- 无标题文档
查看论文信息

中文题名:

 树形对桃树光合作用和果实品质的影响    

姓名:

 尤慧晴    

学号:

 2022804155    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 095131    

学科名称:

 农学 - 农业 - 农艺与种业    

学生类型:

 硕士    

学位:

 农业推广硕士    

学校:

 南京农业大学    

院系:

 园艺学院    

专业:

 农艺与种业(专业学位)    

研究方向:

 果树生理生态    

第一导师姓名:

 高志红    

第一导师单位:

 南京农业大学    

第二导师姓名:

 杨勇    

完成日期:

 2024-05-26    

答辩日期:

 2024-05-26    

外文题名:

 Effect of Tree Training on Photosynthests and Fruit Quality in Peach    

中文关键词:

  ; 树形 ; 光合作用 ; 果实品质    

外文关键词:

 Peach ; Tree training system ; Photosynthesis ; Fruit quality    

中文摘要:

桃(Prunus persica L.),蔷薇科(Rosaceae),李属(Prunus L.)的落叶果树,原产于我国,是一种栽培广泛的重要果树。桃子风味浓郁,营养丰富,一直是人们喜爱的水果,备受消费者关注。不同的树形会改变果园生态和树体的微环境,对树体光合作用和果实品质造成不同的影响。Y形、开心形和V形整形方式是目前桃园采用的主要种植方式,但三者对桃树树体光合作用和果实品质的影响还未见系统性研究,本研究以镇江试验基地‘霞脆’等主栽品种为试材,研究幼果期和盛果期不同树形对光合作用和果实品质的影响,主要结果如下:

1.在2023年7~8月对盛果期桃树‘镇桃3号’和‘霞脆’不同树形不同冠层叶片质量(叶绿素含量、比叶重)、幼果期桃树‘紫金红3号’、‘霞脆’和‘霞晖10号’不同树形叶片质量进行测定,结果表明:‘镇桃3号’的叶绿素含量和比叶重均是V形>Y形,‘霞脆’的叶绿素含量和比叶重均是Y形>开心形,且‘镇桃3号’和‘霞脆’各树形不同冠层的叶绿素含量和比叶重均呈现上层>中层>下层的趋势。幼树‘紫金红3号’、‘霞脆’和‘霞晖10号’的叶绿素含量和比叶重均是Y形>开心形。综上结果发现桃树树形及冠层不同会导致其叶片质量不同。

2.在2023年6~10月用CI-240光合仪对盛果期桃树‘镇桃3号’、‘霞脆’不同树形不同冠层;幼果期桃树‘紫金红3号’、‘霞脆’和‘霞晖10号’不同树形的净光合速率、蒸腾速率、气孔导度等光合作用指标日变化和年变化进行了测量,结果表明:盛果期桃树‘镇桃3号’、‘霞脆’不同树形及不同冠层;幼果期桃树‘紫金红3号’、‘霞脆’、‘霞晖10号’不同树形的净光合速率日变化曲线均是双峰曲线,11:00时出现最高峰,13:00时出现午休现象。盛果期桃树净光合速率日变化中V形>Y形>开心形,上层>中层>下层。幼树不同品种净光合速率日变化均是Y形>开心形。盛果期桃树‘镇桃3号’和‘霞脆’不同树形、幼果期桃树‘紫金红3号’、‘霞脆’和‘霞晖10号’不同树形净光合速率年变化均呈现单峰曲线,7月份为最高峰,盛果期桃树净光合速率年变化V形>Y形>开心形,幼树不同品种净光合速率年变化均是Y形>开心形。

幼果期各品种、不同树形桃树蒸腾速率于13:00时出现最高峰,日变化均是Y形>开心形,盛果期桃树蒸腾速率日变化V形>Y形>开心形,不同冠层蒸腾速率日变化为:上层>中层>下层。幼果期桃树‘紫金红3号’、‘霞脆’和‘霞晖10号’不同树形净光合速率年变化也均呈现单峰曲线,‘镇桃3号’V形6月份为最高峰,幼树‘霞脆’Y形和开心形8月份为最高峰,其他品种及树形7月份为最高峰,盛果期桃树蒸腾速率年变化V形>Y形>开心形,幼树不同品种蒸腾速率年变化均是Y形>开心形。

