中文题名: | 砷、铅对莱茵衣藻的单一和联合毒性效应及其机制研究 |
姓名: | |
学号: | 2019203014 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 083002 |
学科名称: | 工学 - 环境科学与工程(可授工学、理学、农学学位) - 环境工程 |
学生类型: | 博士 |
学位: | 工学博士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 重金属生态毒理 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2022-11-01 |
答辩日期: | 2022-11-28 |
外文题名: | Toxicity of Arsenic, Lead and Their Mixtures on Chlamydomonas reinhardtii: Effects and Mechanisms |
中文关键词: | |
外文关键词: | Chlamydomonas reinhardtii ; Arsenic ; Lead ; Combined toxicity ; Energy metabolism ; Omics analysis |
中文摘要: |
随着城市化和工业化的快速发展,砷(As)和铅(Pb)的复合污染严重破坏了水体生态系统的正常功能,并通过食物链传递对人类健康造成巨大威胁。微藻是水环境的初级生产者,对元素生物地球化学循环有重要影响。然而,目前关于As和Pb对微藻的单一和联合毒性效应、以及微藻在两者复合胁迫下的响应机制仍不清楚。本文采用模式生物--莱茵衣藻,探究了 As、Pb单一和复合处理对藻细胞产生的毒性效应,分析了藻细胞在不同处理下的响应机制。主要研究结果如下: 1. 构建了As和Pb混合体系毒性效应预测模型。选用Logit函数进行拟合浓度-效应之间的关系,得到单一As和Pb体系的EC50值分别为374.97 μg/L和19988.75 μg/L。通过浓度加和模型(CA)和独立作用模型(IA)评估As/Pb混合物毒性作用,同时进行实验验证。结果显示,随着As/Pb混合物浓度比逐渐增大,混合物的毒性效应由加和作用转变为协同作用。 2. 探究了As对莱茵衣藻的毒性效应和细胞对As的解毒机制。研究结果表明,在低浓度As (0-20 μg/L)下,莱茵衣藻胞内淀粉含量增加,并产生更多的胞外多糖。在50 μg/L As处理下,藻细胞中的响应机制从淀粉积累逐渐转移到多糖分解。As暴露能够显著降低莱茵衣藻叶绿素荧光参数,表明As降低了类囊体膜上的电子传递链中PSⅡ系统的光合效率。在较高As浓度(500 μg/L)下,胞内As(Ⅴ)和As(Ⅲ)含量显著增加,分别达到213.94 μg/1012 cells和39.14 μg/1012 cells,从而增加了As在胞内的积累水平,造成细胞内稳态紊乱,加重了细胞受到的氧化损伤,最终在透射电镜(TEM)下观察到明显的细胞膜破裂和细胞裂解死亡。脂肪酸代谢途径中差异表达的蛋白质显著增多,表明细胞改变了碳代谢流向,将脂类转化为多糖。这一研究结果表明,多糖为细胞内的各种代谢过程提供能量,在莱茵衣藻对As的抗性中起关键作用。 3. 探究了Pb对莱茵衣藻的毒性效应和细胞对Pb的解毒机制。结果表明,在本研究中Pb对细胞的毒性效应弱于As,Pb浓度达到5000 μg/L时,细胞光合系统中光能的转化和ATP的合成未受阻碍。SEM和TEM没有观察到明显的细胞结构破损和裂解死亡。但与对照组相比,Pb刺激引起细胞产生明显的能量代谢反应,多糖分泌量和呼吸速率显著增加,转录组分析结果显示,与磷脂合成和分泌相关的基因(PECT1、CAC3、captC、Pigo、yuiD、At1g和SFH2等)表达水平发生显著变化。细胞碳水化合物和酶的合成增加了Pb的吸附,并减少了其对细胞亚结构造成的损伤。 4. 探究了不同浓度的As和Pb混合体系对莱茵衣藻的毒性效应。高浓度混合体系下的重金属毒性比单一体系更加明显,在TEM下观察到As(500 μg/L)+Pb(5000 μg/L)浓度下大量细胞裂解死亡,该浓度下的细胞数目仅为对照组的40%。As(100 μg/L)+Pb(1000 μg/L)处理显著抑制了藻细胞对P的吸收,在As(500 μg/L)+Pb(5000 μg/L)浓度时藻细胞对P的利用率下降了16%,同时总叶绿素含量下降了近70%。高浓度共存体系致使藻细胞合成大量碳水化合物以应对重金属胁迫从而维持正常的生长,当胞内As(Ⅴ)/As(Ⅲ)比值降到0.7,胞内大量积累毒性更强的As(Ⅲ),细胞加速死亡。在这些因素共同作用下,衣藻细胞的能量代谢变化更加活跃,通过加速能量代谢消耗的方式来抵御强毒性混合体系。 5.揭示了As和Pb对莱茵衣藻毒性的相互作用关系及联合毒性机理。通过皮尔逊相关性分析,验证了As与Pb联合毒性效应关系为低浓度加和作用和高浓度协同作用。产生上述作用的原因有:(1)对于膜表面的生物大分子物质(如磷脂等),Pb比As具有更强的亲和性,这导致其优先与Pb结合,导致As不能及时排出而在胞内大量积累,加速细胞的死亡;(2)As和Pb对谷胱甘肽(GSH,合成植物螯合素的重要前体)具有竞争作用,由于Pb浓度远大于As,因此Pb在GSH竞争中取得优势,减少了As与GSH的结合,造成细胞更严重的氧化损伤;(3)与单一As体系相比,As(500 μg/L)+Pb(5000 μg/L)共存下的总叶绿素含量、饱和光电子传递速率Fv/Fm和实际光电子传递效率Y(Ⅱ)显著下降明显下降,表明复合体系阻碍了类囊体膜结构的光电子传递,破坏了光合系统;(4)蛋白质组学结果显示,在As(50 μg/L)+Pb(500 μg/L)处理中发现了71个不同表达的蛋白质(DEPs),在As(500 μg/L)+Pb(5000 μg/L)的处理中发现了167个DEPs。这些蛋白主要参与了能量代谢、光合作用碳固定、活性氧清除和防御以及氨基酸合成等调控。 综上,本文对As、Pb单一及复合处理对莱茵衣藻的毒性效应进行了系统研究,发现了As 对衣藻具有更强的毒性,并证实了Pb影响了微藻对As的积累和外排,并在一定程度上增强了As的毒性。同时,本文还分析了As、Pb单一和混合体系下微藻的解毒机制。研究发现,转录和蛋白层面的微观调控在耐受两种重金属的毒性和胞内膜结构、胞内碳水化合物代谢、叶绿体结构的损伤修复等方面发挥重要作用。 |
外文摘要: |
With rapid urbanization and industrialization, combined pollution of arsenic (As) and lead (Pb) has seriously damaged the function of the water ecosystem, posing a significant threat to human health through food chain transmission. Microalgae are primary producers of the water environment, influencing the biogeochemical cycle of elements. However, up to now, the single and combined toxic effects of As and Pb on microalgae and mechanisms of microalgae response to their combined stress are still unclear. In this paper, Chlamydomonas reinhardtii, a model microalga, was used to explore the toxicity of single and combined treatment of As and Pb on algal cells, and the mechanisms of algal resistance to As and Pb with different concentrations was analyzed. The main results were as follows: 1. The toxicity prediction model for the combined system of As and Pb was constructed. The dose-response relationship was fitted by the Logit function, where the EC50 values of sole As and Pb systems were 374.97 and 19988.75 μg/L, respectively. The interaction of As/Pb was evaluated by the concentration addition model (CA) and independent interaction model (IA). Meanwhile, the experiments were carried out to validate the modeling results. The results showed that with the increase of the As:Pb concentration ratio, the toxicity changed gradually from additive effect to synergistic effect. 2. The cellular toxicity of As and the detoxification mechanism of C. reinhardtii were explored. The results showed that at the low concentration of As (0-20 μg/L), cells accumulated starch and produced more extracellular polysaccharides. With 50 μg/L As, the response of algae cells gradually shifted from starch accumulation to polysaccharide decomposition. The As exposure significantly decreased the chlorophyll fluorescence parameters of algae cells, indicating that As reduced the efficiency of the photosynthetic electron transport chain on the thylakoid membrane. At the higher As concentration (500 μg/L), the intracellular As(Ⅴ) and As(Ⅲ) contents were significantly increased to 213.94 μg/1012 cells and 39.14 μg/1012 cells, respectively. Thus, the accumulation of As in the cell was enhanced, the intracellular homeostasis disorder was induced, and the oxidative damage of the cell was aggravated. Finally, obvious membrane and cell lysis were observed under transmission electron microscope (TEM). Moreover, the number of differentially expressed proteins in the fatty acid metabolism pathway increased significantly, indicating that the cells changed the carbon flow and converted lipids into polysaccharides. The results showed that polysaccharides could provide energy for various metabolic processes in cells, playing a vital role in the resistance of C. reinhardtii to As. 3. The toxic mechanism of Pb to C. reinhardtii and the detoxification mechanism of microalgae to Pb were explored. The results showed that the toxicity of Pb on cells was weaker than that of As. When the Pb concentration reached 5000 μg/L, the conversion of light energy and the synthesis of ATP in the photosynthetic system of cells were not hindered. No apparent cell structure damage and cleavage death were observed according to the results of SEM and TEM. However, Pb stimulated obvious energy metabolism reactions, as polysaccharides secretion and respiration rate were significantly increased compared with the control group. Transcriptome analysis showed the expression of many genes related to phospholipid synthesis and secretion (PECT1, CAC3, captC, Pigo, yuiD, At1g and SFH2, etc.) were significantly changed. Furthermore, the enhanced synthesis of carbohydrates and enzymes increased the adsorption of Pb and reduced the damage to the cell substructure. 