完成日期: | 2025-05-29 |
答辩日期: | 2025-05-29 |
外文题名: | Validation and Preliminary Functional Analysis of Candidate Genes at the qPGWC-7 Locus Associated with High Chalk Grain Percentage in Rice |
关键词: | |
外文关键词: | Rice ; Chalkiness ; Belly chalkiness ; Starch synthesis ; Mitochondria |
摘要: |
水稻(Oryza sativa L.)是全球重要的粮食作物,其品质改良对确保粮食供应稳定及适应消费需求升级具有关键作用。稻米外观品质是决定市场价值与消费者选择的首要指标,而垩白(胚乳中白色不透明区域)作为核心表型特征,直接影响稻米碾磨品质、蒸煮特性及商品价值。垩白形成受遗传调控与环境因子互作的共同影响,其分子机制的解析是突破水稻优质育种的瓶颈问题。目前研究表明,籽粒灌浆缺陷和胚乳贮藏物质代谢异常是垩白形成的主要原因,但关键调控网络仍有待完善。 目前研究报道籽粒灌浆和胚乳贮藏物质缺陷是造成垩白形成的主要原因。本研究从 9311 和 高垩白材料 PA64S 构建的染色体片段置换系(CSSL)群体中筛选出的高垩白家系,将其命名为 C51 染色体片段置换系(Chromosome Segment Substitution Line, CSSL),旨在解析其高垩白表型的遗传基础,明确 7 号染色体主效数量性状位点(Quantitative trait locus, QTL)qPGWC-7 的候选基因,为垩白形成的分子机制研究提供新见解。研究结果如下: 连续多年多点试验表明,C51 的垩白粒率和腹白粒率均显著高于 9311,且受低温和低氮条件显著诱导。对 9311 与 C51 连续发育时期胚乳横切面观察发现 C51 在开花后(Day After Flowering, DAF)18 天出现腹白,且扫描电镜观察发现,在 15 DAF 时 C51 胚乳腹白区域淀粉颗粒开始出现呈不规则椭圆形,排布疏松且表面黏附物增多,与 9311 致密六面体结构形成鲜明对比。 2. 发育中胚乳细胞学观察发现 C51 腹部淀粉颗粒在胚乳发育早期(6-12 DAF)合成速率减缓,直径减小,淀粉沉积面积占比下降。生理指标测定发现 C51 成熟籽粒总淀粉含量显著低于 9311,直链淀粉与支链淀粉比例失衡,快速黏度分析(Rapid Visco Analyser, RVA)谱特征值(峰值粘度、崩解值等)显著降低。表达水平分析进一步揭示 C51 中淀粉合成关键基因在胚乳发育过程中显著下调。 3. 在 qPGWC-7 定位的 7 号染色体 44 kb 区间内,通过一代测序、基因注释以及表达模式分析筛选出 6 个候选基因并构建基因组互补转基因材料。多世代表型分析表明,ORF4(Open Reading Frame 4) 转基因家系(T1-T3代)垩白粒率和腹白粒率与 C51 无显著差异,且低温低氮环境下表型稳定性增强。扫描电镜显示 ORF4 转基因家系成熟籽粒胚乳腹白区域淀粉颗粒呈不规则椭圆形,排布疏松且表面黏附物增多,与 C51 表型高度一致。ORF4 启动子区测序发现,9311 与 C51 启动子区域具有多个单核苷酸多样性(Single Nucleotide Polymorphism, SNP)与 插入缺失(Insertion-Deletion, InDel)位点,导致多个转录结合元件的差异。ORF4 表达差异分析显示 C51中 ORF4 表达量在 18 DAF 胚乳中显著高于 9311。 4. 亚细胞定位表明 ORF4 编码线粒体定位蛋白,系统发育分析表示其在双子叶与单子叶植物中具有高度保守性。转录组分析显示,C51 胚乳中淀粉与蔗糖代谢通路相关基因在 15 DAF 显著下调,而支链氨基酸降解通路相关基因上调。为深入解析 ORF4 的功能,构建了一系列遗传材料,包括启动子精准编辑、敲除突变体及标签融合转基因家系。这些材料为揭示 ORF4 在垩白形成中的分子调控网络及靶向改良水稻品质提供了重要工具。 综上,本研究鉴定出 C51 为稳定遗传且受低温低氮诱导的高垩白材料,确定 ORF4 为控制 qPGWC-7 位点的关键基因,表明其启动子区域的自然变异导致其在 9311 与 C51 18 DAF 胚乳中表达水平的差异,从而影响 C51 籽粒淀粉的合成,最终导致腹白的形成。此外,ORF4 编码的线粒体定位蛋白如何通过能量代谢影响胚乳淀粉合成,这为解析调控籽粒品质的分子机制提出了新的科学问题。 |
外摘要要: |
Rice (Oryza sativa L.), a globally essential food crop, plays a pivotal role in safeguarding stable grain supply and adapting to evolving consumer demands through quality improvement. Rice appearance quality serves as the primary determinant of market value and consumer preference, with chalkiness (the opaque white regions in endosperm) representing a core phenotypic trait that directly influences milling quality, cooking characteristics, and commercial value. Chalkiness formation is regulated by the interaction between genetic factors and environmental conditions, and deciphering its molecular mechanisms remains a critical challenge for premium-quality rice breeding. Current studies indicate that defective grain filling and abnormal metabolism of endosperm storage substances constitute the primary causes of chalkiness formation, though the key regulatory networks require further elucidation. Current studies have reported that defects in grain filling and endosperm storage substances are the primary causes of chalkiness formation. In this study, a high-chalkiness line was screened from a Chromosome Segment Substitution Line (CSSL) population constructed using 9311 and the high-chalkiness material PA64S, which was designated as C51 (Chromosome Segment Substitution Line, CSSL). This research aims to elucidate the genetic basis of its high-chalkiness phenotype, identify the candidate gene of the major quantitative trait locus (QTL) qPGWC-7 located on chromosome 7, and provide new insights into the molecular mechanisms underlying chalkiness formation. The research results are as follows: Multi-year and multi-location trials demonstrated that both the chalky grain rate and belly chalkiness rate of C51 were significantly higher than those of the recurrent parent 9311, with these phenotypes being markedly induced under low-temperature and low-nitrogen conditions. Comparative analysis of transverse endosperm sections at consecutive developmental stages revealed the emergence of belly chalkiness in C51 at 18 days after flowering (DAF). Scanning electron microscopy (SEM) observations showed that irregularly elliptical starch granules with loose arrangement and increased surface adhesives appeared in the belly region of C51 endosperm at 15 DAF, contrasting sharply with the densely packed hexagonal prisms observed in 9311. Cytological examination of developing endosperm indicated reduced synthesis rate, smaller diameters, and decreased deposition area of starch granules in the belly region of C51 during early endosperm development (6-12 