中文题名: | 红树林土壤抗菌活性菌株的筛选及其次级代谢产物的研究 |
姓名: | |
学号: | 2018808132 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 095113 |
学科名称: | 农学 - 农业推广 - 食品加工与安全 |
学生类型: | 硕士 |
学位: | 农业硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 微生物次级代谢 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
完成日期: | 2021-06-01 |
答辩日期: | 2021-05-25 |
外文题名: | Isolation of bacteria with atibacterial activity from mangroves and study on their secondary metabolites |
中文关键词: | |
外文关键词: | mangrove ; antibacterial activity ; secondary metabolites ; polypeptides |
中文摘要: |
微生物在生长繁殖过程中产生结构多样的次级代谢产物,这些次级代谢产物具有抗菌、抗肿瘤、抗病毒多种生物活性,是现代药物、食品添加剂的重要来源。红树林是一种高盐、高湿度、高辐射、缺氧的独特生态系统,红树林中的微生物具有产生新活性化合物的巨大潜力。目前已从红树林微生物中发现出许多具有生物活性的新型化合物,如生物碱、苯衍生物、环戊酮衍生物、大环内酯类等。本研究从红树林土壤分离筛选出具有抗菌活性的微生物,并对其抗菌次级代谢产物进行研究。 以金黄色葡萄球菌(Staphylococcu saureus ATCC 25923)、枯草芽孢杆菌(Bacillus subtilis 168)、大肠杆菌(Escherichia coli ATCC 25922)和酿酒酵母(Saccharomyces cerevisiae CRY1-2)为指示菌,通过琼脂块法初筛,从红树林土壤样品中筛选出213株活性菌株。经形态学观察后选取出57株菌株为代表性菌株,采用纸片法进行活性复筛,获得13株较高活性菌株。同时,通过16S rRNA基因序列分析对57株菌株进行分类研究。57株菌株分布在厚壁菌门(29株)、变形菌门(7株)和放线菌门(21株)。复筛结果发现具有抗菌活性的菌株均来自放线菌门与厚壁菌门,放线菌门占61.54%,厚壁菌门占38.46%。 选择抗菌活性最好的菌株Micromonospora sp. ZFSF-1M,对其活性产物做进一步研究。采用甲醇萃取结合色谱分离技术对菌株发酵产物中的活性成分分离纯化,获得化合物1和2。通过高分辨电喷雾电离质谱、核磁共振波谱技术对化合物1和2进行结构鉴定,确定二者为新结构的多肽化合物,均由缬氨酸、苏氨酸、异亮氨酸残基组成,通过较特殊连接方式形成具有新型碳骨架结构的“6+7”双环分子。新化合物分别命名为moramincin A和moramincin B,抑菌活性实验发现moramincin B对枯草芽孢杆菌和金黄色葡萄球菌有较强的活性。 为探究moramincin A、B的生物合成过程,对菌株Micromonospora sp. ZFSF-1M进行基因组测序,获得全长为8,080,753 bp的基因组序列。通过antiSMASH(5.2.0)对基因组中的次级代谢产物合成基因簇进行分析,共发现30个次级代谢产物基因簇,并对其中可能与moramincin A、B生物合成相关的基因簇进行了分析。 综上所述,本研究以红树林土壤中的抗菌活性菌株为研究对象,获得了13株较高活性的菌株,为进一步挖掘红树林微生物来源天然产物提供了菌种资源。选择抗菌活性最强的菌株Micromonospora sp. ZFSF-1M进行抗菌活性次级代谢产物研究。对其活性次级代谢产物进行分离鉴定,获得了两个新的多肽化合物moramincin A、B。对菌株Micromonospora sp. ZFSF-1M进行基因组测序,为研究moramincin A、B的生物合成路径提供了基础。 |
外文摘要: |
During their growth and reproduction, microorganisms could produce diverse secondary metabolites which have antibacterial, anti-tumor and anti-viral biological activities. These secondary metabolites are an important source of modern medicines and food additives. Mangrove microorganisms, which live inhypoxia environment of high salinity, high humidity and high radiation have great potential to produce new active compounds. Many new compounds with biological activity had been discovered from mangrove microorganisms, such as alkaloids, benzene derivatives, cyclopentanone derivatives, macrolides and so on. In this thesis, microorganisms with antibacterial activity were isolated and screened from mangrove soil and the secondary metabolites of these strains were further studied. Using Staphylococcu saureus ATCC 25923, Bacillus subtilis 168, Escherichia coli ATCC 25922 and Saccharomyces cerevisiae CRY1-2 as indicator microbes, 213 bioactive strains were isolated from mangrove soil samples by preliminary screening using agar block method. After morphological observation, 57 strains were selected as representative strains and re-screened by filter paper method and 13 strains showed higher activity. Then 16S rRNA gene sequences of the 57 strains were analyzed, and the results indicated that 57 strains were distributed in