4. The toxic effects of the combined system of As and Pb in C. reinhardtii were studied. It was observed that the toxicity of the high-concentration combined system was greater than that of the single system. Under TEM, a large number of cells died at the concentration of As (500 μg/L)) + Pb (5000 μg/L)), and the number of cells at this concentration was only 40% of that of the control group. The addition of As (100 μg/L)) + Pb (1000 μg/L)) significantly inhibited the absorption of P by algae cells. At the concentration of As (500 μg/L)) + Pb (5000 μg/L)), the utilization rate of P by algae cells decreased by 16%, and the total chlorophyll content decreased by nearly 70%. The high-concentration coexistence system caused algae cells to synthesize massive carbohydrates to cope with metal stress and maintain cell growth. When the intracellular As(V)/As(III) ratio decreased to 0.7, cell death was enhanced due to the intracellular accumulation of As(Ⅲ). Under the integrated effects of these factors, the change in the energy metabolism of algae cells was more active. It shows that C. reinhardtii could resist the highly toxic combined system by accelerating energy consumption. 5. The interaction and mechanism of toxicity of As and Pb to C. reinhardtii were revealed. Pearson correlation analysis was used to verify the joint toxic effect relationship between As and Pb, which showed the additive effect at the low concentration and synergistic effect at the high concentration. The causes were systematically analyzed: (1) For the biological macromolecules on the membrane surface (such as phospholipids), Pb had a higher affinity than As, which led to its preferential binding to Pb and consumption. The binding to the membrane led to the As transporter channel activity change. Hence, As(Ⅲ) could not be excreted in time and accumulated in the cell, resulting in more cell death; (2) As and Pb could compete for glutathione (GSH, an essential precursor of artificial plant chelating elements). Because the concentration of Pb was much higher than that of As, Pb had the advantage in the competition for GSH, which made more ROS released by As and induced more oxidative damage; (3) Compared with the single As a system, the total chlorophyll content, saturated photoelectron transport rate Fv/Fm, and actual photoelectron transport efficiency Y(Ⅱ) were significantly decreased under the coexistence of As (500 μg/L) + Pb (5000 μg/L), indicating that the complex system hindered the photoelectron transport of thylakoid membrane structure and destroyed the photosynthetic system; (4) Proteomic results showed that 71 differently expressed proteins (DEPs) were found in the treatment of As (50 μg/L) + Pb (500 μg/L), and 167 DEPs were found in the treatment of As (500 μg/L) + Pb (5000 μg/L). These proteins were mainly involved in regulating energy metabolism, carbon fixation in photosynthesis, scavenging and defense of reactive oxygen species and amino acid synthesis. In summary, the toxic effects and mechanisms of single and combined As and Pb treatments to C. reinhardtii were revealed. It was found that As was more toxic to algae than Pb, and it was confirmed that Pb affected the accumulation and efflux of As by microalgae, and Pb enhanced the toxicity of As to some extent. Meanwhile, the detoxification mechanisms of microalgae under single and combined treatments of As and Pb were systematically analyzed. It was found that regulations at transcriptomic and proteomic-levels played an important role in the toleranceof As and Pb toxicity, through maintaining intracellular membrane structure, regulating intracellular carbohydrate metabolism, and repairing chloroplast structure damage. |
参考文献: |
[1] 何强, 井文涌, 王翊亭. 环境学导论 [M]. 第3版. 北京: 清华大学出版社, 2004. [2] Sharma V K, Sohn M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation [J]. Environment International, 2009, 35(4): 743-759. [3] Cullen W R, Reimer K J. Arsenic speciation in the environment [J]. Chemical Reviews, 2010, 89(4). 713-764. [4] Ingemar, Renberg, Maja L, et al. Atmospheric Lead Pollution History during Four Millennia (2000 BC to 2000 AD) in Sweden [J]. Ambio A Journal of the Human Environment, 2000: 150. [5] Sturges W T, Barrie L A. Stable lead isotope ratios in arctic aerosols: evidence for the origin of arctic air pollution [J]. Atmospheric Environment, 1989, 23(11): 2513-2519. [6] Rahman Z, Singh V P. The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview [J]. Environmental monitoring and assessment, 2019, 191(7): 1-21. [7] Jarup L. Hazards of heavy metal contamination [J]. British Medical Bulletin, 2003, 68: 167-182. [8] 王亚, 冯发运, 葛静, 等. 植物根系分泌物对土壤污染修复的作用及影响机理 [J]. 生态学报. 2022, 42(3): 829-842. [9] Munir O, Mert M, Volkan A, et al. Arsenic and Human Health: Genotoxicity, Epigenomic Effects, and Cancer Signaling [J]. Biological Trace Element Research, 2021: 1-14. [10] Pacyna J M. Atmospheric Emissions of Arsenic, Cadmium, Lead and Mercury from High Temperature Processes in Power Generation and Industry [J]. Norwegian Institule for Air Research, 1987, 1: 69-89. [11] Reimann C, Caritat P D. Chemical elements in the environment: factsheets for the geochemist and environmental scientist [J]. Holocene, 1999, 9(3): 377-378. [12] Trueb L F. Die Chemischen Elemente. Ein Streifzug Durch das Periodensystem [J]. Crystal Research & Technology, 1998, 33(1): 26-39. [13] Wallis I, Prommer H, Berg M, et al. The river–groundwater interface as a hotspot for arsenic release [J]. Nature Geoscience, 2020, 13(4): 288-295. [14] Podgorski J, Berg M. Global threat of arsenic in groundwater [J]. Science, 2020, 368(6493): 845-850. [15] Smith A H, Marshall G, Roh T, et al. Lung, Bladder, and Kidney Cancer Mortality 40 Years After Arsenic Exposure Reduction [J]. Journal of the National Cancer Institute, 2018, 6: 241-249. [16] Rodriguez L L, Sun G, Berg M, et al. Groundwater Arsenic Contamination Throughout China [J]. Science, 2013, 341(6148): 866-868. [17] Wang Z H, He B, Pan X J, et al. Levels, trends and risk assessment of arsenic pollution in Yangzonghai Lake, Yunnan Province, China [J]. Science China Chemistry, 2010, 53: 1809-1817. [18] 李昕, 孙贵范. 慢性饮水型砷中毒人群发、尿、血砷含量及皮肤色素细胞改变特点 [J]. 中国地方病防治杂志, 2007, 22(6): 4-18. [19] 赵静, 孙海娟, 冯叙桥. 食品中重金属铅污染状况及其检测技术研究进展 [J]. 食品与发酵工业, 2014, 40(09): 122-127. [20] 陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展 [J]. 农业环境科学学报, 2019, 38(10): 2219-2238. [21] 杨金燕, 杨肖娥, 何振立. 土壤中铅的来源及生物有效性 [J]. 土壤通报, 2005, 36(05): 127-134. [22] 许善任, 王崇武, 王二瑜, 等. 