DAF). Physiological assays revealed significantly lower total starch content, imbalanced amylose-to-amylopectin ratio, and reduced Rapid Visco Analyser (RVA) profile parameters (including peak viscosity and breakdown value) in mature C51 grains. Expression profiling further demonstrated significant down regulation of starch biosynthesis-related genes during C51 endosperm development. Within the 44-kb interval of qPGWC-7 on chromosome 7, six candidate genes were prioritized through Sanger sequencing, gene annotation, and expression pattern analysis. Genomic complementation transgenic lines were subsequently constructed. Multi-generational phenotyping revealed no significant differences in chalky grain rate or belly chalkiness between ORF4 (Open Reading Frame 4) transgenic lines (T1-T3 generations) and C51, with enhanced phenotypic stability under low-temperature and low-nitrogen stress. SEM analysis confirmed that ORF4 transgenic lines exhibited irregularly elliptical starch granules with loose arrangement and surface adhesives in mature endosperm, phenocopying C51. Promoter sequencing identified multiple SNPs (Single Nucleotide Polymorphisms) and InDel (Insertion-Deletion) between 9311 and C51, resulting in differential transcription factor binding motifs. Expression analysis demonstrated significantly higher ORF4 transcript levels in C51 endosperm at 18 DAF compared to 9311. Subcellular localization confirmed that ORF4 encodes a mitochondrial-localized protein, while phylogenetic analysis revealed high conservation across dicotyledonous and monocotyledonous plants. Transcriptome profiling showed significant downregulation of starch and sucrose metabolism-related genes alongside upregulation of branched-chain amino acid degradation pathways in C51 endosperm at 15 DAF. To further elucidate ORF4 function, a series of genetic materials were developed, including precisely edited promoters, knockout mutants, and tag-fusion transgenic lines. These resources provide essential tools for dissecting ORF4's regulatory network in chalkiness formation and enabling targeted quality improvement. In conclusion, this study identifies C51 as a stably inherited, environmentally responsive high-chalkiness material and establishes ORF4 as the key gene underlying qPGWC-7. Natural variations in the ORF4 promoter region drive its differential expression between 9311 and C51 endosperm at 18 DAF, thereby impairing starch biosynthesis and ultimately inducing belly chalkiness formation. Furthermore, the mitochondrial localization of ORF4 raises new scientific questions regarding how mediated by energy metabolism regulate grain quality, advancing our understanding of the molecular mechanisms governing chalkiness formation in rice. |
参考文献: |
[1]晁园, 冯付春, 高冠军, 等. 利用重组自交系群体定位水稻品质相关性状的 QTL [J].华中农业大学学报, 2012, 31(4): 397-403. [2]陈明江. 水稻垩白粒率基因 qPGWC-8 的精细定位和亚种间杂种胚囊败育基因 S35(t) 的研究 [D]. 南京: 南京农业大学, 2014. [3]程新杰, 施伟, 张梦龙, 等. 水稻垩白形成机制的研究进展 [J]. 中国农学通报, 2024, 40(02): 1-7. [4]胡雅杰,郭靖豪,丛舒敏, 等. 灌浆前期低温弱光复合处理对水稻产量和品质的影响 [J]. 作物学报, 2025, 51(02): 405-417. [5]国家粮食局质量标准中心. GB 1354—2018 大米 [S]. 中国标准出版社, 2018, 5-7. [6]江良荣, 李义珍, 王侯聪, 等. 稻米外观品质的研究进展与分子改良策略 [J]. 分子植物育种, 2003, 1(2): 243-255. [7]李丽颖. 《中国农业产业发展报告2023》显示我国粮食全产业链减损可节粮上千亿斤 [J].科学大观园, 2023, (12): 14-15. [8]刘艳春. 稻米外观品质相关性状 QTL 分析 [D]. 北京: 中国农业科学院, 2012. [9]邱先进, 袁志华, 何文静, 等. 水稻垩白性状遗传育种研究进展 [J]. 植物遗传资源学报, 2014, 15(5): 992-998. [10]邱颖欣, 董皓, 李懿星, 等. 水稻垩白性状相关基因研究进展 [J]. 杂交水稻, 2023, 38(04): 12−20. [11]唐子雯, 张冬平. 水稻胚乳淀粉积累过程的分子机理研究进展 [J]. 植物学报, 2023, 58(04): 612-621. [12]王梨名, 陈佳, 罗佳, 等. 低谷蛋白大米 (W0868) 对小鼠营养状况及肾功能的影响 [J]. 第三军医大学学报, 2021, 43(1): 68-74.. [13]王林森, 陈亮明, 王沛然, 等. 利用高世代回交群体检测水稻垩白相关性状 QTL [J].南京农业大学学报, 2016, 39(2): 183-190. [14]王庆庆. 水稻垩白基因定位及垩白遗传研究 [D]. 天津: 天津农学院, 2014. [15]翁建峰. 水稻粒宽和粒重 QTL GW5 的精细定位及其功能初步分析 [D]. 南京: 南京农业大学, 2009. [16]吴昊鸣, 孙奇奇, 李佳慧, 等. 抗性淀粉对糖尿病及胰岛 β 细胞干预机制研究进展 [J]. 生物技术, 2022, 32(5): 649-657. [17]徐兴家, 于广武, 李晓冰, 等. 五常稻花香有机富硒、富锌、富钙大米的开发与生产 [J]. 肥料与健康, 2022, 49(01): 16-18. [18]张楠. 白桦应拉木形成代谢组学分析及BpMYB4基因表达和功能分析 [D]. 哈尔滨: 东北林业大学, 2014. [19]中国人民共和国国家统计局. 关于2023年粮食产量数据的公告 [N]. 