Firmicutes (29 strains), Proteobacteria (7 strains) and Actinomycetes (21 strains). Using paper diffusion method to re-screened the bioactivities of the 57 strains, 13 strains showed higher activity. The results of the re-screening showed that the strains with antibacterial activity all came from the Actinomycetes and Firmicutes, which accounted for 61.54% and 38.46% of the antibacterial strains respectivly. Micromonospora sp. ZFSF-1M with the strongest antibacterial activity was selected for further study. The active compounds from the fermentation broth of Micromonospora sp. ZFSF-1M were isolated and purified by methanol extraction and chromatographic separation technologyies, and finally two purified compounds were obtained. The structures of compounds 1 and 2 were elucidated determined by HR-ESI-MS and NMR. The compounds 1 and 2 were both consisted with valine, threonine and isoleucine residues, which formed a new 6+7 bicyclic carbon skeleton. The compounds 1 and 2 were named moramincin A, B respectively. The antibacterial activity assay showed that moramincin B has strong activity against S. aureus ATCC 25923 and B. subtilis 168. In order to explore the biosynthetic process of moramincins, the genome of the strain Micromonospora sp. ZFSF-1M was sequenced. The total length of the genome was 8080753 bp. The secondary metabolite biosynthetic pathways on the genome were analyzed by online software antiSMASH (5.2.0) and 30 biosynthetic gene clusters were identifed. The gene clusters that might be related to the biosynthesis of moramincins were discussed. In summry, 13 microbe strains with antibacterial activity were screened and identified from mangrove soil, which provided strain resources for further new natural products mining. The strain Micromonospora sp. ZFSF-1M with the strongest antibacterial activity was selected for further study and two new active compounds moramincin A and moramincin B were purified from the fermentation broth of Micromonospora sp. ZFSF-1M. Furthermore, the genome of Micromonospora sp. ZFSF-1M was sequenced, which laid a foundation for studying the biosynthetic pathway of moramincins. |
参考文献: |
[1] Whitman W B, Coleman D C, Wiebe W J. Prokaryotes: the unseen majority[J]. Proceedings of the National Academy of Sciences, 1998, 95(12): 6578-6583. [2] 张超群,戴建荣. 放线菌的研究现况与展望[J]. 中国病原物学杂志,2019,14(1):110-113. Zhang C Q, Dai J R. Status of and prospects for research onactinomycetes[J]. Journal of Pathogen Biology, 2019, 14(1): 110-113 (in Chinese with English abstract). [3] 赵江华,房欢,张大伟. 微生物次级代谢产物生物合成的研究进展[J]. 生物技术通报,2020,36(11):141-147. Zhao Jianghua, Fang Huan, Zhang Dawei. Research progress in biosynthesis of secondary metabolites of microorganisms[J]. Biotechnology Bulletin, 2020,36(11): 141-147 (in Chinese with English abstract). [4] Lu D-F, Wang Y-S, Li C, et al. Actinomycin D inhibits cell proliferations and promotes apoptosis in osteosarcoma cells[J]. International Journal of Clinical and Experimental Medicine, 2015, 8(2): 1904. [5] Arcamone F, Franceschi G, Orezzi P, et al. Daunomycin. I. The structure of daunomycinone[J]. Journal of the American Chemical Society, 1964, 86(23): 5334-5335. [6] Di Marco A, Gaetani M, Orezzi P, et al. ‘Daunomycin’, a new antibiotic of the rhodomycin group[J]. Nature, 1964, 201(4920): 706-707. [7] 孙样,王宇驰,张春然,等. 