- 无标题文档
查看论文信息

中文题名:

 海雀稗稀疏斑病的杀菌剂复配研究    

姓名:

 张泽    

学号:

 2022820032    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 095131    

学科名称:

 农学 - 农业 - 农艺与种业    

学生类型:

 硕士    

学位:

 农业硕士    

学校:

 南京农业大学    

院系:

 草业学院    

专业:

 农艺与种业(专业学位)    

研究方向:

 草坪病害    

第一导师姓名:

 胡健    

第一导师单位:

 南京农业大学    

第二导师姓名:

 杨志民    

完成日期:

 2024-05-30    

答辩日期:

 2024-05-30    

外文题名:

 Study on the Combination of Fungicides for the Control of Sparse Leaf Patch Disease on Seashore paspalum    

中文关键词:

 稀疏斑块病 ; 海雀稗 ; 化学防治 ; 雀稗微座孢 ; 杀菌剂复配    

外文关键词:

 Sparse leaf patch ; Seashore paspalum ; Chemical control ; Microdochium paspali ; Fungicide combination    

中文摘要:

由雀稗微座孢(Microdochium paspali)引起的稀疏斑块病是海雀稗上重 要的病害之一,造成了严重的经济损失。化学防治仍然是草坪病害防治的重 要手段,但稀疏斑块病的化学防治研究鲜有开展,从而限制了该病害的科学 防治。本研究采用菌丝生长速率法筛选对雀稗微座孢具有明显抑制效果的杀 菌剂,在此基础上,对不同作用机制杀菌剂的复配组合进行评价,进一步通 过盆栽试验验证各复配组合对稀疏斑块病的防治效果,以期为海雀稗稀疏斑 块病的科学防治提供有效解决方案。本研究获得如下研究结果:

1、菌丝生长速率法测定了 20 种杀菌剂对三株不同地理来源的雀稗微座 孢菌株的抑制率,筛选出对雀稗微座孢具有明显抑制作用的药剂:咪鲜胺、 苯并烯氟菌唑、咯菌腈、丙环唑和丙硫菌唑,其平均抑制率分别为 100.0%, 100.0%,94.0%,94.0%,65.0%。敏感性测定结果显示不同菌株对各药剂的 敏感性存在显著差别。利用 Wadley 法评价不同杀菌剂的联合毒力,并计算 各复配组合的增效系数,结果显示有 12 种复配组合对所测菌株同时具有增效 作用,未发现有复配组合对所测菌株同时具有拮抗作用。复配组合中增效作 用最为显著的依次是苯并烯氟菌唑和咯菌腈 3:7 复配组合(增效系数为 4.10~17.35)、咯菌腈和丙环唑 6:4 复配组合(增效系数为 3.08~10.64)、苯并 烯氟菌唑和丙环唑 1:9 复配组合(增效系数为 5.71~15.54)。

2、温室盆栽试验进一步分析上述三种复配组合及其单剂对稀疏斑块病 的预防及治疗效果。结果显示通过室外接种海雀稗发现:三种单剂和三种复 配药剂在整体周期中防治效果良好,且无药害,并且复配药剂防治效果均比 单剂防效明显。在预防组中,预防结果显示在第 6 d,苯并烯氟菌唑和咯菌 腈 3:7 复配组合防治效果最好,防治效率达 87.29%,在其他周期内均显著高 于其他处理,在第 24 d,咯菌腈单剂的防治效果最差,其防治效率达 57.91%。在治疗组中,预防结果显示在第 6 d,苯并烯氟菌唑和咯菌腈 3:7 复配组合防治效果最好,防治效率达 87.94%,在其他周期内均显著高于其他 处理,在第 24 d,咯菌腈和丙环唑 6:4 复配组合防治效果最差,其防治效率 达 57.91%。

本研究通过系统开展稀疏斑块病复配药剂的室内平板及温室盆栽的筛选 与评价,明确了用于该病害防治的高效复配药剂组合,为海雀稗稀疏斑块病 的科学防治提供了有效的技术方案。