幼果期桃树‘紫金红3号’、‘霞脆’和‘霞晖10号’不同树形,盛果期桃树‘镇桃3号’和‘霞脆’不同树形及不同冠层气孔导度日变化均呈现双峰曲线,13:00时出现最低峰,盛果期桃树气孔导度日变化V形>Y形>开心形,幼树不同品种气孔导度日变化均是Y形>开心形,盛果期桃树‘镇桃3号’和‘霞脆’不同树形不同冠层气孔导度日变化为:上层>中层>下层。盛果期桃树‘镇桃3号’和‘霞脆’不同树形、幼果期桃树‘紫金红3号’、‘霞脆’和‘霞晖10号’不同树形气孔导度年变化均呈现单峰曲线,7月份为最高峰,盛果期桃树气孔导度年变化V形>Y形>开心形,幼树不同品种气孔导度年变化均是Y形>开心形。综上结果发现和开心形树形相比,桃树Y形树形光合效率更高。

3.2023年7-8月份对盛果期桃树‘镇桃3号’的V形和Y形、‘霞脆’的Y形和开心形进行了产量及果实品质测量,结果表明:‘镇桃3号’产量V形>开心形,‘霞脆’产量Y形>开心形,‘镇桃3号’的V形和Y形及‘霞脆’的Y形和开心形各冠层果实产量均呈现出上层>中层>下层。在果实品质方面,各品种不同树形均呈现上层果实品质优于中层果实品质优于下层果实品质的趋势,在‘霞脆’中,Y形果实品质优于开心形,在‘镇桃3号’中,Y形的果皮色差更小,V形果实单果重及内在品质更好,‘镇桃3号’V形果实品质更好。综上,桃树树形对果实品质的影响因品种而异,多数品种Y形树形优于开心形。

4.测定不同树形和不同类型枝条植物激素IAA、ABA、GA3含量结果表明,树形不同会使其不同部位激素含量不同,在幼树剪口芽部位,IAA、ABA、GA3在不同品种不同树形中表现不同,总体上显示出开心形IAA、ABA、GA3含量较高;在幼树一年生枝条芽部位,总体上显示出Y形IAA含量较高,开心形ABA含量较高,各树形GA3含量无差异。在盛果期桃树不同树形不同冠层中IAA、ABA、GA3含量没有呈现明显的变化趋势,IAA、ABA、GA3在不同品种不同树形中表现不同,在盛果期桃树剪口芽部位,开心形IAA、ABA 、GA3含量较高;在盛果期桃树一年生枝条芽部位,Y形IAA含量较高,开心形ABA含量较高,各树形中GA3含量均无差异;在盛果期桃树果实中,V形IAA、GA3含量较高。结果发现,树形的变化引起了生长素、赤霉素和ABA等在不同部位的含量的变化,从而影响植株生长和品质形成。

外文摘要:

Peach (Prunus persica L.), Rosaceae, Prunus of deciduous fruit trees, native to China, is a widely cultivated important fruit tree. With its strong flavor and rich nutrition, the peach has always been a favorite fruit and has attracted much attention from consumers. Different tree shapes will form the orchard ecology and microenvironment of the tree, which will have different effects on tree photosynthesis and fruit quality. Y-shaped, open-heart and V-shaped training systems are the main planting styles adopted in peach orchards at present, but the effects of the three shapes on the photosynthesis and fruit quality of peach trees have not been systematically investigated, so the present study is based on the main planting varieties such as 'Xiacui' in the experimental base of Zhenjiang, which is the most important fruit tree in China, and other main cultivars in Zhenjiang experimental base as the test material, to study the effect of different tree shapes on photosynthesis and fruit quality in the young fruiting period and fruiting period, the main results are as follows:

1. In July-August 2023, different tree shapes with different crowns were applied to the grow up trees 'Zhentao No.3' and 'Xiacui' in full bloom; the peach trees 'Zijinhong No.3' in the young fruiting stage, 'Xiacui' and 'Xiahui No 10' with different training systems were measured for leaf quality (chlorophyll content and specific leaf weight), and the results showed that: 'Zhentao No. 3''s chlorophyll content and specific leaf weight were both V-shaped > Y-shaped. The results showed that the chlorophyll content and specific leaf weight of 'Zhentao No. 3' were V-shaped > Y-shaped, and that the chlorophyll content and specific leaf weight of 'Xiacui' were Y-shaped > open-center-shaped, and the chlorophyll content and specific leaf weight of different tree shapes of 'Zhentao No. 3' and 'Xiacui' were different from each other. The chlorophyll contents and specific leaf weights of the crowns of 'Zhentao 3' and 'Xiacui' showed the trend of upper layer > middle layer > lower layer. The chlorophyll content and specific leaf weight of young trees 'Zijinhong No.3', 'Xiacui' and 'Xiahui No.10' were all Y-shaped > open-center-shaped. In summary, the results revealed that different peach tree shapes and canopy layers lead to different leaf quality.

2. From June to October 2023, the CI-240 photosynthesis was used to measure the daily and stomatal changes of net photosynthetic rate, transpiration rate, stomatal conduction and other photosynthesis indexes in different tree shapes of peach trees 'Zhentao No.3' and 'Xiacui' in the fruiting stage; and in different tree shapes of peach trees 'Zijinhong No.3', 'Xiacui' and 'Xiahui No.10' in the young fruiting stage. The daily and annual changes of photosynthesis indexes such as net photosynthetic rate, transpiration rate and stomatal conductance of different tree shapes of 'Zhentao No.3' and 'Xiacui' in the young fruiting stage were measured. 'Zhentao No.3' and 'Xiacui' with different tree shapes and different crowns; young fruiting peach trees 'Zijinhong No.3', 'Xiacui' The daily change curves of net photosynthetic rate of different tree shapes of young fruiting peach trees 'Zijinhong No.3', 'Xiacui' and 'Xiahui No.10' were all bimodal curves, with the highest peak occurring at 11:00 a.m., and a lunch break occurring at 13:00 p.m. In the daily change of net photosynthetic rate of fruit trees, V-shape > Y-shape > open-center, upper > middle > lower. The daily change of net photosynthetic rate in young trees of different varieties was Y-shaped > open-center. Different tree shapes of fruiting peach trees 'Zhentao No.3' and 'Xiacui', and different tree shapes of young fruiting peach trees 'Zijinhong No.3', 'Xiacui' and 'Xiaxian No.10' were all in Y-shaped > open-center. The annual changes of net photosynthetic rate in different tree shapes of 'Zhentao No.3' and 'Xiacui' showed a single-peak curve, with the highest peak in July, and the annual changes of net photosynthetic rate in peach trees in fruiting stage were V-shaped > Y-shaped > open-center, while the annual changes of net photosynthetic rate in different varieties of young trees were all Y-shaped > open-center.

The daily change of transpiration rate of different tree shapes of young fruiting peach trees of different varieties showed a single-peak curve, and the highest peak appeared at 13:00, and the daily change of transpiration rate was Y-shaped > open-center, and V-shaped > Y-shaped > open-center. The daily change of transpiration rate of different tree shapes of different varieties was Y-shaped > open-center, the daily change of transpiration rate of fruit-bearing trees was V-shaped > Y-shaped > open-center, and the daily change of transpiration rate of different canopy layers was: upper layer > middle layer > lower layer. The annual changes of net photosynthetic rate in different tree shapes of young fruiting peach trees 'Zijinhong No.3', 'Xiacui' and 'Xiahui No.10' also showed single peak curves, and the annual changes of net photosynthetic rate in different tree shapes of 'Zijinhong No.3', 'Xiacui' and 'Xiahui No.10' also showed single peak curves. The highest peak was in June for 'Zhentao No. 3' V-shape, in August for Y-shape and open-center shape of young tree 'Xiacui', and in July for other varieties and tree shapes, and the highest peak was in July for the annual change of transpiration rate of fruit-bearing trees, V-shape > Y-shape > open-center, and the annual change of transpiration rate of different varieties of young trees were all V-shape > Y-shape > open-center. The annual change of transpiration rate in young trees of different varieties was Y-shaped > open-center.