头孢菌素类抗生素的发现与发展[J]. 国外医药(抗生素分册),2014,35(04):154-158+181. Sun Yang,Wang Yu-chi,Zhang Chun-ran, et al. Discovery and Development of Cephalosporin Antibiotics[J]. World Notes on Antibiotics,2014,35(04):154-158+181 (in Chinese with English abstract). [8] He X, Wang Y, Luo RH, et al. Dimeric Pyranonaphthoquinone Glycosides with Anti-HIV and Cytotoxic Activities from a Soil-Derived Streptomyces[J]. Journal of Natural Products, 2019, 82(7): 1813-1819. [9] Li D L, Li X M, Li T G, et al. Dioxopiperazine alkaloids produced by the mangrove derived endophytic fungus Eurotium rubrum[J]. Helvetica Chimica Acta, 2008, 91(10): 1888-1893. [10] Wen L, Lin Y C, She Z G, et al. Paeciloxanthone, a new cytotoxic xanthone from the marine mangrove fungus Paecilomyces sp. (Treel1-7)[J]. Journal of Asian natural products research, 2008, 10(2): 133-137. [11] 闫大壮.土壤微生物的筛选及其次级代谢产物的研究[D]. 上海:上海师范大学,2015,14-17. Yan Dazhuang. Screening of soil microorganisms and study on their secondary metabolites[D]. Shanghai: Shanghai Normal University, 2015, 14-17 (in Chinese with English abstract). [12] Mondol M A, Kim J H, Lee M A, et al. Ieodomycins A-D, antimicrobial fatty acids from a marine Bacillus sp[J]. Journal of Natural Products, 2011, 74(7): 1606-1612. [13] Li Y, Sun B, Liu S, et al. Bioactive asterric acid derivatives from the Antarctic ascomycete fungus Geomyces sp[J]. Journal of Natural Products, 2008, 71(9): 1643-1646. [14] Lee S Y, Primavera J H, Dahdouh-Guebas F, et al. Ecological role and services of tropical mangrove ecosystems: a reassessment[J]. Global Ecology and Biogeography, 2014, 23(7): 726-743. [15] Alongi D M. Bacterial productivity and microbial biomass in tropical mangrove sediments[J]. Microbial Ecology, 1988, 15(1): 59-79. [16] 闫莉萍. 抗肿瘤活性海洋放线菌的分离筛选及其16S rDNA多样性分析[D]. 儋州:华南热带农业大学,2003:27-48. Yan Liping. Isolation, Screening and Diversity Analysis of 16S rDNA of Marine Actinomycetes with Antitumor Activity[D].Danzhou: South China Tropical Agricultural University, 2003: 27-48 (in Chinese with English abstract). [17] 张起畅, 张文飞, 殷浩能, 等. 宏基因组测序分析东寨港红树林淤泥和水体微生物的多样性 [J]. 基因组学与应用生物学,2020,39(01):116-122. Zhang Qichang, Zhang Wenfei, Yin Haoneng, et al. Revealing Microorganism Diversity of Silt and Water in Dongzhaigang Mangroves by Metagenome Sequencing[J]. Genomics and Applied Biology, 2020, 39(01): 116-122 (in Chinese with English abstract). [18] Andreote F D, Jiménez D J, Chaves D, et al. The microbiome of Brazilian mangrove sediments as revealed by metagenomics[J]. PloS one, 2012, 7(6). [19] Mendes L W, Taketani R G, Navarrete A A, et al. Shifts in phylogenetic diversity of archaeal communities in mangrove sediments at different sites and depths in southeastern Brazil[J]. Research in microbiology, 2012, 163(5): 366-377. [20] 丁苏丽, 张祁炅, 董俊, 等. 深港红树林沉积物微生物群落多样性及其与重金属的关系[J]. 