外文摘要:

Sparse leaf patch disease caused by Microdochium paspali is one of the important diseases on seashore paspalum, causing serious economic losses. Chemical control is still the important way to manage turfgrass disease. However, researches on chemical control of sparse leaf patch disease are rare, which limit the scientific management of this disease. This study used the mycelial growth rate method to screen for fungicides with significant inhibitory effects on M. paspali. Furthermore, Combinations of fungicides with different mechanisms of action were evaluated, and pot experiments were conducted to verify the effectiveness of each fungicide combination for the prevention and curation of sparse leaf patch disease, in order to provide effective solutions for the scientific managment of this disease on seashore paspalum. The results from this study were shown as follows:

The mycelial inhibitory rates of 20 fungicides were assayed with three M. paspali isolates from different locations. The fungicides with most significant inhibitory effects were selected for subsequent study. The top five fungicide were prochloraz, benzovindiflupyr, fludioxonil, propiconazole, and propiconazole, with average inhibition rates of 100.00%, 100.00%, 94.00%, 94.00%, and 64.97%, respectively. Different isolates showed different sensitivies to same fungicides. The Wadley method was used to evaluate the effects of different fungicide combinations, and the results showed that 12 combinations had synergistic effects on all tested isolates, no combinations had been found to have antagonistic effects on all tested isolates. The fungicide combinations with top three synergistic effects were: the 3:7 combination of benzovindiflupyr and fludioxonil(the efficiency enhancement coefficient is 4.10~17.35),the 6:4 combination of fludioxonil and propiconazole (the efficiency enhancement coefficient is 3.08~10.64), and the 1:9 combination of benzovindiflupyr and propiconazole (the efficiency enhancement coefficient is 5.71~15.54).

2、The results of pot experiment showed that the above three fungicide combinations had good control effects throughout the envestigation period, and no fungicide damage was observed. In addition, the control effects of fungicide combinations were more significant than those of the respective single fungicides. The prevention results showed that the combination of benzovindiflupyr and fludioxonil at a ratio of 3:7 had the best effect after 6 d of inoculation, with a control efficiency of 87.29%, this combination also showed significantly higher control effects than other treatments during the entire period. The curative experiment showed that the combination of benzovindiflupyr and fludioxonil at a ratio of 3:7 also had the best control effect after 6 d of inoculation, with a control efficiency of 87.94%, which was also significantly higher than other treatments during the investigation period.

This study systemically screened and evaluated the effective fungicide combinations for the control of sparse leaf patch disease both in vitro and in vivo. The results will provide effective solutions for the scientific control of sparse leaf patch disease on seashore paspalum in the future.

参考文献:

[1] 柏亚罗.Strobilurins类杀菌剂研究开发进展[J].农药,2007(05):289-295.

[2] 蔡亚晓.夏季草坪养护的实用技术[J].中国花卉报.2022(03):23-24

[3] 陈海波.几种杀菌剂对草坪草腐霉枯萎病的防治试验[J].草原与草坪,2009(02):18-20.

[4] 陈宏州,王兵兵,王陈斌,等.丙硫菌唑与丙环唑混剂对小麦赤霉病菌的联合毒力及田间防效[J].中国农学通报,2024,40(02):114-120.

[5] 陈厚德,王彰明,袁树忠,等.小麦茎基褐腐病的发生特点及其对产量的影响

[J]. 扬州大学学报(自然科学版),2001(04):43-46.

[6] 陈晶伟.福建省3种重要根结线虫的种类鉴定、寄主及其发生危害[D].福建农林大

学,2020.

[7] 陈娟,朱永和.病毒必克防治水稻条纹叶枯病研究[J].江西农业学报,2006(06):116-117.

[8] 崔文杰.草坪草币斑病及褐斑病的化学防治研究[D].南京农业大学,2020.