中国信息报, 2023-12-12(001). [20]Aike, Zhu, YingX, et al. Genetic dissection of QPCG1 for a quantitative trait locus for percentage of chalky grain in rice (Oryza sativa L.) [J]. Frontiers in Plant Science, 2018, 9: 1173. [21]Ashida K, Iida S, Yasui T, et al. Morphological, physical, and chemical properties of grain and flour from chalky rice mutants [J]. Cereal Chemistry, 2009, 86(2): 903181334-231. [22]Ayaad M, Han Z, Zheng K, et al. Bin-based genome-wide association studies reveal superior alleles for improvement of appearance quality using a 4-way MAGIC population in rice [J]. Advances Research, 2021, 28: 183-194. [23]Bai A N, Lu X D, Li D q, et al. NF-YB1-regulated expression of sucrose transporters in aleurone facilitates sugar loading to rice endosperm [J]. Cell Research, 2016, 26(3): 384-388. [24]Becraft Pw. Cell fate specification in the cereal endosperm [J]. Seminars in Cell & Developmental Biology, 2001, 12(5): 387-94. [25]Becraft Pw, Gutierrez-Marcos. Endosperm development: dynamic processes and cellular innovations underlying sibling altruism [J]. Wires Development Biology, 2012, 1: 579-93. [26]Bian W, Peng Y, Hao Z, et al. Natural variation in WHITE-CORE RATE 1 regulates redox homeostasis in rice endosperm to affect grain quality [J]. The Plant Cell, 2022, 34(5): 1912-1932. [27]Birt Df, Boylston T, Hendrich S, et al. Resistant starch: promise for improving human health [J]. Advance Nutrition. 2013, 4(6): 587-601. [28]Cai Y, Li S, Jiao G, et al. OsPK2 encodes a plastidic pyruvate kinase involved in rice endosperm starch synthesis, compound granule formation and grain filling [J]. Plant Biotechnology Journal, 2018a, 16(11): 1878-1891. [29]Cai Y, Zhang W, Jin J, et al. OsPKpα1 encodes a plastidic pyruvate kinase that affects starch biosynthesis in the rice endosperm [J]. Journal of Integrative Plant Biology, 2018b, 60(11): 1097-1118. [30]Chang T G, Zhu X G, Raines C et al. Source-sink interaction: a century old concept under the light of modern molecular systems biology [J]. Journal of Experimental Botany, 2017, 68(16): 4417-4431. [31]Chen J, Cao F, Huang M, et al. Comparative quantitative proteomic analysis reveals differentially expressed proteins involved in grain-filling rate of rice at the early ripening stage [J]. Microbial Pathogenesis, 2020, 149: 104557. [32]Chen D.-G, Guo J, Chen K,et al. Pyramiding breeding of low-glutelin-content indica rice with good quality and resistance [J]. Plants, 2023, 12: 3763. [33]Cheng L, Liu X, Yin J, et al. Activity and expression of ADP-glucose pyrophosphorylase during rhizome formation in lotus (Nelumbo nucifera Gaertn.) [J]. Botanical Studies, 2016,57: 26. [34]Chinnusamy V, Zhu JK, Sunkar R. Gene regulation during cold stress acclimation in plants [J]. Methods Molecular Biology. 2010, 639: 39-55. [35]Choi B S, Kim Y J, Markkandan K, et al. GW2 functions as an E3 Ubiquitin ligase for rice expansin-like 1 [J]. International Journal of Molecular Sciences, 2018, 19(7): 1904. [36]Chun A, Song J, Kim K J, et al. Quality of head and chalky rice and deterioration of eating quality by chalky rice [J]. Journal of Crop Science & Biotechnology, 2009, 12(4): 239-244. [37]Concepcion, Jeanaflor, Crystal, et al. Quality evaluation, fatty acid analysis and untargeted profiling of volatiles in Cambodian rice [J]. Food Chemistry, 2018, 240: 1014-1021. [38]Custodio M C, Cuevas R P, Ynion J, et al. Rice quality: How is it defined by consumers, industry, food scientists, and geneticists? [J]. Trends in Food Science & Technology, 2019, 92: 122-137. [39]Duan E, Wang Y, Liu L, et al. Pyrophosphate: fructose-6-phosphate 1-phosphotransferase (PFP) regulates carbon metabolism during grain filling in rice [J]. Plant Cell Reports, 2016, 35(6): 1321-1331. [40]Duan P, Xu J, Zeng D, et al. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice [J]. Molecular Plant, 2017, 10(5): 685-694. [41]Fauteux F, Strömvik MV. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae [J]. BMC Plant Biology. 2009 , 9: 126. [42]Fei D, Li W, Shi-Lin P, et al. Shading stress increases chalkiness by postponing caryopsis development and disturbing starch characteristics of rice grains [J]. Agricultural and Forest Meteorology, 2018, 263: 49-58. [43]Fei H, Yang Z, Lu Q, et al. OsSWEET14 cooperates with OsSWEET11 to contribute to grain filling in rice [J]. Plant Science, 2021, 306: 110851. [44]Feng Y, Yuan X, Wang Y, et al. Validation of a QTL for grain size and weight using an introgression line from a cross between oryza sativa and oryza minuta [J]. Rice, 2021, 14(1): 104. [45]Fu F F, Xue H W, et al. Coexpression analysis identifies rice starchregulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator [J]. Plant Physiology, 2010, 154: 927-938. [46]Fujita N, Yoshida M, Kondo T, et al. Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm [J]. Plant Physiology, 2007, 144(4): 2009−2023. [47]Furtado A, Henry Rj. The wheat Em promoter drives reporter gene expression in embryo and aleurone tissue of transgenic barley and rice [J]. Plant Biotechnology, 2005, 3(4): 421-34. [48]Gao H, Gadlage M J, Lafitte H R, et al. Superior field performance of waxy corn engineered using CRISPR–Cas9 [J]. Nature Biotechnology, 2020, 38(5): 579-581. [49]Gao Y, Liu C, Li Y, et al. QTL analysis for chalkiness of rice and fine mapping of a candidate gene for qACE9 [J]. Rice, 2016, 9(1): 41. [50]Garmash E V. Suppression of mitochondrial alternative oxidase can result in upregulation of the ROS scavenging network: some possible mechanisms underlying the compensation effect [J]. Plant Biology, 2023, 25(1): 43-53. [51]Gu J, Chen Y, Zhang H, et al. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice [J]. Field Crops Research, 2017, 206: 74-85. [52]Guo C, Yuan X, Yan F, et al. Nitrogen application rate affects the accumulation of carbohydrates in functional leaves and grains to improve grain filling and reduce the occurrence of chalkiness [J]. Front Plant Science, 2022, 13: 921130. [53]Guo T, Liu X, Wan X, et al. Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice (Oryza sativa L.) [J]. Journal of Integrative Plant Biology, 2011, 53(8): 598-607. [54]Guzmán C, Alvarez J B. Wheat waxy proteins: polymorphism, molecular characterization and effects on starch properties [J]. Theoretical and Applied Genetics, 2016, 129(1): 1-16. [55]Hara T, Katoh H, Ogawa D, et al. Rice SNF2 family helicase ENL1 is essential for syncytial endosperm development [J]. Plant, 2015, 81: 1-12. [56]He W, Wang L, Lin Q, et al. Rice seed storage proteins: biosynthetic pathways and the effects of environmental factors. [J] Journal of Integrative Plant Biology, 2021 ,63(12): 1999−2019. [57]Hori K, Okunishi T, Nakamura K, et al. Genetic background negates improvements in rice flour characteristics and food processing properties caused by a mutant allele of the pdil1-1 seed storage protein gene [J]. Rice (N Y), 2022, 15(1): 13. [58]Hu T, Tian Y, Zhu J, et al. OsNDUFA9 encoding a mitochondrial complex I subunit is essential for embryo development and starch synthesis in rice [J]. Plant Cell Reports, 2018, 37(12): 1667-1679. [59]Hu Z, Tang Z, Zhang Y, et al. Rice SUT and SWEET transporters [J]. International Journal of Molecular Sciences, 2021, 22(20): 11198. [60]Huang B, Hennen-Bierwagen T A, Myers A M, et al. Functions of multiple genes encoding ADP-glucose pyrophosphorylase subunits in maize endosperm, embryo, and leaf [J]. Plant Physiology, 2014, 164(2): 596-611. [61]Huang L, Tan H, Zhang C, et al. Starch biosynthesis in cereal endosperms: An updated review over the last decade [J]. Plant Communications, 2021, 2(5): 100237. [62]Huang X, Zhang Y, Wang L, et al. OsDOF11 Affects Nitrogen Metabolism by Sucrose Transport Signaling in Rice (Oryza sativa L.) [J]. Front Plant Science. 2021, 12: 703034. [63]Hwang Y S, Karrer E E, Thomas B R, et al. Three cis-elements required for rice alpha-amylase Amy3D expression during sugar starvation [J]. Plant Molecular Biology, 1998, 36: 331-341. [64]Jordan W, Nicholas C, Kenneth K, et al. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis [J]. Lancet, 2013, 381(9875): 1371-9. [65]Kaneko K, Sasaki M, Kuribayashi N, et al. Proteomic and glycomic characterization of rice chalky grains produced under moderate and high-temperature conditions in field system [J]. Rice, 2016, 9(1): 26. [66]Kang H G, Park S, Matsuoka M, et al. White-core endosperm FLOURY ENDOSPERM-4 in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB) [J]. Plant Journal, 2005, 42(6): 901-911. [67]Kawakatsu T, Hirose S, Takaiwa Y F, et al. Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation [J]. Plant Physiology, 2010, 154(4): 1842-1854. [68]Khalifa I, Zhu W, Nawaz A, et al. Microencapsulated mulberry anthocyanins promote the in vitro-digestibility of whey proteins in glycated energy-ball models [J]. Food Chemistry, 2021, 345: 128805. [69]Kim J Y, Loo P I, Pang T Y, et al. Cellular export of sugars and amino acids: role in feeding other cells and organisms [J]. Plant Physiology, 2021, 187(4): 1893-1914. [70]Kobayashi K, Yasuno N, Sato Y, et al. Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene [J]. The Plant Cell. 2012, 24(5): 1848-59. [71]Kong X, Chen Y, Zhu P, et al. Relationships among genetic, structural, and functional properties of rice starch. [J]. Agriculture Food Chemistry, 2015, 63(27): 6241-8. [72]Kopeć P, Rapacz M, Arora R, et al. Post-translational activation of CBF for inducing freezing tolerance [J]. Trends in Plant Science, 2022, 27(5): 415-417. [73]Kopp Mc, Larburu N, Durairaj V, et al. UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor [J]. Nature Structure Molecular Biology. 