生态学杂志,2018,37(10):3018-3030. Ding Suli, Zhang Qijiong, Dong Jun, et al. Microbial community structure and its relationship to heavy metals in Shenzhen and Hong Kong mangrove sediments[J]. Chinese Journal of Ecology, 2018, 37(10): 3018-3030 (in Chinese with English abstract). [21] Kristensen E, Aaese R, Kostkan J E. Interactions betweenmacro and microorganisms in marine sediments[M].American Geophysical Union, 2005:85. [22] Berdy J. Bioactive microbial metabolites[J]. The Journal of Antibiotics, 2005, 58(1): 1-26. [23] Dharmaraj S. Marine Streptomyces as a novel source of bioactive substances[J]. World Journal of Microbiology and Biotechnology, 2010, 26(12): 2123-2139. [24] Thenmozhi M, Kannabiran K. Studies on isolation, classification and phylogenetic characterization of novel antifungal Streptomyces sp. VITSTK7 in India[J]. Current Research Journal of Biological Sciences, 2010, 2(5): 306-312. [25] Watve M G, Tickoo R, Jog M M, et al. How many antibiotics are produced by the genus Streptomyces?[J]. Archives of microbiology, 2001, 176(5): 386-390. [26] Viszwapriya D, Pandian S K. Bioresources and Bioprocess in Biotechnology[M]. Singapore: Springer, 2017: 275-302 (in Chinese). [27] Yuan Ganjun, Hong Kui, Lin Haipeng, et al.Azalomycin F_(4a) 2-ethylpentyl ester,a newmacrocyclic lactone, from mangrove actinomycete Streptomyces sp.211726[J].Chinese Chemical Letters,2010,21(08): 947-950. [28] Fu P, Johnson M, Chen H, et al. Carpatamides A-C, Cytotoxic Arylamine Derivatives from a Marine-Derived Streptomyces sp[J]. Journal of Natural Products, 2014, 77(5): 1245-1248. [29] Han Xiaoning, Liu Zengzhi, Zhang Zhenzhen et al.Geranylpyrrol A and piericidin F fromStreptomyces sp.CHQ-64ΔrdmF[J].J Nat Prod, 2017, 80(5): 1684-1687. [30] Gui C, Zhang S, Zhu X, et al. Antimicrobial spirotetronate metabolites from marine-derived Micromonospora harpali SCSIO GJ089[J]. Journal of Natural Products, 2017, 80(5): 1594-1603. [31] Sun P, Qi S, Gui M, et al. Secondary Metabolites from Marine Micromonospora: Chemistry and Bioactivity [J]. Chemistry & Biodiversity, 2020. [32] Schulze C J, Donia M S, Siqueira-Neto J L, et al. Genome-directed lead discovery: biosynthesis, structure elucidation, and biological evaluation of two families of polyene macrolactams against Trypanosoma brucei[J]. ACS Chemical Biology, 2015, 10(10): 2373-2381. [33] 杨星鹏, 张志斌, 朱笃. 小单胞菌属次级代谢产物及其生物活性研究进展[J]. 天然产物研究与开发,2019,31(05):908-915+921. Yang Xingpeng, Zhang Zhibin, Zhu Du. Review on secondary metabolites and its biological activities from genus Micromonospora[J]. Natural Product Research and Development, 2019, 31(05): 908-915+921 (in Chinese with English abstract). [34] Bundale S, Singh J, Begde D, et al. Rare actinobacteria: a potential source of bioactive polyketides and peptides[J]. World Journal of Microbiology and Biotechnology, 2019, 35(6): 92. [35] Wang Z, Wen Z, Liu L, et al. Yangpumicins F and G, Enediyne Congeners from Micromonospora yangpuensis DSM 45577[J]. Journal of Natural Products, 2019, 82(9): 2483-2488. [36] 张晓敏, 刘秋, 刘限, 等. 小单孢菌科研究进展[J]. 