The daily changes of stomatal conductance in different tree shapes of young peach trees 'Zijinhong No.3', 'Xiacui' and 'Xiahui No.10', and in different canopy layers of full fruit trees 'Zhentao No.3' and 'Xiacui' all showed double peak curves. ' and 'Xiacui' different tree shapes and different canopy stomatal conductance daily changes showed a bimodal curve, and the lowest peak appeared at 13:00, the daily change of stomatal conductance of fruit-bearing trees was V-shaped > Y-shaped > open-center, the daily change of stomatal conductance of different varieties of young trees was Y-shaped > open-center, and the daily change of stomatal conductance of fruit-bearing trees was Y-shaped > open-center. The daily change of stomatal conductance in different crown layers of different tree shapes of 'Zhentao No.3' and 'Xiacui' was: upper layer > middle layer > lower layer. The daily changes in stomatal conductance in different tree shapes of 'Zhentao No.3' and 'Xiacui' in the fruiting stage, and in different tree shapes of 'Zijinhong No.3', 'Xiacui' and 'Xiahui No.10' in the fruiting stage were: upper layer > middle layer > lower layer. The annual changes of stomatal conductance of different tree shapes of 'Zhentao No.3' and 'Xiacui' showed a single-peak curve, with the highest peak in July. The annual changes of stomatal conductance of the fruiting trees in full bloom were V-shaped > Y-shaped > open-center, and the annual changes of stomatal conductance of different varieties of the young trees were all Y-shaped > open-center. In summary, the results revealed that the Y-shape of peach trees was more photosynthetically efficient as compared to the open-center tree form.

3. In July-August 2023, yield and fruit quality measurements were carried out on the V and Y shapes of the grow up tree 'Zhentao No. 3' and the Y and open-center-shaped of 'Xiacui'. The results showed that: 'Zhentao No.3' yielded V-shaped > open-center-shaped, 'Xiacui' yielded Y-shaped > open-center-shaped, and the V-shaped and Y-shaped of 'Zhentao No.3' and the Y-shaped and open-center-shaped of 'Xiacui' were measured. V-shaped and Y-shaped of 'Zhentao No. 3' and Y-shaped and open-center-shaped of 'Xiacui' showed that the fruit yield of each crown layer was upper layer > middle layer > lower layer. In terms of fruit quality, the different tree shapes of each variety showed the trend that the fruit quality of the upper layer was better than that of the middle layer, and the fruit quality of the lower layer was better than that of the lower layer. In 'Xiacui', the fruit quality of the Y shape was better than that of the open-heart shape, and in 'Zhentao No.3', the fruit shape index and fruit skin colouring difference of the Y shape were better, the single fruit weight and inner quality of V-shaped fruit were better, and the quality of V-shaped fruit was better in 'Zhentao No.3'. In summary, the influence of peach tree shape on fruit quality varies by variety, and Y-shaped is better than open-center and V-shaped in most varieties.

4. The results of phytohormone content of different tree shapes and different types of branches showed that different tree shapes would make the hormone content of different parts of the tree different, in the bud part of the young tree cuttings, IAA, ABA, GA3 in different varieties of different tree shapes in different performances, and in general, it showed that the open-center shape of the IAA, ABA, GA3 content is higher; in the bud part of the young tree annual branches, in general, it showed that the Y shaped of IAA content is higher, the happy shape of ABA content is higher, and the Y shaped of ABA content is higher, and the open-center-shaped of the IAA content is higher. In the bud site of young trees, it generally showed higher IAA content in Y-shape, higher ABA content in open-center-shaped, and no difference in GA3 content among tree shapes. The contents of IAA, ABA and GA3 in different crowns of different tree shapes of grown up trees did not show obvious trends, and IAA, ABA and GA3 behaved differently in different tree shapes of different varieties; in the parts of the buds of cuttings of grown up trees, the contents of IAA, ABA and GA3 of open-center-shaped were higher; in the parts of the buds of one-year old branches of grown up trees, the contents of IAA of Y-shaped were higher, the contents of ABA of open-center shape were higher and the contents of GA3 of all tree shapes were not different. There was no difference in GA3 content among the tree shapes; in the fruit of grow up tree, the V-shaped IAA and GA3 content was higher.