云南下寒武统磷矿地质若干问题的探讨 [J]. 地质论评, 1984, 30(05): 477-488. [23] Leonzio C, Pisani A. An evaluative model for lead distribution in roadside ecosystems [J]. Chemosphere, 1987, 16(7): 1387-1394. [24] 熊琼仙, 李正龙, 熊敏. 浅谈土壤中Pb2+的污染及修复研究现状 [J]. 广州化工, 2019, 47(17): 135-137. [25] Liu Z T, Hai L C, Zhang G Y. Application of Principal Component Analysis to the Distributions of Heavy Metals in the Water of Lakes and Reservoirs in Yunnan Province [J]. Research of Environmental Sciences, 2010, 11(12): 1015-1102. [26] Hang L I, Xiao T F, Shuang Y, et al. Hydrogeo chemistry of cadmium in Jinding Pb-Zn mining district in Yunnan, China [J]. Geochimica, 2007, 8(11):1858-1863. [27] Ali H, Khan E, Ilahi I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation [J]. Journal of Chemistry, 2019, 2019: 1-14. [28] Survey UG. Mineral commodity summaries 2020. US Geological Survey Washington, DC; 2020. [29] Gutierrez M, Mickus K, Camacho L M. Abandoned Pb Zn mining wastes and their mobility as proxy to toxicity: A review [J]. Science of the Total Environment, 2016, 565(15): 392-400. [30] Violante A, Cozzolino V, Perelomov L, et al. Mobility and Bioavailability of Heavy Metals and Metalloids in Soil Environments [J]. Journal of Soil Science and Plant Nutrition, 2010, 10(3): 266-290. [31] Gupta N, Khan D K, Santra S C. An assessment of heavy metal contamination in vegetables grown in wastewater-irrigated areas of Titagarh, West Bengal, India [J]. Bulletin of Environmental Contamination & Toxicology, 2008, 80(2): 115-118. [32] 常青山. 重金属超富集植物的筛选与螯合吸附研究 [D]. 福州: 福建农林大学, 2005: 56-91. [33] 刘国锋. 重金属矿区铅污染特征及铅富集植物的筛选研究 [D]. 福州: 福建农林大学, 2006: 88-120. [34] Luo Z, Gao M, Luo X, et al. National pattern for heavy metal contamination of topsoil in remote farmland impacted by haze pollution in China [J]. Atmospheric Research, 2016, 170: 34-40. [35] Raju N J. Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies [J]. Environmental Research, 2022, 203: 111782. [36] Nurchi V M, Djordjevic A B, Crisponi G, et al. Arsenic Toxicity: Molecular Targets and Therapeutic Agents [J]. Biomolecules, 2020, 10(2): 235. [37] Bahar M M, Megharaj M, Naidu R. Kinetics of arsenite oxidation by Variovorax sp. MM-1 isolated from a soil and identification of arsenite oxidase gene [J]. Journal of Hazardous Materials, 2013, 262: 997-1003. [38] Varol S, Köse L. Effect on human health of the arsenic pollution and hydrogeochemistry of the Yazr Lake wetland (avdr-Burdur/Turkey) [J]. Environmental Science & Pollution Research, 2018, 25: 16217-16235. [39] Hasegawa H, Papry R I, Ikeda E, et al. Freshwater phytoplankton: biotransformation of inorganic arsenic to methylarsenic and organoarsenic [J]. Scientific reports, 2019, 9(1): 1-13. [40] Karadjova I B, Slaveykova V I, Tsalev D L. The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater [J]. Aquatic Toxicology, 2008, 87(4): 264-271. [41] Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters [J]. Applied geochemistry, 2002, 17(5): 517-568. [42] Wang Z, Jia S, Cui J, et al. Antioxidant activity of a polysaccharide produced by Chaetomium globosum CGMCC 6882 [J]. International journal of biological macromolecules, 2019, 141: 955-960. [43] Abernathy C, Liu Y, Longfellow D, et al. Meeting on Arsenic: Health Effects, Mechanisms of Actions, and Research Issues, Hunt Valley, Maryland, 22-24 September 1997 [J]. Journal of Food Composition and Analysis, 1999, 69: 25-32. [44] Bruins M R, Kapil S, Oehme F W. Microbial resistance to metals in the environment [J]. Ecotoxicology and Environmental Safety, 2000, 45(3): 198-207. [45] Moore S A, Moennich D M C, Gresser M J. Synthesis and hydrolysis of ADP-Arsenate by beef heart submitochondrial particles [J]. Journal of Biological Chemistry, 1983, 258(10): 6266-6271. [46] Wang Y, Wang S, Xu P, et al. Review of arsenic speciation, toxicity and metabolism in microalgae [J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(3): 427-451. [47] Abbas G, Murtaza B, Bibi I, et al. Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects [J]. International journal of environmental research and public health, 2018, 15(1): 513-533. [48] Demaster E G, Mitchell R A. Comparison of arsenate and vanadate as inhibitors or uncouplers of mitochondrial and glycolytic energy metabolism [J]. Biochemistry, 1973, 12(19): 3616-3621. [49] Nies D H. Microbial heavy-metal resistance [J]. Applied microbiology and biotechnology, 1999, 51(6): 730-750. [50] Mandal B K, Suzuki K T B K. Arsenic Round the World: A Review [J]. Talanta, 2002, 58(1): 201-235. [51] Razo L, Quintanilla-Vega B, Brambila-Colombres E, et al. Stress Proteins Induced by Arsenic [J]. Toxicology & Applied Pharmacology, 2001, 177(2): 132-148. [52] Wang T S, Kuo C F, Jan K Y, et al. Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species [J]. Journal of Cellular Physiology, 1996, 169(2): 256. [53] Patel A, Tiwari S, Prasad S M. Toxicity assessment of arsenate and arsenite on growth, chlorophyll a fluorescence and antioxidant machinery in Nostoc muscorum [J]. Ecotoxicology and Environmental Safety, 2018, 157: 369-379. [54] Hu Y, Li J, Lou B, et al. The role of reactive oxygen species in arsenic toxicity [J]. Biomolecules, 2020, 10(2): 240. [55] Zaman K, Pardini R. An overview of the relationship between oxidative stress and mercury and arseni [J]. Toxic Substance Mechanisms, 1996, 15: 151-182. [56] Shen S, Li X-F, Cullen W R, et al. Arsenic binding to proteins [J]. Chemical reviews, 2013, 113(10): 7769-7792. [57] Ara A, Usmani J A. Lead toxicity: a review [J]. Interdisciplinary toxicology, 2015, 8(2): 55. [58] 应波, 叶必雄, 鄂学礼, 等. 铅在水环境中的分布及其对健康的影响 [J]. 环境卫生学杂志, 2016, 6(5): 373-376. [59] Saïdi S A, Azaza M S, Windmolders P, et al. Cytotoxicity evaluation and antioxidant enzyme expression related to heavy metals found in tuna by-products meal: an in vitro study in human and rat liver cell lines [J]. Experimental and toxicologic pathology, 2013, 65(7-8): 1025-1033. [60] Silbergeld E K, Waalkes M, Rice J M. Lead as a carcinogen: experimental evidence and mechanisms of action [J]. American journal of industrial medicine, 2000, 38(3): 316-323. [61] 张玉敏, 马明月, 崔金山. 醋酸铅对小鼠生精功能的影响 [J]. 中国工业医学杂志, 2004, 17(5): 315-317. [62] 陈天金, 魏益民, 潘家荣. 食品中铅对人体危害的风险评估 [J]. 中国食物与营养, 2007, (2): 15-18. [63] Pandey S K, Fatma T. Toxicological studies of pesticides on cytoplasmic streaming in Nitella [J]. 2004, 42(7):732-735. [64] 郭学军, 黄巧云, 赵振华, 等. 微生物对土壤环境中重金属活性的影响 [J]. 