西北农林科技大学学报(自然科学版), 2013,41(09):175-185. Zhang Xiaomin, Liu Qiu, Liu Xian, et al. Research progress on the Micromonosporaceae family[J].Journal of Northwest A & F University(Natural Science Edition), 2013, 41(09): 175-185 (in Chinese with English abstract). [37] Woese C, Stackebrandt E, Macke T, et al. A phylogenetic definition of the major eubacterial taxa[J]. Systematic and Applied Microbiology, 1985, 6: 143-151. [38] Woese C R. Bacterial evolution[J]. Microbiological Reviews, 1987, 51(2): 221. [39] Woese C R, Olsen G J, Ibba M, et al. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process[J]. Microbiolgy and Molecular Biology Reviews, 2000, 64(1): 202-236. [40] 张伟信, 邬晓凤, 喻华英. 16S rDNA对四种常见细菌中的鉴定与应用[J]. 塔里木大学学报,2013,25(04):7-11. ZhangWeixing, Wu Xiaofeng, Yu Huaying.Application and Identification in Four Kinds of Common Bacteria by 16S rDNA[J]. Journal of Tarim University, 2013, 25(04): 7-11 (in Chinese with English abstract). [41] Chakravorty S, Helb D, Burday M, et al. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria[J]. Journal of Microbiological Methods, 2007, 69(2): 330-339. [42] 朱诗应, 戚中田. 16S rDNA扩增及测序在细菌鉴定与分类中的应用[J]. 微生物与感染, 2013,8(02):104-109. Zhu Shiying, Qi Zhongtian. Application of bacterial 16S rDNA amplification and sequencing in the classification and identification of bacteria[J]. Journal of Microbes and Infections, 2013, 8(02): 104-109 (in Chinese with English abstract). [43] Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems[J]. Current Opinion in Microbiology, 1999, 2(3): 317-322. [44] Dec M, Urban-Chmiel R, Gnat S, et al. Identification of Lactobacillus strains of goose origin using MALDI-TOF mass spectrometry and 16S-23S rDNA intergenic spacer PCR analysis[J]. Research in Microbiology, 2014, 165(3): 190-201. [45] Widdick D A, Dodd H M, Barraille P, et al. Cloning and engineering of the cinnamycin biosynthetic gene cluster from Streptomyces cinnamoneus cinnamoneus DSM 40005[J].. Proceedings of the Natlional Academy of Sciences of the United Sates of America. 2003, 100(7): 4316-4321. [46] 薄胜涛. 多肽和聚酮类天然产物的分离与生物合成研究[D]. 南京:南京大学,2018,7-8. Bo Shengtao. Isolation and biosynthesis of peptides and polyketides natural products[D]. Nanjing: Nanjing University, 2018, 7-8 (in Chinese with English abstract). [47] 张晨曦. 两种核糖体肽类天然产物的生物合成机制研究[D]. 上海:上海师范大学,2017,2-4. Zhang Chenxi. Study on the biosynthetic mechanism of two natural products of ribosomal peptides[D]. Shanghai: Shanghai Normal University, 2017, 2-4 (in Chinese with English abstract). [48] Christopher T. Walsh, Yi Tang. Natural product biosynthesis: chemical logic and enezymatic machinery[M]. UK: Royal society of chemistry, 2017, 127-135. [49] 冯林慧, 李迎秋. 纳他霉素和乳酸链球菌素复配在食品中的应用[J]. 中国调味品, 2019,44(2): 190-192. Feng L H, Li Y Q. Application of natamycin and nisin in food[J]. China Condiment, 2019, 44(2): 190-192 (in Chinese with English abstract). [50] Chatterjee C, Paul M, Xie L, et al. Biosynthesis and mode of action of lantibiotics[J]. Chemical Reviews, 2005, 105(2): 633-684. [51] Garret?M.?Rubin, Yousong?Ding. Recent advances in?the?biosynthesis of?RiPPs from?multicore-containing precursor peptides[J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47:659-674. [52] McIntosh John A, Donia Mohamed S, Nair Satish K, et al. Enzymatic basis of ribosomal peptide prenylation in cyanobacteria[J]. Journal of the American Chemical Society, 2011, 133(34): 13698-13705. [53] Jaspars Marcel. The origins of cyanobactin chemistry and biology[J]. Chemical communications (Cambridge, England), 2014, 50(71): 10174-10176. [54] Martins Joana,Vasconcelos Vitor. Cyanobactins from Cyanobacteria: Current Genetic and Chemical State of Knowledge[J]. Marine drugs, 2015, 13(11): 6910-6946. [55] 魏小雅,刘欣,于宏伟,等. 