参考文献:

[1] 安国宁,尹燕雷.三种树形对中华寿桃生长及果实品质的影响[J].西北园艺,2003,10:9-10.

[2] 陈俊,张琦,杨梦宇等.生草对苹果小气候环境及苹果叶片的影响[J].中国农业科技导报,2023,25(12):158-167.

[3] 陈清,周纯,周学明.苹果花芽分化的激素调节机理研究及控制技术应用效果[J].山西果树,2006(3):38-39.

[4] 曹尚银,汤一卒,江爱华.GA3和PP333调控苹果花芽孕育机理的研究[J].园艺学报,2001,28(4):339-341.

[5] 陈双建,赵雪辉,成继东等.桃树树形研究进展[J]. 落叶果树,2019,51(01):34-36.

[6] 蔡英明,刘冠义,张兴德,张春芳,张东起.桃树“一边倒”树形的特点及其整形修剪技术[J].落叶果树,2005,(01):36-37.

[7] 陈远平,杨文钰.卵叶韭休眠芽中 GA3、IAA、ABA和ZT的高效液相色谱法测定[J].四川农业大学学报,2005(04):498-500.

[8] 冯孝严,里程辉.设施桃树“三骨扇形”整形修剪及配套技术[J].北方果树,2008 (06):21-22.

[9] 龚鹏,杨波,辛玉宝等.扁桃不同树形光合特性及产量的比较研究[J]. 新疆农业科学,2008(03):479-483.

[10] 黄国嫣,唐宗祝,彭雅婷,王艳,李文祥.不同树形对“丽江春雪”光合作用强度及果实品质的影响[J].天津农业科学,2015,21(04):103-106.

[11] 郭瑞,周平,颜少宾,金光廖,汝玉,杨凌.不同树形对桃树生长结果的影响[J].东南园艺,2017,(4):17-20.

[12] 何凤梨.桃开心形冠层微气候与果实产量品质关系的研究[D].西北农林科技大学,2007.5.

[13] 黄凯.五个新品种梨的光合特性及叶片性状差异的研究[D].山西农业大学,2007.6.

[14] 高秀梅,刘沛镇,任建新.桃树不同树形的光照分布与果实产量及品质的关系[J].中国果树,1992(4):10-13.

[15] 刘丙花,姜远茂,彭福田等.甜樱桃果实发育过程中激素含量的变[J].园艺报,2007,34(6):1535-1538.

[16] 罗德远.桃树几种常用树形的整形修剪技术[J].农业开发与装备,2021,(11):233-234.

[17] 李福瑞.桃不同树形光合特性、光合产物分配与激素含量差异分析[D].西北农林科学,2017.5.

[18] 李合生.植物生理生化实验技术原理和技术[M].北京:高等教育出版社,2000:190-202.

[19] 梁录瑞,郭延虎,赵和平.三种树形对油桃生长及果实品质的影响[J].果农之友,2004,(4):11-13.

[20] 刘丽,李秋利,高登涛等.树形对桃树生长、产量和品质的影响[J].果树学报,2022,39(1):36-46.

[21] 廖明安,肖华明,吕淑清,叶谋.乔砧密植苹果树冠参数调查研究[J].北方园艺,1992(3):31-33.

[22] 李凯荣,李胜利,李晓军等.天然油菜素内酯对核桃叶片水分和光合速率的影响[J].园艺学报,2003,30(6):715-718.

[23] 李桂祥,聂佩显,高晓兰等.桃树不同树形树体结构及叶片光合作用和叶绿素荧光参数比较[J].北方园艺,2023,(14):30-35.