应用与环境生物学报, 2002, 8(1): 6. [65] Bisessar S. Effect of heavy metals on microorganisms in soils near a secondary lead smelter [J]. Water, Air, and Soil Pollution, 1982, 17(3): 305-308. [66] Shahid M, Pinelli E, Pourrut B, et al. Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation [J]. Ecotoxicology & Environmental Safety, 2011, 74(1): 78-84. [67] Babich H, Stotzky G. Abiotic factors affecting the toxicity of lead to fungi [J]. Applied & Environmental Microbiology, 1979, 38(3): 506-513. [68] Oliveira J S, Rodrigues A, Mendes B, et al. Toxicity of lead on microorganisms: Interaction with protein content of culture medium [J]. Environmental Toxicology, 2010, 2(2): 175-191. [69] 胡鸿钧, 魏印心. 中国淡水藻类-系统、分类及生态 [M]. 科学出版社, 2006: 23-54. [70] Ouyang H, Kong X, He W, et al. Effects of five heavy metals at sub-lethal concentrations on the growth and photosynthesis of Chlorella vulgaris [J]. Chinese Science Bulletin, 2012, 57(25): 3363-3370. [71] Rai L, Gaur J, Kumar H. Phycology and heavy‐metal pollution [J]. Biological reviews, 1981, 56(2): 99-151. [72] 杨国远, 万凌琳, 雷学青, 等. 重金属铅、铬胁迫对斜生栅藻的生长、光合性能及抗氧化系统的影响 [J]. 环境科学学报, 2014, 34(06): 1606-1614. [73] Sun J, Cheng J, Yang Z, et al. Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation [J]. Bioresour Technol, 2015, 194: 305-311. [74] 周宏, 项斯端. 重金属铜、锌、铅、镉对小形月牙藻生长及亚显微结构的影响 [J]. 浙江大学学报(理学版), 1998, 000(002): 85-92. [75] Koeppe D E, Miller R J. Lead effects on corn mitochondrial respiration [J]. Science, 1970, 167(3923): 1376-1378. [76] Wang N-X, Huang B, Xu S, et al. Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii [J]. Aquatic toxicology, 2014, 157: 167-174. [77] 邱昌恩. 六种常见重金属对藻类的毒性效应概述 [J]. 重庆医科大学学报, 2006, 31(5): 776-778. [78] Nies D H, Silver S. Molecular microbiology of heavy metals [M]. Springer Science & Business Media, 2007: 287-320. [79] Tripathi S, Poluri K M. Approaches to the Remediation of Inorganic Pollutants [M]. Springer. 2021: 323-344. [80] La R N, Andreoli C, Giacometti G á, et al. Responses of the Antarctic microalga Koliella antarctica (Trebouxiophyceae, Chlorophyta) to cadmium contamination [J]. Photosynthetica, 2009, 47(3): 471-479. [81] Mohite B V, Koli S H, Patil S V. Heavy metal stress and its consequences on exopolysaccharide (EPS)-producing Pantoea agglomerans [J]. Applied biochemistry and biotechnology, 2018, 186(1): 199-216. [82] Stobrawa K, Lorenc-plucińska G. Changes in carbohydrate metabolism in fine roots of the native European black poplar (Populus nigra L.) in a heavy-metal-polluted environment [J]. Science of the total environment, 2007, 373(1): 157-65. [83] Halaj M, Paulovičová E, Paulovičová L, et al. Biopolymer of Dictyosphaerium chlorelloides-chemical characterization and biological effects [J]. International journal of biological macromolecules, 2018, 113: 1248-1257. [84] Comte S, Guibaud G, Baudu M. Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: soluble or bound [J]. Process Biochemistry, 2006, 41(4): 815-823. [85] Sorsa K K. Culture studies on arsenic (As III, As V, MMAA) interaction with three freshwater algae (Microcystis aeruginosa, Actinastrum hantzschii and Asterionella formosa)(monomethylarsonic acid) [M]. The University of Wisconsin-Madison, 1983. [86] Gong Y, Song L, Wu X, et al. Effects of arsenate on microcystin content and leakage of Microcystis strain PCC7806 under various phosphate regimes[J]. Environmental Toxicology: An International Journal, 2009, 24(1): 87-94. [87] Wang S, Zhang D, Pan X. Effects of arsenic on growth and photosystem II (PSII) activity of Microcystis aeruginosa [J]. Ecotoxicology and environmental safety, 2012, 84: 104-111. [88] 葛才林, 络剑峰, 刘冲, 等. 重金属对水稻呼吸速率及相关同功酶影响的研究 [J]. 农业环境科学学报, 2005, 24(2): 222-226. [89] Oremland R S, Stolz J F, Hollibaugh J T. The microbial arsenic cycle in Mono Lake, California [J]. FEMS Microbiology Ecology, 2004, 48(1): 15-27. [90] Leong Y K, Chang J-S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms [J]. Bioresource technology, 2020, 303: 122886. [91] Bentley R, Chasteen T G. Microbial methylation of metalloids: arsenic, antimony, and bismuth [J]. Microbiology and molecular biology reviews, 2002, 66(2): 250-271. [92] Miyashita S, Fujiwara S, Tsuzuki M, et al. Rapid biotransformation of arsenate into oxo-arsenosugars by a freshwater unicellular green alga, Chlamydomonas reinhardtii [J]. Bioscience, biotechnology, and biochemistry, 2011, 75(3): 522-530. [93] Behrenfeld M J, Randerson J T, Mcclain C R, et al. Biospheric primary production during an ENSO transition[J]. Science, 2001, 291(5513): 2594-2597. [94] Salama E-S, Hwang J-H, El-dalatony M M, et al. Enhancement of microalgal growth and biocomponent-based transformations for improved biofuel recovery: A review [J]. Bioresource technology, 2018, 258: 365-375. [95] Chen C Y, Zhao X Q, Yen H W, et al. Microalgae-based carbohydrates for biofuel production [J]. Biochemical Engineering Journal, 2013, 78: 1-10. [96] Levasseur W, Perré P, Pozzobon V. A review of high value-added molecules production by microalgae in light of the classification [J]. Biotechnology advances, 2020, 41: 107545. [97] Silvello D C M A, Gonçalves I S, Azambuja S P H, et al. Microalgae-based carbohydrates: A green innovative source of bioenergy [J]. Bioresource Technology, 2022, 344: 126304. [98] Rodrigues F, Ludovico P, Leão C. Biodiversity and Ecophysiology of Yeasts [M]. Springer, 2006: 101-121. [99] Russell J B, Cook G M. Energetics of bacterial growth: balance of anabolic and catabolic reactions [J]. Microbiological reviews, 1995, 59(1): 48-62. [100] Ran W, Wang H, Liu Y, et al. Storage of starch and lipids in microalgae: Biosynthesis and manipulation by nutrients [J]. Bioresource technology, 2019, 291: 121894. [101] Ball S G. The intricate pathway of starch biosynthesis and degradation in the monocellular alga Chlamydomonas reinhardtii [J]. Australian Journal of Chemistry, 2002, 55(2): 49-59. [102] Huertas M J, López-maury L, Giner-lamia J, et al. Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms [J]. Life, 2014, 4(4): 865-886. [103] Zhang H-N, Yang L, Ling J-Y, et al. Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic [J]. Proceedings of the National Academy of Sciences, 2015, 112(49): 15084-150849. [104] Cammack R, Sykes A. Advances in inorganic chemistry [M]. Academic Press, 1992, 128-139. [105] Li P, Liu Z, Xu R. Chemical characterisation of the released polysaccharide from the cyanobacterium Aphanothece halophytica GR02 [J]. Journal of applied phycology, 2001, 13(1): 71-77. [106] Davis T A, Llanes F, Volesky B, et al. 1H-NMR study of Na alginates extracted from Sargassum spp. in relation to metal biosorption [J]. Applied biochemistry and biotechnology, 2003, 110(2): 75-90. [107] Jha A, Dubey R. Carbohydrate metabolism in growing rice seedlings under arsenic toxicity [J]. Journal of plant physiology, 2004, 161(7): 867-872. [108] Libessart N, Maddelein M-L, Koornhuyse N, et al. Storage, photosynthesis, and growth: the conditional nature of mutations affecting starch synthesis and structure in Chlamydomonas [J]. The Plant Cell, 1995, 7(8): 1117-1127. [109] Hessler A. The effects of lead on algae. I. Effects of Pb on viability and motility of 'Platymonas subcordiformis' (Chlorophyta: Volvocales) [J]. Water Air & Soil Pollution, 1974, 3(3): 371-385. [110] Thomas W H, Hollibaugh J T, Seibert D L R. Effects of heavy metals on the morphology of some marine phytoplankton [J]. Phycologia, 1980, 19(3): 202-209. [111] Rachlin J W, Jensen T E, Baxter M, et al. Utilization of morphometric analysis in evaluating response of Plectonema boryanum (Cyanophyceae) to exposure to eight heavy metals [J]. Archives of Environmental Contamination & Toxicology, 1982, 11(3): 323-333. [112] Sulaymon A H, Mohamme A. Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae [J]. Environmental Science and Pollution Research, 2012, 20(5): 3011-3023. [113] Volesky B. Biosorption and me [J]. Water Research, 2007, 41(18):4017-4029. [114] SArret G, Manceau A, Spadini L, et al. Structural Determination of Zn and Pb Binding Sites in Penicillium chrysogenum Cell Walls by EXAFS Spectroscopy [J]. Environmental Science & Technology Easton Pa, 1998, 32(11): 1648-1655. [115] Gabriel C, Vangelis A A, Raptopoulou C P, et al. Structural–spectrochemical correlations of variable dimensionality crystalline metal–organic framework materials in hydrothermal reactivity patterns of binary–ternary systems of Pb (II) with (a) cyclic (poly) carboxylate and aromatic chelator ligands [J]. Crystal Growth & Design, 2015, 15(11): 5310-5326. [116] Rashidi B, Trindade L M. Detailed biochemical and morphologic characteristics of the green microalga Neochloris oleoabundans cell wall [J]. Algal research, 2018, 35: 152-159. [117] Wierzbicka M, Przedpełska E, Ruzik R, et al. Comparison of the toxicity and distribution of cadmium and lead in plant cells [J]. Protoplasma, 2007, 231(1): 99-111. [118] Antosiewicz D, Wierzbicka M. Localization of lead in Allium cepa L. cells by electron microscopy [J]. Journal of Microscopy, 1999, 195(Pt 2): 139-146. [119] Yan Z Z, Ke L, Tam N F Y. Lead stress in seedlings of Avicennia marina, a common mangrove species in South China, with and without cotyledons [J]. Aquatic Botany, 2010, 92(2): 112-118. [120] 傅华龙, 陈浩, 董斌, 等. 重金属离子对轮藻叶绿素含量和细胞膜透性的影响 [J]. 四川大学学报: 自然科学版, 2001, 38(5): 757-764. [121] 李锋民, 胡洪营, 种云霄, 等. 芦苇化感物质对藻类细胞膜选择透性的影响 [J]. 环境科学, 2007, 28(11): 2453-2456. [122] Wong S, Nakamoto L, Wainwright J. Identification of toxic metals in affected algal cells in assays of wastewaters [J]. Journal of Applied phycology, 1994, 6(4): 405-414. [123] Shanab S, Essa A, Shalaby E. Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates) [J]. Plant signaling & behavior, 2012, 7(3): 392-399. [124] Cenkci S, Ciğerci İ H, Yıldız M, et al. Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L [J]. Environmental and experimental botany, 2010, 67(3): 467-473. [125] Eugeniusz P, Elbieta R, Siedlecka M, et al. The effect of lead on photosynthesis and respiration in detached leaves and in mesophyll protoplasts of Pisum sativum [J]. Acta Physiologiae Plantarum, 1998, 20(3): 313-322. [126] Ernst W, Nelissen H, Bookum W. Combination toxicology of metal-enriched soils: physiological responses of a Zn- and Cd-resistant ecotype of Silene vulgaris on polymetallic soils [J]. Environmental & Experimental Botany, 2000, 43(1): 55-71. [127] Hendrik K, Frithjof K, Martin S. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants [J]. Journal of Experimental Botany, 1996, (2): 259-266. [128] Meitei M D, Kumar A, Prasad M N V, et al. Photosynthetic pigments: chemical structure, biological function and ecology [M]. Syktyvkar, St. Petersburg, Nauka, 2014: 271-316. [129] Woolery M L, Lewin R A. The effects of lead on algae. IV. Effects of Pb on respiration and photosynthesis of Phaeodactylum tricornutum (Bacillariophyceae) [J]. Water Air Soil Pollution, 1977, 6: 25-31. [130] Rosko J J, Rachlin J W. The effect of cadium, copper, mercury, zinc and lead on cell division, growth, and chlorophyll a content of the chlorophyte Chlorella vulgaris [J]. Bulletin of the Torrey Botanical Club, 1977, 104(3): 226-233. [131] Sicko-Goad L. A morphometric analysis of algal response to low dose, short-term heavy metal exposure. Protoplasma, 1982; 110: 75–86. [132] Dao L H, Beardall J. Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae [J]. Chemosphere, 2016, 147: 420-429. [133] 穆锦秀. Cu2+、Fe2+胁迫诱导小球藻富集油脂及调控机制 [D]. 湘潭: 湘潭大学, 2015. [134] Nanda M, Jaiswal K K, Kumar V, et al. Micro-pollutant Pb(II) mitigation and lipid induction in oleaginous microalgae Chlorella sorokiniana UUIND6 [J]. Environmental Technology & Innovation, 2021, 23: 101613. [135] Fathi A A. Toxicological response of the green alga Scenedesmus bijuga to mercury and lead [J]. Folia Microbiologica, 2002, 47(6): 667-671. [136] Bittell J, Koeppe D, Miller R J. Sorption of heavy metal cations by corn mitochondria and the effects on electron and energy transfer reactions [J]. Physiologia Plantarum, 1974, 30(3): 226-230. [137] Hunt S. Measurements of photosynthesis and respiration in plants [J]. Physiologia Plantarum, 2010, 117(3): 314-325. [138] Romanowska E, Igamberdiev A U, Parys E, et al. Stimulation of respiration by Pb2+ in detached leaves and mitochondria of C3 and C4 plants [J]. Physiologia Plantarum, 2002, 116(2): 148-154. [139] Meharg A A. The role of the plasmalemma in metal tolerance in angiosperms [J]. Physiologia Plantarum, 1993, 88(1): 191-198. [140] Scheidegger C, Behra R, Sigg L, et al. Phytochelatin formation kinetics and toxic effects in the freshwater alga Chlamydomonas reinhardtii upon short- and long-term exposure to lead(II) [J]. Aquatic Toxicology (Amsterdam, Netherlands), 2011, 101(2): 423-429. [141] Stohs S J, Bagchi D. Oxidative mechanisms in the toxicity of metal ions [J]. Free radical biology and medicine, 1995, 18(2): 321-336. [142] Reddy A M, Kumar S G, Jyothsnakumari G, et al. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.) [J]. Chemosphere, 2005, 60(1): 97-104. [143] Zheng C, Aslam M, Liu X, et al. Impact of Pb on Chlamydomonas reinhardtii at Physiological and Transcriptional Levels [J]. Frontiers in Microbiology, 2020, 11: 1443. [144] Sharma P, Dubey R S. Lead toxicity in plants [J]. Brazilian journal of plant physiology, 2005, 17: 35-52. [145] Henry R P, Lucu Č, Onken H, et al. Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals [J]. Frontiers in physiology, 2012, 3(431): 431. [146] Trinchella F, Esposito M G, Simoniello P, et al. Cadmium, lead and metallothionein contents in cultivated mussels (M ytilus galloprovincialis) from the G ulf of N aples (S outhern I taly) [J]. Aquaculture Research, 2013, 44(7): 1076-1084. [147] Qiu C, Hu Z. The effects of Pb2+ stress on Chlorococcum sp. [J]. Journal of Wuhan Botanical Research, 2007, 25(5): 521-526. [148] Malecka A, Piechalak A, Mensinger A, et al. Antioxidative defense system in Pisum sativum roots exposed to heavy metals (Pb, Cu, Cd, Zn) [J]. Polish Journal of Environmental Studies, 2012, 21(6): 1721-1730. [149] Hamayun M, Khan S A, Khan A L, et al. Exogenous Gibberellic Acid Reprograms Soybean to Higher Growth and Salt Stress Tolerance [J]. Journal of Agricultural & Food Chemistry, 2010, 58(12): 7226-7232. [150] Piotrowska-niczyporuk A, Bajguz A, Zambrzycka E, et al. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae) [J]. Plant Physiology and Biochemistry, 2012, 52(none): 52-65. [151] Bajguz A. An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress [J]. Environmental & Experimental Botany, 2010, 68(2): 175-179. [152] Xue X-M, Raber G, Foster S, et al. Biosynthesis of arsenolipids by the cyanobacterium Synechocystis sp. PCC 6803 [J]. Environmental Chemistry, 2014, 11(5): 506-513. [153] Guo P, Gong Y, Wang C, et al. Arsenic speciation and effect of arsenate inhibition in a Microcystis aeruginosa culture medium under different phosphate regimes [J]. Environmental Toxicology and Chemistry, 2011, 30(8): 1754-1759. [154] Tiquia-arashiro S M. Lead absorption mechanisms in bacteria as strategies for lead bioremediation [J]. Applied Microbiology & Biotechnology, 2018, 102(13):1-8. [155] 文雅, 冷艳, 李师翁. 微生物重金属耐受性及其机制的研究进展 [J]. 环境科学与技术, 2020, 43(09): 79-86. [156] Yan C, Qu Z, Wang J, et al. Microalgal bioremediation of heavy metal pollution in water: Recent advances, challenges, and prospects [J]. Chemosphere, 2022, 286: 131870. [157] Kaplan D. Absorption and adsorption of heavy metals by microalgae [J]. Handbook of microalgal culture: applied phycology and biotechnology, 2013, 2: 602-611. [158] Sheng G-P, Yu H-Q, Li X-Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review [J]. Biotechnology advances, 2010, 28(6): 882-894. [159] 皋德祥, 邓欢欢, 张明华, 等. 微生物胞外聚合物的研究进展 [J]. 温州医学院学报, 2012, 42(03): 297-301. [160] Flemming H-C, Wingender J, Szewzyk U, et al. Biofilms: an emergent form of bacterial life [J]. Nature Reviews Microbiology, 2016, 14(9): 563-575. [161] Shukla A, Parmar P, Saraf M, et al. Isolation and screening of bacteria from radionuclide containing soil for bioremediation of contaminated sites [J]. Environmental Sustainability, 2019, 2(3): 255-264. [162] Perales-vela h V, Peña-castro J M, Canizares-villanueva R O. Heavy metal detoxification in eukaryotic microalgae [J]. Chemosphere, 2006, 64(1): 1-10. [163] Ilhan S, Nourbakhsh M N, Kiliçarslan S, et al. Removal of chromium, lead and copper ions from industrial waste waters by Staphylococcus saprophyticus [J]. Turkish Electronic Journal of Biotechnology, 2004, 31(2): 50-57. [164] Crowell A. Surface forces and solid-gas interface [J]. edited by Flood, EA, Solid-Gas Interface, 1966, 1: 175-201. [165] 于芳, 李红艺, 刘廷凤, 等. 藻类在水处理中的资源化利用现状 [J]. 广州化工, 2015, 43(12): 19-21. [166] Lamai C, Kruatrachue M, Pokethitiyook P, et al. Toxicity and Accumulation of Lead and Cadmium in the Filamentous Green Alga Cladophora fracta (O.F. Muller ex Vahl) Kutzing: A Laboratory Study [J]. ScienceAsia, 2005, 31(2): 121-127. [167] Zhang J, Song H, Chen Z, et al. Biomineralization mechanism of U(VI) induced by Bacillus cereus 12-2: The role of functional groups and enzymes [J]. Chemosphere, 2018, 206: 682-692. [168] Salama E S, Kurade M B, Abou-shanab R, et al. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation [J]. Renewable and Sustainable Energy Reviews, 2017 79: 1189-1211. [169] Clemens S, Ma J F. Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods [J]. Annual Review of Plant Biology, 2016, 67(1): 489-512. [170] Guo L P, Zhang Y, Li W C. Sustainable microalgae for the simultaneous synthesis of carbon quantum dots for cellular imaging and porous carbon for CO2 capture [J]. Journal of Colloid & Interface Science, 2017, 493(Complete): 257-264. [171] Singh D V, Bhat R A, Upadhyay A K, et al. Microalgae in aquatic environs: a sustainable approach for remediation of heavy metals and emerging contaminants [J]. Environmental Technology & Innovation, 2021, 21: 101340. [172] Kit L Y, Chang J S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms [J]. Bioresource Technology, 2020, 303(2): 122886. [173] 蔡卓平, 吴皓, 刘伟杰, 等. 海洋微藻响应重金属复合胁迫的生理生态学机制[J]. 生态科学, 2017, 36(3): 216-219. [174] Nagano T, Miwa M, Suketa Y, et al. Isolation, physicochemical properties, and amino acid composition of a cadmium-binding protein from cadmium-treated chlorellaellipsoidea [J]. Journal of inorganic biochemistry, 1984, 21(1): 61-71. [175] Kumar V, Singh J, Kumar P. Heavy metals accumulation in crop plants: Sources, response mechanisms, stress tolerance and their effects [J]. Contaminants in agriculture and environment: health risks and remediation, 2019, 31: 38. [176] Hansda A, Kumar V. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation [J]. World Journal of Microbiology and Biotechnology, 2016, 32(10): 11-14. [177] Yang W, Luo L, Bostick B C, et al. Effect of combined arsenic and lead exposure on their uptake and translocation in Indian mustard [J]. Environmental Pollution, 2021, 274: 116549. [178] Rodríguez L, Ruiz E, Alonso-azcárate J, et al. Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain [J]. Journal of Environmental Management, 2009, 90(2): 1106-1116. [179] Lynch A J, Mcquaker N R, Brown D F. ICP/AES Analysis and the Composition of Airborne and Soil Materials in the Vicinity of A Lead/Zinc Smelter Complex [J]. Journal of the Air Pollution Control Association, 1980, 30(3): 257-260. [180] Salido A L, Hasty K L, Lim J-M, et al. Phytoremediation of Arsenic and Lead in Contaminated Soil Using Chinese Brake Ferns (Pteris vittata) and Indian Mustard (Brassica juncea) [J]. International Journal of Phytoremediation, 2003, 5(2): 89-103. [181] Vahter M. Health effects of early life exposure to arsenic [J]. Basic & clinical pharmacology & toxicology, 2008, 102(2): 204-211. [182] Steinmaus C, Moore L, Hopenhayn-rich C, et al. Arsenic in drinking water and bladder cancer: environmental carcinogenesis [J]. Cancer investigation, 2000, 18(2): 174-182. [183] Harvey P, Handley H, Taylor M. Identification of the sources of metal (lead) contamination in drinking waters in north-eastern Tasmania using lead isotopic compositions [J]. Environmental Science and Pollution Research, 2015, 22(16): 12276-12288. [184] 胡雪琴. 