2019, 26(11): 1053-1062. [74]Kubo A, Fujita N, Harada K, et al. The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm [J]. Plant Physiology, 1999, 121(2): 399-410. [75]Kumar A, Panda D, Mohanty S, et al. Role of sedoheptulose-1,7 bisphosphatase in low light tolerance of rice (Oryza sativa L.) [J]. Physiology and Molecular Biology of Plants, 2020, 26(12): 2465-2485. [76]Kumari A, Sharma D, Sharma P, et al. Meta-QTL and haplo-pheno analysis reveal superior haplotype combinations associated with low grain chalkiness under high temperature in rice [J]. Front Plant Science, 2023, 14: 1133115. [77]Lázaro L, Abbate P E, Cogliatti D H, et al. Relationship between yield, growth and spike weight in wheat under phosphorus deficiency and shading [J]. Journal of Agricultural Science, 2010, 148(01): 83-93. [78]Lei J, Teng X, Wang Y, et al. Plastidic pyruvate dehydrogenase complex E1 component subunit Alpha1 is involved in galactolipid biosynthesis required for amyloplast development in rice [J]. Plant Biotechnology Journal, 2022, 20(3): 437-453. [79]Li C, Li H, Gilbert Rg, et al. Characterizing starch molecular structure of rice [J]. Methods Molecular Biology, 2019, 1892: 169-185. [80]Li S, Wei X, Ren Y, et al. OsBT1 encodes an ADP-Glucose transporter involved in starch synthesis and compound granule formation in rice endosperm [J]. Science Report, 2017, 7: 40124. [81]Li Y, Fan C, Xing Y, et al. Chalk5 encodes a vacuolar H( + )-translocating pyrophosphatase influencing grain chalkiness in rice [J]. Nature Genetics, 2014, 46(4): 398-404. [82]Li Y, Li L L, Fan R C, et al. Arabidopsis sucrose transporter SUT4 interacts with cytochrome b5-2 to regulate seed germination in response to sucrose and Glucose [J]. Molecular Plant, 2012, 5: 1029-1041. [83]Li Z F, Wan J M, Xia J F, et al. Mapping quantitative trait loci underlying appearance quality of rice grains[J]. Acta Genetica Sinica, 2003, 30(3): 251-259. [84]Liao J L, Zhou H W, Peng Q, et al. Transcriptome changes in rice (Oryza sativa L.) in response to high night temperature stress at the early milky stage [J]. BMC Genomics, 2015, 16(1): 18. [85]Lihong T, Ling D L, Jie Y Z, et al. Small GTPase Sar1 is crucial for proglutelin and α-globulin export from the endoplasmic reticulum in rice endosperm [J]. Journal of Experimental Botany, 2013, (10): 2831-2845. [86]Li-Qing, Chen, Lily, et al. Transport of sugars [J]. Annual Review of Biochemistry, 2015, 84: 865-94. [87]Liu B, Meng S, Yang J, et al. Carbohydrate flow during grain filling: Phytohormonal regulation and genetic control in rice (Oryza sativa L.) [J]. Journal of Integrative Plant Biology, 2025, Review. [88]Liu J, Chen J, Zheng X, et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice [J]. Nature Plants, 2017, 3: 17043. [89]Liu J, Wu M W, Liu C M. Cereal Endosperms: development and storage product accumulation [J]. Annual Review Plant Biology, 2022a, 73: 255-291. [90]Liu Q, Han R X, Wu K, et al. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice[J]. Nature communications, 2018, 9(1): 852 [91]Liu X, Wang Y, Wang S W, et al. QTL analysis of percentage of gains with chalkiness in japonica rice (Oryza sativa L.) [J]. Genetics and Molecular Research, 2012, 11(1): 717-724. [92]Liu Y, Wang H, Jiang Z, et al. Author correction: genomic basis of geographical adaptation to soil nitrogen in rice [J]. Nature, 2022b, 590(7847): 600-605. [93]Long W H, Dong B N, Wang Y H, et al. FLOURY ENDOSPERM8, encoding the UDP-Glucose Pyrophosphorylase 1, affects the synthesis and structure of starch in rice endosperm [J]. Journal of Plant Biology, 2017, 60(5): 513-522. [94]Lou G, Chen P, Zhou H, et al. FLOURY ENDOSPERM19 encoding a Class I Glutamine Amidotransferase affects grain quality in rice [J]. Molecular Breeding. 2021, 41(5): 36. [95]Luo M, Shi Y, Yang Y, et al. Sequence polymorphism of the waxy gene in waxy maize accessions and characterization of a new waxy allele [J]. Science Reports, 2020, 10: 15851 [96]Lyman N B, Jagadish K S V, Nalley L L, et al. Neglecting Rice Milling Yield and Quality Underestimates Economic Losses from High-Temperature Stress [J]. Plos One, 2013, 8(8): e72157. [97]Matsushima R, Maekawa M, Kusano M, et al. Amyloplast-localized SUBSTANDARD STARCH GRAIN4 protein influences the size of starch grains in rice endosperm [J]. Plant Physiology, 2014, 164: 623-636. [98]Misra G, Badoni S, Parween S, et al. Genome-wide association coupled gene to gene interaction studies unveil novel epistatic targets among major effect loci impacting rice grain chalkiness [J]. Plant Biotechnology Journal, 2021, 