[9] 顾中言,陈志谊,刘邮洲.分析增效系数和共毒系数的异同及探讨杀菌剂混用联合作用的评判[J].江苏农业学报,2016,32(06):1262-1267.

[10] 郭炜.西北地区冬小麦普通根腐病和茎基腐病病原鉴定及种质资源抗性筛选

[D].甘肃农业大学,2018.

[11] 韩惠兰,李迎宾,额尔敦阿古拉,等.4种杀菌剂防治草坪草夏季斑枯病研究

[J].植物保护,2020,46(05):298-302.

[12] 郝永娟,霍建飞,高苇,等.天津地区番茄灰霉病菌对常用杀菌剂的抗性检测及治理对策[J].天津农业科学,2015,21(10):87-92.

[13] 胡燕,王怀训,夏晓明,等.四地区小麦纹枯病菌对6种杀菌剂的抗性比较[J].植物保护学报,2006(04):423-427.

[14] 纪军建.番茄灰霉病菌对咯菌腈和氟啶胺的抗性风险研究[D].河北农业大学,

2012.

[15] 江川安,金立,汤钟祥.精甲霜灵、咯菌腈与嘧菌酯复配对水稻烂秧病的室内活性及种衣剂田间药效试验研究[J].安徽农学通报,2023,29(03):95-98.

[16] 李宝燕,石洁,汪少丽,等.山东省葡萄白腐病菌对氯氟醚菌唑及其他3种三唑类杀菌剂的敏感性[J].农药学学报,2024.

[17] 李聪聪,吴玉星,王亚娇,等.咯菌腈和戊唑醇复配对假禾谷镰孢菌丝生长及所致病害的影响[J].植物病理学报,2023,53(03):498-507.

[18] 李良孔.黄瓜白粉病菌对氟吡菌酰敏感基线的建立及其抗药性风险评估[D].吉林 大学,2011.

[19] 李麟坤.结缕草感染褐斑病初期ABA调控机制[D].北京林业大学,2018.

[20] 李银萍,袁庆华,王瑜.草坪草腐霉枯萎病菌的分离鉴定及其对高羊茅的致病性

[J].中国草地学报,2012,34(06):61-68.

[21] 林江,白丽莎,王洪星,等.海南省高尔夫球场草坪草病害种类调查初报[J].农业科技通讯,2015(07):272-276.

[22] 林琳.辣椒炭疽病菌的生物学特性及有效药剂筛选[D].安徽农业大学,2011.

[23] 刘吉祥,吉沐祥,芮东明,等.吡唑醚菌酯与戊唑醇及其复配剂对葡萄炭疽病菌的毒力测定及田间防效[J].江苏农业科学,2017,45(08):87-91.

[24] 刘希玲,张黎辉,李长红,等.40%丙硫菌唑·戊唑醇悬浮剂的研制[J].世界农药,2022,44(01):35-38.

[25] 刘翔,姜兴印,王雪婷,等.辣椒根腐病菌对咯菌腈的敏感性及其抗性突变体的生物学性状[J].植物保护,2023,49(03):113-120.

[26] 孟琳.水稻纹枯病的化学防治及几种复配药剂药效评价[D].南京农业大学,2013.

[27] 牟文君,马晓静,胡利伟,等.烟草青枯病菌对4种杀菌剂的敏感性及复配药剂联合毒力评价[J].烟草科技,2022,55(03):16-24.

[28] 彭昀.新型SDHI类杀菌剂吡噻菌胺对橡胶树胶孢炭疽菌的生物学活性研究[D].海南大学,2020.

[29] 邱焯,卫国,耿守光.小麦雪腐、雪霉病的发生及防治[J].新疆农业科技,2003(04):38-39.

[30] 邵蕾,李登来,罗晓苹.44%氟唑环菌胺处理剂防治玉米丝黑穗病试验研究[J].农业科技通讯,2017(04):43-44.