铅暴露对骨骼形成的影响及其机理研究 [D]. 重庆: 第三军医大学, 2007. [185] 梁爽. 老化过程对土壤砷, 铅的形态及可利用性的影响研究 [D]. 南京:南京大学, 2014. [186] 胡莹, 段桂兰, 刘云霞, 等. 砷-铅交互作用对水稻根表铁膜富集及根系吸收砷铅的影响 [J]. 环境化学, 2012, 31(12): 1968-1973. [187] 李娜, 黎佳茜, 李国文, 等. 中国典型湖泊富营养化现状与区域性差异分析 [J]. 水生生物学报, 2018, 42(4): 854-864. [188] 王海东, 方凤满, 谢宏芳. 中国水体重金属污染研究现状与展望 [J]. 广东微量元素科学, 2010, (1): 14-18. [189] 周启星, 程云, 张倩茹, 等. 复合污染生态毒理效应的定量关系分析 [J]. 中国科学, 2003, 33(6): 566-573. [190] Mohapatra H, Gupta R. Concurrent sorption of Zn (II), Cu (II) and Co (II) by Oscillatoria angustissima as a function of pH in binary and ternary metal solutions [J]. Bioresource Technology, 2005, 96(12): 1387-1398. [191] 周浩媛, 陈军, 盛彦清. 微藻技术在污水处理中的应用与展望 [J]. 环境科学与技术, 2020, 43(11): 160-171. [192] 王淑, 许平平, 刘聪, 等. 不同磷浓度对钝顶螺旋藻吸附、吸收和转化砷酸盐的影响 [J]. 农业环境科学学报, 2015, 34(06): 1034-1040. [193] Yin X, Wang L, Duan G, et al. Characterization of arsenate transformation and identification of arsenate reductase in a green alga Chlamydomonas reinhardtii [J]. Journal of Environmental Sciences, 2011, 23(7): 1186-1193. [194] Huang Z, Chen B, Zhang J, et al. Absorption and speciation of arsenic by microalgae under arsenic-copper Co-exposure [J]. Ecotoxicology and Environmental Safety, 2021, 213: 112024. [195] Martínez-Ruiz E B, Martínez-Jerónimo F. Nickel has biochemical, physiological, and structural effects on the green microalga Ankistrodesmus falcatus: an integrative study [J]. Aquatic Toxicology, 2015, 169: 27-36. [196] Wang T, Yadong H U, Zhu M, et al. Integrated transcriptome and physiology analysis of Microcystis aeruginosa after exposure to copper sulfate [J]. Journal of Oceanology and Limnology, 2020, 38(1): 102-113. [197] Gumaelius L, Lahner B, Salt D E, et al. Arsenic hyperaccumulation in gametophytes of Pteris vittata. A new model system for analysis of arsenic hyperaccumulation [J]. Plant physiology, 2004, 136(2): 3198-3208. [198] Rahman M A, Hasaler C. Is arsenic biotransformation a detoxification mechanism for microorganisms? [J]. Aquatic Toxicology, 2014, 146: 212-219. [199] Xue P Y, Yan C Z, Cao Y L, et al. Toxic effects of copper and arsenic and their compound pollution on Hydrilla verticillata (L. f.) Royle [J]. Research of Environmental Sciences, 2011, 24(9): 1052-1058. [200] Takimura O, Fuse H, YAMAOKA Y. Effect of cadmium on the accumulation of arsenic in a marine green alga, Dunaliellasp. [J]. Applied organometallic chemistry, 1992, 6(4): 363-367. [201] Jamers A, Ven K V D, Moens L, et al. Effect of copper exposure on gene expression profiles in Chlamydomonas reinhardtii based on microarray analysis [J]. Aquatic Toxicology, 2006, 80(3): 249-260. [202] Simon D F, Descombes P, Zerges W, et al. Global expression profiling of Chlamydomonas reinhardtii exposed to trace levels of free cadmium [J]. Environmental Toxicology & Chemistry, 2010, 27(8): 1668-1675. [203] Yamaoka Y, Takimura O, Fuse H, et al. Accumulation of arsenic and selenium by Dunaliella sp [J]. Applied Organometallic Chemistry, 1990, 4(3): 261-264. [204] 陈炳宇. 铜对蓝绿藻体内砷的生物累积和转化影响研究 [D]. 昆明: 云南大学, 2018. [205] Yang, Yan C. Influence of titanium dioxide nanoparticles on the toxicity of arsenate in Nannochloropsis maritima [J]. Chemosphere, 2018, 209: 191-200. [206] 刘砥, 曾鸿鹄, 邓杨, 等. 二元重金属混合物联合胁迫斜生栅藻毒性研究 [J]. 科学技术与工程, 2019, 19(22): 374-383. [207] 张小林. 渤海海域海水, 沉积物中铅, 镉, 汞, 砷污染调查 [J]. 黑龙江环境通报, 2001, 25(3): 87-89. [208] 李燕, 朱琳, 刘硕. 铅、汞单一及联合胁迫对栅藻的生长、GSH 含量及相关酶活性的影响 [J]. 环境科学, 2009, 30(1): 248-253. [209] Sánchez-Marín P, Fortin C, Campbell P. Lead (Pb) and copper (Cu) share a common uptake transporter in the unicellular alga Chlamydomonas reinhardtii [J]. Biometals, 2014, 27(1): 173-181. [210] Conklin P L, Last R L. Differential accumulation of antioxidant mRNAs in Arabidopsis thaliana exposed to ozone [J]. Plant Physiology, 1995, 109(1): 203-212. [211] Beauvais-Flück R, Slaveykova V I, Cosio C. Cellular toxicity pathways of inorganic and methyl mercury in the green microalga Chlamydomonas reinhardtii [J]. Scientific Reports, 2017, 7: 8034. [212] 刘璐. 重金属铅镉与两种淡水藻的相互作用 [D]. 芜湖: 安徽师范大学, 2014. [213] 贾坤. 重金属镉和铅胁迫对两种硅藻的毒理学效应 [D]. 哈尔滨: 哈尔滨师范大学, 2019. [214] 周洋, 于道德, 胡芯, 等. 铅锌胁迫下轮叶黑藻的吸附水平及生理响应 [J]. 水生生物学报, 2021, 45(6): 1273-1280. [215] Ismaiel M M, Said A A. Tolerance of Pseudochlorella pringsheimii to Cd and Pb stress: role of antioxidants and biochemical contents in metal detoxification [J]. Ecotoxicology and Environmental Safety, 2018, 164: 704-712. [216] 吴清莲, 王应军, 杜宇, 等. 钇对铅胁迫下铜绿微囊藻抗氧化能力及藻毒素释放的影响 [J]. 农业环境科学学报, 2013, 32(6): 1128-1133. [217] Ziyun D, Qingxiang C. Effects of Cu and Pb on the Growth of Alga, Heterosigma akashiwo [J]. Asian Journal of Ecotoxicology, 2019, (1): 116-127. [218] Chen Z, Zhu L, Wilkinson K J. Validation of the biotic ligand model in metal mixtures: bioaccumulation of lead and copper [J]. Environmental science & technology, 2010, 44(9): 3580-3586. [219] 常福辰, 施国新, 吴国荣, 等. 汞、镉复合污染对金鱼藻的影响及其抗性机制的探讨 [J]. 广西植物, 2002, (5): 453-457. [220] 施国新, 杜开和, 解凯彬, 等. 汞、镉污染对黑藻叶细胞伤害的超微结构研究 [J]. 植物学报, 2000, (4): 373-378. [221] Lu J, Ma Y L, Xing G L, et al. Revelation of microalgae's lipid production and resistance mechanism to ultra-high Cd stress by integrated transcriptome and physiochemical analyses [J]. Environmental Pollution, 2019, 250: 186-195. [222] 陈吟, 周建德, 鲁蕾, 等. 铜、镉联合胁迫对羊角月牙藻的自由基氧化损伤影响研究 [J]. 环境污染与防治, 2014, 36(9): 35-40. [223] 宋志慧, 赵世刚. 铜和镉对金鱼藻的毒性影响研究 [J]. 安徽农业科学, 2010, 38(7): 3688-3693. [224] Qian H F, Li J J, Sun L W, et al. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription [J]. Aquatic Toxicology, 2009, 94(1): 56-61. [225] 宋艳艳. 藻类荧光对镉与铜联合毒性响应规律的研究 [D]. 石家庄: 河北科技大学, 2016. [226] Terry P A, Stone W. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans [J]. Chemosphere, 2002, 47(3): 249-255. [227] 陈柳君, 冯海峰, 朱雪梅, 等. 铜锌复合污染对铜富集植物大聚藻抗氧化酶活性的影响 [J]. 西北植物学报, 2014, 34(10): 2056-2062. [228] 郭金耀, 杨晓玲. 铜锌组合在盐藻生长与物质积累中的作用 [J]. 江苏农业科学, 2010, 2: 251-253. [229] 赵世刚. 铜、铬、镉单一和联合作用对金鱼藻的毒性影响研究 [D]. 