19(5): 910-925. [99]Nevame A Y M, Emon R M, Malek M A, et al. Relationship between high temperature and formation of chalkiness and their effects on quality of rice [J]. BioMed Research International, 2018, 2018: 1-18. [100]Okamura M, Arai-Sanoh Y, Yoshida H, et al. Characterization of high-yielding rice cultivars with different grain-filling properties to clarify limiting factors for improving grain yield [J]. Field Crops Research, 2018, 219: 139-147. [101]Onodera Y, Suzuki A, Wu C Y, et al. A rice functional transcriptional activator, RISBZ1, responsible for endosperm-specific expression of storage protein genes through GCN4 motif [J]. Journal of Biological Chemistry, 2001, 276(17): 14139-14152. [102]Pan Y H, Gao L J, Liang Y T, et al. Natural variation in OsMKK3 contributes to grain size and chalkiness in rice [J]. Frontiers in Plant Science, 2021, 12: 784037. [103]Park C E, Kim Y S, Park K J, et al. Changes in physicochemical characteristics of rice during storage at different temperatures [J]. Journal of Stored Products Research, 2012, 48(none): 25-29. [104]Pedroza-Garcia Ja, Eekhout T, Achon I, et al. Maize ATR safeguards genome stability during kernel development to prevent early endosperm endocycle onset and cell death [J]. Plant Cell, 2021, 33: 2662-84 [105]Peng B, Wang L, Fan C, et al. Comparative mapping of chalkiness components in rice using five populations across two environments [J]. BMC Genetics. 2014, 15: 49. [106]Peng C, Wang Y H, Liu F, et al. FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm [J]. Plant Journal, 2014, 77: 917-930. [107]Pfister B, Zeeman S C. Formation of starch in plant cells [J]. Cellular and Molecular Life Sciences, 2016, 73(14): 2781-2807. [108]Ren Y L, Wang Y H, Liu F, et al. GLUTELIN PRECURSOR ACCUMULATION3 encodes a regulator of post-golgi vesicular traffic essential for vacuolar protein sorting in rice endosperm [J]. The Plant Cell, 2014, 26(1): 410-425. [109]Ren Y, Wang Y, Zhang Y, et al. Endomembrane-mediated storage protein trafficking in plants: Golgi-dependent or Golgi-independent? [J]. Febs Letters, 2022, 596(17): 2215-2230. [110]Ruan B, Shang L, Zhang B, et al. Natural variation in the promoter of TGW2 determines grain width and weight in rice [J]. New Phytologist, 2020, 227(2): 629-640. [111]Ryoo N, Yu C, Park C S, et al. Knockout of a starch synthasegene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.) [J]. Plant Cell Reports, 2007, 26: 1083-1095. [112]Satoh H, Nishi A, Yamashita K, et al. Starch-branching enzyme i-deficient mutation specifically affects the structure and properties of starch in rice endosperm [J]. Plant Physiology, 2003, 133(3): 1111-1121. [113]Satoh H, Shibahara K, Tokunaga T, et al. Mutation of the plastidial α-Glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm [J]. Plant Cell Online, 2008, 20(7): 1833-1849. [114]Shao L, Li G, Zhao Q, et al. The fertilization effect of global dimming on crop yields is not attributed to an improved light interception [J]. Global Chang Biology, 2020, 26(3): 1697-1713. [115]She K C, Kusano H, Koizumi K, et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality [J]. Plant Cell, 2010, 22: 3280-3294. [116]Siebenmorgen T J, Grigg B C, Lanning S B. Impacts of preharvest factors during kernel development on rice quality and functionality [J]. Annual Review of Food Science and Technology, 2013, 4: 101-115. [117]Sosso D, Luo D, Li Q-B, et al. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport [J]. Nature Genetics, 2015, 47(12): 1489-1493. [118]Sreenivasulu N, Jr V M B, Misra G, et al. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress [J]. Journal of Experimental Botany, 2015, 66(7): 1737-1748. [119]Sun X C, Ling S, Lu Z, H, et al. OsNF-YB1, a rice endosperm specific gene, is essential for cell proliferation in endosperm development [J]. Gene, 2014, 551(2): 214-221. [120]Suzuki A, Wu Cy, Washida H, et al. Rice MYB protein OSMYB5 specifically binds to the AACA motif conserved among promoters of genes for storage protein glutelin [J]. Plant Cell Physiology. 