微生物非核糖体多肽的合成基因簇挖掘及其合成研究进展[J].中国抗生素杂志,2020,06:1-9. Wei Xiao-ya, Liu Xin, Yu Hong-wei,. et al. Advances in biosynthetic gene cluster mining and biosynthesis of microbial nonribosomal peptides[J]. Chinese Journal of Antibiotics,2020,06: 1-9 (in Chinese with English abstract). [56] Gregory L Challis1, James H Naismith.Structural aspects of non-ribosomal peptide biosynthesis[J]. Current Opinion in Structural Biology, 2004, 14: 748-756. [57] Sandesh Deshpande, Eric Altermann, Vijayalekshmi Sarojini, et al. Structural characterization of a PCP–R di-domain from an archaeal non-ribosomal[J]. Journal Pre-proof, 2021, 02: 1-25. [58] Fischbach M A, Walsh C T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms[J]. Chemical Reviews, 2006, 106(8): 3468-3496. [59] Hur G H, Vickery CR, Burkart M D. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology[J]. Natural Product Reports, 2012, 29(10): 1074-1098. [60] Duerfahrt T, Eppelmann K, Muller R. Marahiel MA: Rational design of a bimodular model system for the investigation of heterocyclization in nonribosomal peptide biosynthesis[J]. Chemistry & Biology, 2004, 11: 261-271. [61] 潘海学,唐功利. 非核糖体肽合成酶催化的非常规装配模式[J]. 微生物学通报,2013,40(10):1783-1795. Pan Hai-Xue, Tang Gong-Li. Unconventional assembling ways catalyzed by nonribosomal peptide synthetases[J]. Microbiology China, 2013, 40(10):1783-1795 (in Chinese with English abstract). [62] Melanie Gonsior, Agnes Mühlenweg, Marcel Tietzmann, et al. Biosynthesis of the Peptide Antibiotic Feglymycin by a Linear Nonribosomal Peptide Synthetase Mechanism[J]. ChemBioChem, 2015, 16: 2610-2614. [63] Vivian Miao, Marie-Francoise Coeffet-LeGal, et al. Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry[J]. Microbiology, 2005, 151: 1507-1523. [64] Hoyer K M, Mahlert C, Marahiel M A. The iterative gramicidin S thioesterase catalyzes peptide ligation and cyclization[J]. Chemistry & Biology, 2007, 14(1): 13-22. [65] Elizabeth A. Felnagle, Michelle R. Rondon, Andrew D. Berti, et al. Identification of the Biosynthetic Gene Cluster and an Additional Gene for Resistance to the Antituberculosis Drug Capreomycin[J]. Applied and Enivoronmental Microbiology, 2007, 73: 4162-4170. [66] Schmidt S, Heymann K, Melzig M, et al. Glycyrrhizic Acid Decreases Gentamicin-Resistance in Vancomycin-Resistant Enterococci[J]. Planta Medica, 2016: 1540-1545. [67] Lee H S, Shin H J, Jang K H, et al. Cyclic peptides of the nocardamine class from a marine-derived bacterium of the genus Streptomyces[J]. Journal of Natural Products, 2005, 68(4): 623-625. [68] Haberhauer G, Rominger F. Syntheses and Structures of Imidazole Analogues of Lissoclinum Cyclopeptides[J]. European Journal of Organic Chemistry, 2010, 2003(16): 3209-3218. [69] Moorkoth D, Nampoothiri K M. Production and characterization of poly (3-hydroxy butyrate-co-3 