[31] 申瑞平,宋莹莹,王秋红,等.两种新型琥珀酸脱氢酶抑制剂的抑菌活性比较

[J].农药科学与管理,2014,35(08):52-57.

[32] 申瑞平.吡唑萘菌胺的抑菌谱及其对黄瓜白粉病的防治作用[D].山东农业大学,

2014.

[33] 孙龙江.花生白绢病菌对两种SDHI类杀菌剂的敏感性及对苯并烯氟菌唑的抗药性风险评价[D].河南农业大学,2023.

[34] 台佳.微结节霉属真菌Microdochium majus引起的小麦茎基腐病流行学研究[D].安徽农业大学,2019.

[35] 王德浩.马铃薯黑痣病的生物防治及其机理研究[D].山东农业大学, 2020.

[36] 王国军,王晓娥,孙敏,等.小麦茎基腐病发生趋势预报及药剂防治试验[J].中国农学通报, 2009,25(20):258-261.

[37] 王丽,周增强,侯珲.4种杀菌剂对葡萄灰霉病菌的毒力测定及复配试验[J].中国 农学通报,2016,32(20):40-43.

[38] 王美云.手性农药甲霜灵的立体选择性降解研究[D].南京农业大学,2014.

[39] 王英姿,刘学卿,王培松,等.两种混配杀菌剂对苹果枝干病害的防效[J].植物保护, 2006(06):152-154.

[40] 王源超,陈庆河,郑小波,等.甲霜灵抑制棉疫病菌卵孢子的产生[J].植物保护学报,1997(02):175-178.

[41] 韦小燕,成家壮.多菌灵·硫·三环唑混配对抑制水稻稻瘟病菌和纹枯病菌的协同增效作用[J].现代农药,2004(04):40-43.

[42] 吴峤,杨吉春,刘彦斐.2016年登记或上市的农药品种[J].农药,2017,56(01):56-60.

[43] 吴祥为,张召贤,袁东婕,等.梨贮藏保鲜中化学杀菌剂风险评估及控制关键技术研发与应用[J].安徽农业大学学报,2021(02):40-41

[44] 徐大同.山东地区灰霉病菌对常用杀菌剂的抗性检测及对氟菌唑和氟啶胺的敏感性[D].山东农业大学,2015.

[45] 徐金柱,秦长生,杨华,等.无瓣海桑灰霉病病原的分离及药剂筛选[J].中南林业科技大学学报,2013,33(10):15-18.

[46] 徐璐茜,高银洁,叶倩倩,等.鳄梨蒂腐病毛色二孢属真菌对6种杀菌剂的敏感性

[J].农药学学报,2024,26(01):77-87.

[47] 许涛, 胡旭, 孙劝劝,等.海雀稗种质资源币斑病抗性鉴定[J].分子植物育种,2023.

[48] 颜范勇,刘冬青,司马利锋,等.新型烟酰胺类杀菌剂—啶酰菌胺[J].农药,

2008(02):132-135.

[49] 杨敬辉,陈宏州,吴琴燕,等.啶酰菌胺对草莓灰霉病菌的毒力测定及田间防效

[J].江西农业学报,2010,22(09):94-95.

[50] 姚鸿州.三种琥珀酸脱氢酶抑制剂类杀菌剂对斑马鱼的毒性效应研究[D].浙江工

业大学,2019.

[51] 尹玉.草坪重点病虫草害的防治[N].中国花卉报.

[52] 詹家绥,吴娥娇,刘西莉,等.植物病原真菌对几类重要单位点杀菌剂的抗药性分子机制[J].中国农业科学,2014,47(17):3392-3404.

[53] 张朝辉,张广,闫鹏,等.复配杀菌剂防治平菇尖孢镰刀菌病害的效果测定

[J]. 核农学报, 2021,35(10):2311-2318.

[54] 张江兆,徐重新,沈燕,等.腐霉利和咯菌腈混用对黄瓜灰霉病菌的联合毒力及药剂残留动态[J].农药学学报,2022,24(04):851-858.