1998, 39(5): 555-9. [121]Tabassum R, Dosaka T, Ichida H, et al. FLOURY ENDOSPERM11-2 encodes plastid HSP70-2 involved with temperature-dependent chalkiness of rice (Oryza sativa L.) grains [J]. The Plant Journal, 2020, 103(2): 604-616. [122]Tan Y F, Xing Y Z, Li J X, et al. Genetic bases of appearance quality of rice grains in SHANYOU 63, an elite rice hybrid [J]. Theoretical & Applied Genetics, 2000, 101(5-6): 823-829. [123]Tanaka N, Fujita N, Nishi A, et al. The structure of starch can be manipulated by changing the expression levels of STARCH BRANCHING ENZYME IIb in rice endosperm [J]. Plant Biotechnology Journal, 2004, 2(6): 507-516. [124]Teng X, Zhong M, Zhu X, et al. FLOURY ENDOSPERM16 encoding a NAD ependent cytosolic malate dehydrogenase plays an important role in starch synthesis and seed development in rice [J]. Plant Biotechnology Journal, 2019, 17(10): 1914-1927. [125]Tie X, Huang R J, Dai W, et al. Effect of heavy haze and aerosol pollution on rice and wheat productions in China [J]. Scientific Reports, 2016, 6: 29612. [126]Toyosawa Y, Kawagoe Y, Matsushima R, et al. Deficiency of STARCH SYNTHASE IIIa and IVb alters starch granule morphology from polyhedral to spherical in rice endosperm [J]. Plant Physiology, 2016, 170(3): 1255-1270. [127]Vemireddy L R, Noor S, Satyavathi V V, et al. Discovery and mapping of genomic regions governing economically important traits of Basmati rice [J]. Bmc Plant Biology, 2015, 15(1): 207-215. [128]Wada H, Hatakeyama Y, Onda Y, et al. Multiple strategies for heat adaptation to prevent chalkiness in the rice endosperm [J]. Journal of Experimental Botany, 2019, 70(4): 1299-1311. [129]Wakasa Y, Hayashi S, Takaiwa F, et al. Expression of OsBiP4 and OsBiP5 is highly correlated with the endoplasmic reticulum stress response in rice [J]. Planta. 2012, 236(5): 1519-27. [130]Wan X Y, Wan J M, Weng J F, et al. Stability of QTLs for ricegrain dimension and endosperm chalkiness characteristics across eight environment [J]. Theoretical & applied genetics, 2005, 110(7): 1334-1346 [131]Wang E, Wang J, Zhu X, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication [J]. Nature Genetics, 2008, 40(11): 1370-1374. [132]Wang H, Ham T H, Im D E, et al. A new SNP in rice gene encoding pyruvate phosphate dikinase (PPDK) associated with floury endosperm [J]. Genes, 2020a, 11(4): 465. [133]Wang J, Chen Z C, Zhang Q, et al. The NAC transcription factors OsNAC20 and OsNAC26 regulate starch and storage protein synthesis [J]. Plant Physiology, 2020b, 184(4): 1775-1791. [134]Wang J, Zhang H, Wang Y, et al. Regulatory loops between rice transcription factors OsNAC25 and OsNAC20/26 balance starch synthesis [J]. Plant Physiology. 2024, 195(2): 1365-1381. [135]Wang L, Deng F, Ren W J. Shading tolerance in rice is related to better light harvesting and use efficiency and grain filling rate during grain filling period [J]. Field Crops Research, 2015a, 180: 54-62. [136]Wang N, Guo T, Wang P, et al. MhYTP1 and MhYTP2 from apple confer tolerance to multiple abiotic stresses in arabidopsis thaliana [J]. Front Plant Science. 2017a, 8: 1367. [137]Wang R, Ren Y, Yan H, et al. ENLARGED STARCH GRAIN1 affects amyloplast development and starch biosynthesis in rice endosperm [J]. Plant Science, 2021, 305: 110831. [138]Wang S, Li S, Liu Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality [J]. Nature Genetics, 2015b, 47(8): 949-954. [139]Wang W, Wei X J, Jiao G A, et al. GBSS-BINDING PROTEIN, encoding a CBM48 domain-containing protein, affects rice quality and yield [J]. Journal Of Integrative Plant Biology, 2020c, 62(7): 948-966. [140]Wang X, Liu X, Hu Z, et al. Essentiality for rice fertility and alternative splicing of OsSUT1 [J]. Plant Science, 2022, 314: 111065. [141]Wang X, Pang Y, Wang C, et al. New candidate genes affecting rice grain appearance and milling quality detected by genome-wide and gene-based association analyses [J]. Front Plant Science, 2017b, 7: 1998. [142]Wang Y H, Ren Y L, Liu X, et al. OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells [J]. The Plant Journal, 2010, 64(5): 812-824. [143]Wang Y X, Xiong G S, Hu J, et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice [J]. Nature Genetics, 2015c, 47(8): 944-948 [144]Wang Y, Liu F, Ren Y, et al. GOLGI TRANSPORT 1B regulates protein export from endoplasmic reticulum in rice endosperm cells [J]. The Plant Cell, 2016, 28(11): 2850-2865. [145]Wen L Y, Fukuda M, Sunada M, et al. Guanine nucleotide exchange factor 2 for Rab5 proteins coordinated with GLUP6/GEF regulates the intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm [J]. Journal of Experimental Botany, 2015, 20: 6137-6147 [146]Wu B, Yun P, Zhou H, et al. Natural variation in WHITE-CORE RATE 1 regulates redox homeostasis in rice endosperm to affect grain quality [J]. The Plant Cell, 2022, 34(5): 1912-1932. [147]Wu M, Ren Y, Cai M, Et Al. Rice FLOURY ENDOSPERM10 encodes a pentatricopeptide repeat protein that is essential for the trans-splicing of mitochondrial NAD1 intron 1 and endosperm development [J]. New Phytologist, 2019, 223(2): 736-750. [148]Wu X, Liu J, Li D, et al. Rice caryopsis development Ⅱ: Dynamic changes in the endosperm [J]. Journal of Integrative Plant Biology, 2016a, 58(9): 786-798. [149]Wu X, Liu J, Li D, et al. Rice caryopsis development I: Dynamic changes in different cell layers [J]. Journal of Integrative Plant Biology, 2016b, 58(9): 772-785. [150]Xu J , Yang Y , Ma Q , et al. Effect of water management on rice starch quality [J]. A Review. Chinese Agricultural Science Bulletin. 