[24] 梁若琳.外源ALA处理对桃树叶片光合产物合成、运输分配及果实品质的影响[D].南京农业大学,2023.5.

[25] 林绍艳,张芳,徐颖洁.植物中多胺含量超高效液相色谱法的建立[J].南京农业大学学报,2016,39(03):358-365.

[26] 苗雅坤.拉枝与修剪对核桃生长与果实发育的影响[D].河北工程大学,2020.1.

[27] 倪纪恒,陈学好,陈春宏等.补充不同光质对温室黄瓜生长发育、光合和前期产量的影响[J].中国农业科学,2009,42(7):2615-2623.

[28] 牛良,王志强,刘淑娥等.不同生长习性桃树茎尖内源激素水平比较[C].中国园艺学会.中国农业科学院郑州果树研究所.中国园艺学会桃分会成立暨学术研讨会论文集,2007.5.

[29] 牛茹萱,赵秀梅,王晨冰等.桃不同树形的冠层特征及对果实产量、品质的影响[J].果树学报,2019,36(12):1667-1674.

[30] 牛自勉,陈敏克,孙俊宝等.刻芽对苹果枝条内源激素及萌芽成枝的影响[J].果树科学,1998(3):198-202.

[31] 马海燕.葡萄生长过程中内源激素含量变化的研究[D].西北农林科技大学,2007.4.

[32] 咸诚桂,王业遴.中国桃树栽培史[J].南京农业大学学报,1957,(00):213-230.

[33] 任佳星.核桃结果枝营养生长与光合能力对其开花结果的影响[D].新疆农业大学,2020.6.

[34] 宋清,陈加红.桃树主要树形特点及改良圆柱形栽培技术[J].果农之友,2021,(02):15-17.

[35] 唐晓东,蒋春志,徐俊杰等.高效液相色谱法在小麦激素测定中的优化[J].河北农业科学,2021,25(03):97-103+108.

[36] 魏常燕,张雪梅,齐国辉等. 不同时期拉枝刻芽对‘绿岭’核桃萌芽成枝和内源激素含量的影响[J].林业科学,2013,49(6):167-171.

[37] 文玲,林华.东川区三月桃树主干树形的优势及整形修剪技术[J].农技服务,2018,31(10):113,159.

[38] 王磊.不同株型桃树枝叶内源激素与根系形态研究[D].山东农业大学,2008.6.

[39] 王力荣,我国桃产业现状与发展建议[J].中国果树,2021(10):1-5.

[40] 王涛.南方早熟梨幼树拉枝试验报告[J].西南园艺,2004(4):20-21.

[41] 王田利.我国桃树栽培现状、问题及建议[J].中国果业信息,2018,35(12):13-15.

[42] 王迅,张新全,刘金平.草坪草对遮荫胁迫的生理反应[J].草业科学,2006,24(4):86-90.

[43] 王欣欣,赵文东,郭修武等.不同光质对延迟栽培‘巨峰’葡萄新稍生长及生理特性的影响[J].北方果树,2009(3):3-5.

[44] 王琰.苹果不同树形树冠特性及其对果实产量和品质的影响研究[D].西北农林科技学,2011.4.

[45] 王雅倩.不同修剪方法对苹果芽和叶内源激素的影响[D].西北农林科技大学,2012.5.

[46] 王志强,崔国朝,牛良.桃树整形修剪的新方式—半直立多主无侧高光效树形[J].果农之友,2018(11):15.

[47] 谢刚,鲁强.桃树倾斜主干偏展形的整形方法[J]. 农业科技通讯,2004,(09):19.

[48] 肖龙.丰产桃园树冠结构与冠层参数的研究[D]. 河北农业大学,2012.5.

[49] 徐继忠,陈海江,马宝焜等.外源多胺对富士苹果花和幼果内源多胺与激素的影响[J].园艺学报,2001,28(3):206-210.

[50] 习玉森,姜卫兵.不同生长型桃树光合效能及其季节变化特征初探[J].西北植物学报,2016,36(9):1836-1845.