hydroxyvalerate)(PHBV) by a novel halotolerant mangrove isolate[J]. Bioresource Technology, 2016, 201: 253-260. [70] Glaser K B, Mayer A M S. A renaissance in marine pharmacology: From preclinical curiosity to clinical reality[J]. Biochemical Pharmacology, 78(5): 440-448. [71] Teufel R, Agarwal V, Moore B S. Unusual flavoenzyme catalysis in marine bacteria[J]. Current Opinion in Chemical Biology, 2016, 31: 31-39. [72] Gao Hai, Wang Yanan, Luo Qiao, et al. Bioactive Metabolites From Acid-Tolerant Fungi in a Thai Mangrove Sediment [J]. Frontiers in Microbiology, 2021, 11: 1-14. [73] Yun-Feng Liu, Yu-Fei Yue, Li-Xi Feng. Asperienes A-D, Bioactive Sesquiterpenes from the Marine-Derived Fungus Aspergillus flavus[J]. Marine Drugs, 2019, 17(7). [74] 张骏梁,张诗玲,吴佳慧,等. 一株红树林来源稀有放线菌的鉴定和抑菌活性物质的初步研究[J/OL]. 食品与发酵工业,2021,1-10. [75] 吴越. 广西北仑河口红树林根际土壤放线菌多样性及抗菌活性研究[D]. 桂林:桂林医学院,2017,12-14. Wu Yue. Diversity and antibacterial activity of actinomycetes in rhizosphere soil of mangrove forests in Beilunhe Estuary, Guangxi[D]. Guilin: Guilin Medical University, 2017,12-14 (in Chinese with English abstract). [76] 张孟. 海洋抑菌放线菌的筛选、鉴定及其抑菌活性物质研究[D]. 上海海洋大学,2017,16-26. Zhang Meng. Screening and Identification of Marine Actinomyces and study on of its antimicrobial active substances[D]. Shanghai: Shanghai Ocean University, 2017, 16-26 (in Chinesewith English abstract). [77] 周秋平. 八门湾红树林土壤微生物多样性分析及放线菌的分离与鉴定[D]. 海口:海南大学,2014,40-48. Zhou Qiuping. Microbial diversity analysis of soils from Bamenwan Mangrove and isolation, identification of actinomycetes[D]. Haikou: Hainan University, 2014, 40-48 (in Chinese with English abstract). [78] Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees [J]. Molecular biology and evolution, 1987, 4(4): 406-425. [79] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874. [80] 童金蓉,张昭寰,黄振华,等. 革兰氏阴性细菌外膜主要成分的跨膜转运机制研究进展[J].生物化学与生物物理进展,2020,47(06):510-522. Tong Jinrong,Zhang Zhaohuan,Huang Zhenhua,et al. Research progress of transmembrane transport mechanism of main components of Gram-negative bacteria outer membrane[J]. Progress in Biochemistry and Biophysics,2020, 47(06): 510-522. [81] Cavelier-Frontin F, Achmad S, Verducci J, et al. How to perform small peptide cyclizations[J]. Journal of molecular structure: THEOCHEM, 1993, 286: 125-130. [82] 李红琼. 环状氮杂多肽的合成与应用[D]. 重庆:重庆大学,2019,12-17. Li Hongqion. Synthesis and application of cyclic azapeptides[D]. Chongqing: Chongqing University, 2019, 12-17. [83] Baltz R H. Gifted microbes for genome mining and natural product discovery[J]. Journal of Indutrial Microbiol & Biotechnol , 2017, 44(4-5): 573-588. [84] 张永贺. 深海链霉菌Streptomyces somaliensis SCSIO ZH66中隐性次级代谢产物合成基因簇的激活及其产物发酵优化[D]. 青岛:中国海洋大学,2015,20-35. Zhang Yonghe. Activation and enhancement of cryptic secondary metabolite from deepsea-derived Streptomyces somaliensis SCSIO ZH66[D]. Qingdao: Ocean University of China, 2015,20-35. [85] 莫天录,薛林贵,张琪. 羊毛硫肽类化合物 (Lanthipeptide) 生物合成新进展[J].微生物学报, 2016,56(03):373-382. Mo Tianlu, Xue Lingui, Zhang Qi. The new Progress in the Biosynthesis of Lanthipeptide[J]. Acta Microbiologica Sinica, 2016, 56(3): 373-382 (in Chinese) |
中图分类号: | Q78 |
开放日期: | 2021-06-09 |