[55]张金林,庞民好,刘颖超,等.不同杀菌剂对草坪草病原菌毒力的作用测定[J].草业学报,2006(01):58-61.

[56]张庆宽,翟淑华,范金勇,等.2008年授权的国外农药新化合物专利[J].世界农药,2009,31(03):50-51.

[57]张翼翾.广谱、持效期长的杀菌剂——苯并烯氟菌唑[J].世界农药,015,37(05):58-59.

[58]张玉粉.伏毛铁棒锤生物碱对化学农药的增效作用及复配制剂研制[D].宁夏大学,2014.

[59]章武,刘国道,南志标.4种暖季型草坪草币斑病病原菌鉴定及其生物学特性[J].草业学报,2015,24(01):124-131.

[60]章武.海南省高尔夫球场草坪草真菌病害的初步研究[D].兰州大学,2015.

[61]赵宜謙.新疆伊力地区冬小麦雪霉病調查初报[J].植物保护学报,1964(01):81-82.

[62]郑露,吕茹婧,姜道宏,等.大蒜白斑病菌毒素对大蒜叶肉细胞质膜H~+-ATPase水解活力及氧化还原系统的影响:中国植物病理学会2009年学术年会[C],中国云南昆明,2009.

[63]Angioni A, Porcu L, Dedola F. Determination of famoxadone, fenamidone, fenhexamid and iprodione residues in greenhouse tomatoes[J]. Pest Management Science, 2012, 68(4):543-547.

[64]Bielza P, Espinosa P J, Quinto V, et al. Synergism studies with binary mixtures of pyrethroid, carbamate and organophosphate insecticides on Frankliniella occidentalis (Pergande)[J]. Pest Management Science, 2007, 63(1):84-89.

[65]Brent K J, Hollomon D W. Fungicide resistance in crop pathogens:how can it be managed?[J]. Fungicide Resistance Action Committee, 2007, 07(6):90

[66]Edgington L V, Walton G S, Miller P M. Fungicide selective for basidiomycetes[J]. Science, 1966,153(3733):307-308.

[67]Fabbri L T, Perreta M, Rua G H. Spatial structure and development of Paspalum vaginatum (Poaceae):an architectural approach[J]. Australian Journal of Botany, 2016, 64(2):153-159.

[68]Forcelini B B, Seijo T E, Amiri A, et al. Resistance in strawberry isolates of Colletotrichum acutatum from Florida to quinone-outside inhibitor fungicides[J]. Plant Disease, 2016,100(10):2050-2056.

[69]Gopinath K, Radhakrishnan N V, Jayaraj J. Effect of propiconazole and difenoconazole on the control of anthracnose of chilli fruits caused by Colletotrichum capsici[J]. Crop Protection, 2006, 25(9):1024-1031.

[70]Hamada M S, Yin Y, Ma Z. Sensitivity to iprodione, difenoconazole and fludioxonil of Rhizoctonia cerealis isolates collected from wheat in China[J]. Crop Protection, 2011, 30(8):1028-1033.

[71]Hirooka T, Ishii H. Chemical control of plant diseases[J]. Journal of General Plant Pathology, 2013, 79:390-401.

[72]Huang X, Song Y, Li B, et al. Baseline sensitivity of isopyrazam against Sclerotinia sclerotiorum and its efficacy for the control of Sclerotinia stem rot in vegetables[J]. Crop Protection, 2019, 122:42-48.

[73]Johnson G I, Shepherd R K. Susceptibility of tobacco blue mould (Peronospora hyoscyami) to metalaxyl[J]. Annals of Applied Biology, 1983, 102(1):123-126.

[74]Keplinger M L, Deichmann W B. Acute toxicity of combinations of pesticides[J]. Toxicology and Applied Pharmacology, 1967, 10(3):586-595.

[75]Li S, Li X, Zhang H, et al. The research progress in and perspective of potential fungicides: Succinate dehydrogenase inhibitors[J]. Bioorganic and Medicinal Chemistry, 2021, 50:116476.