2022, 38(11): 1-6. [151]Xu J J, Zhang X F, Xue H W. Rice aleurone layer specific OsNF-YB1 regulates grain filling and endosperm development byinteracting with an ERF transcription factor [J]. Journal of Experimental Botany, 2016, 67(22): 6399-6411. [152]Xu X Y, E Z G, Zhang D P, et al. OsYUC11-mediated auxin biosynthesis is essential for endosperm development of rice [J]. Plant Physiology, 2021, 185(3): 934-950.. [153]Xue M Y, Liu L L, Yu Y F, et al. Lose-of-function of a ricenucleolus-localized pentatricopeptide repeat protein is responsible for the floury endosperm14 mutant phenotypes [J]. Rice, 2019, 12(1): 100. [154]Yamakawa H, Hirose T, Kuroda M, et al. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray [J]. Plant Physiology, 2007, 144(1): 258-277. [155]Yan H, Zhang W, Wang Y, et al. Rice LIKE EARLY STARVATION1 cooperates with FLOURY ENDOSPERM6 to modulate starch biosynthesis and endosperm development [J]. Plant Cell, 2024, 36(5): 1892-1912. [156]Yang W, Xu P, Zhang J, et al. OsbZIP60-mediated unfolded protein response regulates grain chalkiness in rice [J] Genet Genomics. 2022, 49(5): 414-426. [157]Yasuda H, Hirose S, Kawakatsu T, et al. Overexpression of BiP has inhibitory effects on the accumulation of seed storage proteins in endosperm cells of rice [J]. Plant Cell Physiology, 2009, 50(8): 1532-43. [158]Yoshioka Y, Iwata H, Tabata M, et al. Chalkiness in rice: Potential for evaluation with image analysis [J]. Cropence, 2007, 47(5): 2113-2120. [159]You X M, Zhang W W, Hu J L, et al. FLOURY ENDOSPERM15 encodes a GLYOXALASE I involved in compound granule formation and starch synthesis in rice endosperm [J]. Plant Cell Reports, 2019, 38: 345-359. [160]Yu J, Miao J, Zhang Z, et al. Alternative splicing of OsLG3b controls grain length and yield in japonica rice [J]. Plant Biotechnology Journal, 2018, 16(9): 1667-1678. [161]Yu M Z, Wu M M, Ren Y L, et al. Rice FLOURY ENDOSPERM 18 encodes a pentatricopeptide repeat protein required for 5' processing of mitochondrial NAD5 messenger RNA and endosperm development [J] Journal of Integrative Plant Biology, 2021, 63(5): 834-847. [162]Zhang J, Liu Y-X, Zhang N, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice [J]. Nature Biotechnology, 2019a, 37(6): 676-684. [163]Zhang L, Ren Y, Lu B,et al. FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice [J]. Journal of Experimental Botany, 2016, 67(3): 633-47. [164]Zhang R P, Zhou N N, Ashen R G, et al. Effect of sowing date on the growth characteristics and yield of growth-constrained direct-seeding rice [J]. Plants (Basel), 2023, 12(9): 1899. [165]Zhang W, Yang Q, Xia M, et al. Effects of nitrogen level on the physicochemical properties of Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) starch [J]. International Journal of Biological Macromolecules: Structure, Function and Interactions, 2019b, 129: 799-808. [166]Zhao D, Zhang C, Li Q, et al. Genetic control of grain appearance quality in rice [J]. Biotechnology Advances, 2022, 60: 108014. [167]Zhao X, Daygon V D, Mcnally K L, et al. Identification of stable QTLs causing chalk in rice grains in nine environments [J].Theoretical and applied genetics, 2016, 129(1): 141-153. [168]Zheng X, Li Q, Liu D, et al. Promoter analysis of the sweet potato ADP-Glucose pyrophosphorylase gene IbAGP1 in Nicotiana tabacum [J]. Plant Cell Reports, 2015,34: 1873-1884. [169]Zhong M, Liu X, Liu F, et al. FLOURY ENDOSPERM12 encoding ALANINE AMINOTRANSFERASE 1 regulates carbon and nitrogen metabolism in rice [J]. Journal of Plant Biology, 2019, 62(1): 61-73. [170]Zhou L J, Chen L M, Jiang L, et al. Fine mapping of the grainchalkiness QTL qGWC- 7 in rice (Oryza sativa L.) [J]. Theoreticaland Applied Genetics, 2009, 118(3): 581-590. [171]Zhou YF, Zhang YC, Sun Ym, et al. The parent-t-of-origin lncRNA MISSEN regulates rice endosperm development [J]. Nature Communications, 2021, 12: 6525 [172]Zhu L, Gu M, Meng X, et al. High-amylose rice improves indices of animal health in normal and diabetic rats [J]. Plant Biotechnology Journal, 2012, 10(3): 353-362. |
中图分类号: | S51 |
开放日期: | 2027-06-17 |