[51] 俞明亮,王力荣,王志强等.新中国果树科学研究70 年:桃 [J]. 果树学报, 2019, 36(10):1283-1291.

[52] 杨勇.拉枝角度对苹果芽、叶 C、N及内源激素的影响[D].西北农林科技大学,2010.4.

[53] 杨勇,陈成阎,永齐等.不同树形对桃冠层叶片光合特性的影响[J].江苏农业科学,2023,51(17):158-169.

[54] 闫雨杏.基于日光诱导叶绿素荧光的植被冠层气孔导度模型研究[D].西北农林科技大,2023.5.

[55] 赵彩平,王秋晓,韩明玉等.树形对桃树叶片及果实品质和产量的影响[J].西北农林科技大学学报,2010,38(6):160.

[56] 赵德英,徐锴,袁继存等.果树对光环境变动的生理响应[J].北方果树,2018(01):1-5.

[57] 张红欢,杨兴旺,王莹莹等.桃高光效省力化树形研究进展[J].中国果树,2023(7):10-14.

[58] 张海旺,张文臣,贾浩等.不同树形桃树冠层光照分布对果实产量和品质的影响[J].北方园艺,2024(04):21-27.

[59] 张佳华,符涂斌,王长耀.利用遥感信息研究区域冬小麦气孔导度的时空分布[J].气象学报,2000,58(3):347-353.

[60] 赵俊杰.三种树形对桃生理特性及果实品质的影响[D].安徽农业大学,2014.1.16.

[61] 郑继成.不同树形对桃树氮碳吸收分配及产量品质的影响[D].西北农林科技大学,2019.7.

[62] 郑晓翠,刘凤之,王海波等.不同光质补光对设施内桃果实品质及叶片质量的影响[J].西北植物学报,2023,43(06):979-987.

[63] 张学英,贾浩,邸葆等.不同树形对燕红桃树冠层光照分布及生长结果的影响[J].中国果树,2023,(03),91-95.

[64] 曾志芳.不同树形对桃树冠层光环境及果实品质的影响[J].东南园艺,2022,10(3):181-186.

[65] 张纯明,王继和,马全林等干早沙区2种梨树光合特性的研究[J].西北植物学报,2001,21(1):94-100.

[66] 张抗萍,李荣飞,常耀栋等.果树树形的形成机制与调控技术研究进展[J].果树学 报,2017,34(4):495-506.

[67] 张琪.不同树莓品种光合特性及耐高温研究[D].安徽农业大学.2018.5.

[68] 钟欣平,喻阳华,侯堂春. 干热河谷石漠化区顶坛花椒叶片蒸腾速率及其与环境因子的关系[J].西南农业学报,2021,34(07):1548-1555.

[69] Bangerth F. Response of cytokinin concentration in the xylem exudates of bean (Phaseolus vulgaris L.) plants to decapitation and auxin treatment and relationship to apical dominance[J]. Planta, 1994, 19(4):439-442.

[70] Benvan H, David W, Ian W. Rootstocks modify scion architecture endogenous hormones and root growth of newly grafted ‘Royal Gala’ apple trees[J]. Journal of The American Society for Horticultural Science,2011,136(2):93-102

[71] Bendokas V, Gelvonauskiene D, Gelvonauskis B,et al. Stanys V. Predicting apple tree(Malus ×do⁃ mestica Borkh.)canopy architecture: phytohormone balance in juvenile hybrids[J]. Zemdirbyste-Agriculture,2014,101(3): 327.

[72] Buler Z, Mika A, Treder W, et al. Influence of new training systems of dwarf and semidwarf Apple trees on yield, its quality and canopy illumination. Aeta Horticulture, 2001, 557:253-259.

[73] Cameron R,Harrison-Murray R, Fordham M,et al. Rooting cuttings of Syringa vulgaris cv. Charles Joly and Corylus avellana cv. Aurea : the influence of stock plant pruning and shoot growth[J].Trees, 2003, 17(5):451-462.

[74] Chalmers, D. Ende, B. The "Tatura Trellis": A new design for high yielding orchards[J] Agr. Victoria,1975.74: 473-476.