[76]Liang J, Li G, Zhao M, et al. A new leaf blight disease of turfgrasses caused by Microdochium poae, sp. nov.[J]. Mycologia, 2019, 111(2):265-273.

[77]López-Herrera C J, Zea-Bonilla T. Effects of benomyl, carbendazim, fluazinam and thiophanate methyl on white root rot of avocado[J]. Crop Protection, 2007, 26(8):1186-1192.

[78]Mansour N A, Eldefrawi M E, Toppozada A, et al. Toxicological studies on the Egyptian cotton leaf worm, Prodenia litura. VI. Potentiation and antagonism of organophosphorus and carbamate insecticides[J]. Journal of Economic Entomology, 1966, 59(2):307-311.

[79]Matheron M E, Porchas M. Activity of boscalid, fenhexamid, fluazinam, fludioxonil, and vinclozolin on growth of Sclerotinia minor and S. sclerotiorum and development of lettuce drop[J]. Plant Disease, 2004, 88(6):665-668.

[80]Matheron M E, Porchas M. Comparative ability of six fungicides to inhibit development of Phytophthora gummosis on citrus[J]. Plant Disease, 2002, 86(6):687-690.

[81]Morales J, Manso J A, Cid A, et al. Stability study of iprodione in alkaline media in the presence of humic acids[J]. Chemosphere, 2013, 92(11):1536-1541.

[82]Mukherjee I, Gopal M, Chatterjee S C. Persistence and effectiveness of iprodione against Alternaria blight in mustard.[J]. Bulletin of Environmental Contamination and Toxicology, 2003, 70:0586-0591.

[83]Nishida M, Matsubara T, Watanabe N. Pyrrolnitrin, a new antifungal antibiotic microbiological and toxicological observations[J]. The Journal of Antibiotics, Series A, 1965, 18(5):211-219.

[84]Rodriguez-Kabana R, Curl E A. Nontarget effects of pesticides on soilborne pathogens and disease[J]. Annual Review of Phytopathology, 1980, 18(1):311-332.

[85]Sierotzki H, Haas U H, Oostendorp M, et al. Adepidyn fungicide: a new broad spectrum foliar fungicide for multiple crops.[J]. Agricultural and Food Sciences, 2017, 30(6):77-83.

[86]Sun H Y, Cui J H, Tian B H, et al. Resistance risk assessment for Fusarium graminearum to pydiflumetofen, a new succinate dehydrogenase inhibitor[J]. Pest Management Science, 2020, 76(4):1549-1559.

[87]Sun Y, Johnson E. Analysis of joint action of insecticides against house flies[J]. Journal of Economic Entomology, 1960, 53(5):887-892.

[88]Villani S M, Ayer K, Cox K D. Molecular characterization of the shdB gene and baseline sensitivity to penthiopyrad, fluopyram, and benzovindiflupyr in Venturia inaequalis[J]. Plant Disease, 2016, 100(8):1709-1716.

[89]Vincelli P, Munshaw G. Chemical control of turfgrass diseases[J]. Food and Environment 2014, 23(5):45-47

[90]Wang Y, Wen C, Chiu T, et al. Effect of fungicide iprodione on soil bacterial community[J]. Ecotoxicology and Environmental Safety, 2004, 59(1):127-132.

[91]Williamson V M, Gleason C A. Plant–nematode interactions[J]. Current Opinion in Plant Biology, 2003,6(4):327-333.

[92]Yang L, He M, Ouyang H, et al. Cross-resistance of the pathogenic fungus Alternaria alternata to fungicides with different modes of action[J]. BMC Microbiology, 2019, 19:1-10.

[93]Zhang W, Nan Z, Tian P, et al. Microdochium paspali, a new species causing seashore paspalum disease in southern China[J]. Mycologia, 2015, 107(1):80-89.

中图分类号:

 S43    

开放日期:

 2024-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式