[75] Ignasi Iglesias,Gemma Echeverria. Current situation, trends and challenges for efficient and sustainable peach production[J]. Scientia Horticulture, 2022,296:110899.

[76] Jackson J E. Utilization of light resources by HDP system[J]. Acta Hort,1978,65:61~ 70.

[77] Jackson J E.1970, Aspects of light climate within apple orchards [J]. Apple. Ecol,1970, 7:207-212.

[78] Jiang.Z. The Research on Classification Transformation Technology of Low Yield Stands of Camellia oleifera [D]. M.Sc. thesis (Changsha, China: Central South University of Forestry and Technology),2012.

[79] Jiang S, An H, Luo J, et al. Comparative analysis of transcriptomes to identify genes associated with fruit size in the early stage of fruit development in Pyrus pyrifolia [J]. International Journal of Molecular Sciences, 2018, 19(8): 2342.

[80] K.Bosa,E. Jadczuk-Tobjasz, M.H.Kalaji,et.al. Evaluating the effect of rootstocks and potassium level on photosynthetic productivity and yield of pear trees[J]. Russian Journal of Plant Physiology,2014,61(2):231-237.

[81] Kool D, Ben-Gal A, Agam N. Within-field advection enhances evaporation and transpiration in a vineyard in an arid environment[J]. Agricultural and Forest Meteorology,2018, 255:104-113.

[82] Li Y, Cao K, Zhu G, et al. Genomic analyses of an extensive collection of wild and cultivated accessions provide new insights into peach breeding history [J]. Genome Biology, 2019, 20(1): 1-18.

[83] Luca Mazzoni, Irene Medori, Francesca Balducci, et al. Branch Numbers and Crop Load Combination Effects on Production and Fruit Quality of Flat Peach Cultivars (Prunus persica (L.) Batsch) T rained as Catalonian Vase [J]. Plants,2022,11: 308.

[84] Palmer J H., Jackson E. Seasonal light interaction and canopy development in hedgerow and bed system apple orchards [J]. Applied Ecol,1977,14:53 9-549.

[85] Palmer J H., Jackson E. Seasonal light interaction and canopy development in hedgerow and bed system apple orchards [J]. Applied Ecol, 1977, 14:539-549.

[86] Renton M, Guedon Y, Godin C, et al. Similarities and gradients in growth unit branching patterns during ontogeny in 'Fuji' apple trees: a stochastic approach[J]. Journal of experimental botany, 2006, 57(12):3131-3143.

[87] Scafaro A P, Caemmerer S V, Evans J R, et al. Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness[J]. Plant Cell & Environment,2011,34 (11):1999-2008.

[88] S.Patricia. Effects of orchard geometry on light distribution[J]. Acta Horticulture, 1990, 276:265-272.

[89] Suhong Li, Futian Peng, Yuansong Xiao, et al. Mechanisms of High Concentration Valine-Mediated Inhibition of Peach Tree Shoot Growth. [J]. Front Plant Sci,2020, 11: 603067.

[90] Scafaro A P, Caemmerer S V, Evans J R, et al.Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness[J].Plant Cell & Environment,2011, 34(11) :1999-2008.

[91] Scoffoni C, Chatelet DS, Pasquet-kok J, et al. Hydraulic basis for the evolution of photosynthetic productivity. Nature Plants, 2016, 2(6), 16072.

[92] Terashima I, Hanba Y T, Danny Tholen, et.al. Leaf functional anatomy in relation to photosynthesis[J].Plant Physiology,2011,155(1): 108-116.

[93] Widmer A. Kerbs C. Influence of planting density and tree form on yield and fruit quality of 'Golden Delicious', and 'Royal Gala', apples[J]. Acta Horticulture, 2001, 557:235-241.

[94] Wunsche J, Lakso A, Denning S, Barnard J. Estimating the contribution of canopy components to direct light interception of apple trees using a laser- assisted scanning device[J]. Environmental and Experimental Botany, 1997, 37(1):63-72.

中图分类号:

 S66    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式