青岛: 青岛科技大学, 2010. [230] Mendes L F, Stevani C V, Zambotti-Villela L, et al. Toxic effect of metal cation binary mixtures to the seaweed Gracilaria domingensis (Gracilariales, Rhodophyta) [J]. Environmental Science and Pollution Research, 2014, 21(13): 8216-8223. [231] Bao V W, Leung K M, Kwok K W, et al. Synergistic toxic effects of zinc pyrithione and copper to three marine species: Implications on setting appropriate water quality criteria [J]. Marine Pollution Bulletin, 2008, 57(6-12): 616-623. [232] Yoon H S, Hackett J D, Ciniglia C, et al. A molecular timeline for the origin of photosynthetic eukaryotes [J]. Molecular Biology and Evolution, 2004, 21(5): 809-818. [233] Nickelsen J, Kück U. The Unicellular Green Alga Chlamydomonas reinhardtii as an Experimental System to Study Chloroplast RNA Metabolism [J]. Naturwissenschaften, 2000, 87: 97–107. [234] Goodenough U W. Green Yeast [J]. Cell, 1992, 70(4): 533-538. [235] De C F, Lemaire S D, Danon A. When Unity Is Strength: The Strategies Used by Chlamydomonas to Survive Environmental Stresses [J]. Cells, 2019, 8(11): 1307. [236] Samadani M, Perreault F, Oukarroum A, et al. Effect of cadmium accumulation on green algae Chlamydomonas reinhardtii and acid-tolerant Chlamydomonas CPCC121 [J]. Chemosphere, 2018, 191: 174-182. [237] Islam M S, Sazawa K, Hata N, et al. Determination of heavy metal toxicity by using a micro-droplet hydrodynamic voltammetry for microalgal bioassay based on alkaline phosphatase [J]. Chemosphere, 2017, 188: 337-344. [238] Irmer U, Wachholz I, Schafer H, et al. Influence of lead on Chlamydomonas reinhardii danegard (volvocales, chlorophyta): Accumulation, toxicity and ultrastructural changes [J]. Environmental & Experimental Botany, 1986, 26(2): 97-105. [239] An J, Blust R, Coen W D, et al. Copper toxicity in the microalga Chlamydomonas reinhardtii: an integrated approach [J]. Biometals, 2013, 26(5): 731-40. [240] Naveed S, Li C H, Lu X D, et al. Microalgal extracellular polymeric substances and their interactions with metal(loid)s: A review [J]. Critical Reviews in Environmental Science & Technology, 2019, 49(19): 1769-1802. [241] 郑燕恒. 磷酸盐对莱茵衣藻砷的耐性和形态转化的影响研究 [D]; 南京: 南京农业大学, 2017. [242] Soldo D, Hari R, Sigg L, et al. Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper [J]. Aquatic Toxicology, 2005, 71(4): 307-317. [243] 胡章立, 邢苗, 吴玉荷, 等. 转MT-like基因衣藻的重金属结合能力与抗性特征分析 [J]. 湖泊科学, 2002, 14(3): 247-252. [244] Åsgård T, Shearer K D. Dietary phosphorus requirement of juvenile Atlantic salmon, Salmo salar L [J]. Aquaculture Nutrition, 1997, 3(1): 17-23. [245] 王亚, 张春华, 王淑, 等. 带菌盐藻对不同形态砷的富集和转化研究 [J]. 环境科学, 2013, 34(11): 4257-4265. [246] 张金羽, 葛滢, 张春华. 水生生物中砷的提取和形态分析的研究进展 [J]. 理化检验: 化学分册, 2020, 56(7): 836-844. [247] 王亚, 张春华, 葛滢. 高效液相色谱-氢化物发生-原子荧光光谱法检测紫菜中的砷形态 [J]. 分析试验室, 2013, 32(0): 34-38. [248] Sackett O, Petrou K, Reedy B, et al. Snapshot prediction of carbon productivity, carbon and protein content in a Southern Ocean diatom using FTIR spectroscopy [J]. The Isme Journal, 2015, 10(2):416-426. [249] Synytsyaa A, Čopı́ková J, Matějka P, et al. Fourier transform Raman and infrared spectroscopy of pectins [J]. Carbohydrate Polymers, 2003, 54(1): 97-106. [250] Copikova J, Synytsya A, Novethna M. Application of FT-IR Spectroscopy in Detection of Food Hydrocolloids in Confectionery Jellies and Food Supplements [J]. Czech Journal of Food ences, 2001, 19(2): 51-56. [251] Dao L, Beardall J, Heraud P, et al. Characterisation of Pb-induced changes and prediction of Pb exposure in microalgae using infrared spectroscopy [J]. Aquatic Toxicology, 2017, 188: 33-42. [252] Baruch M F, Pander J E, White J L, et al. Mechanistic Insights into the Reduction of CO2 on Tin Electrodes using In situ ATR-IR Spectroscopy [J]. ACS Catalysis, 2015, 5(5): 3148-3156. [253] Martin F L, Walsh M J, Singh M N, et al. FTIR microspectroscopy coupled with two-class discrimination segregates markers responsible for inter-and intra-category variance in exfoliative cervical cytology [J]. Biomarker Insights, 2008, 3:179-189. [254] 曾鸣, 林志芬, 尹大强, 等. 混合污染物联合毒性研究进展 [J]. 环境科学与技术, 2009, 32(2): 80-86. [255] Ashkenazy R, Gottlieb L, Yannai S. Characterization of acetone-washed yeast biomass functional groups involved in lead biosorption [J]. Biotechnology and bioengineering, 1997, 55(1): 1-10. [256] 苏永红, 唐柱云, 曾科. 重金属联合毒性研究进展 [J]. 现代农业科技, 2007, (10): 174-175. [257] Qin L T, Liu S S, Zhang J, et al. A novel model integrated concentration addition with independent action for the prediction of toxicity of multi-component mixture [J]. Toxicology, 2011, 280(3): 164-172. [258] Backhaus T, Altenburger R, Faust M, et al. Proposal for environmental mixture risk assessment in the context of the biocidal product authorization in the EU [J]. Environmental Sciences Europe, 2013, 25(1): 1-9. [259] Cedergreen N, Christensen A M, Kamper A, et al. A review of independent action compared to concentration addition as reference models for mixtures of compounds with different molecular target sites [J]. Environmental Toxicology and Chemistry: An International Journal, 2008, 27(7): 1621-1632. [260] Richter M, Escher B I. Mixture toxicity of reactive chemicals by using two bacterial growth assays as indicators of protein and DNA damage [J]. Environmental science & technology, 2005, 39(22): 8753-8761. [261] Zhu X W, Liu S S, Ge H L, et al. Comparison between two confidence intervals of dose-response relationships [J]. China Environmental Science, 2009, 29: 113-117. [262] Deng L, Su Y, Su H, et al. Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis [J]. Journal of Hazardous Materials, 2007, 143(1-2): 220-225. [263] 宋崇崇, 陶梦婷, 张瑾, 等. 3种重金属对蛋白核小球藻的联合毒性及机理 [J]. 环境科学与技术, 2020, 43(2): 88-95. [264] Zhu X W, Liu S S , Ge H L, et al. Comparison between the short-term and the long-term toxicity of six triazine herbicides on photobacteria Q67 [J]. Water Research, 2009, 43(6): 1731-1739. [265] Zhang J, Liu S S, Dou R N, et al. Evaluation on the toxicity of ionic liquid mixture with antagonism and synergism to Vibrio qinghaiensis sp.-Q67 [J]. Chemosphere, 2011, 82(7): 1024-1029. [266] Dou R N, Liu S S, Mo L T, et al. A novel direct equipartition ray design (EquRay) procedure for toxicity interaction between ionic liquid and dichlorvos [J]. Environmental Science&Pollution Research, 2011, 18(5): 734-742. [267] Zhu X W, Ge H L, Cao Y B. Mixture cytotoxicity assessment of ionic liquids and heavy metals in MCF-7 cells using mixtox [J]. Chemosphere, 2016, 163: 544-551. [268] 马添翼, 张瑾, 周娜娜, 等. 两种除草剂与两种杀虫剂对蛋白核小球藻的联合毒性作用评估 [J]. 环境化学, 2022, 41(7): 2221-33. [269] 冯天翼, 宋超, 陈家长. 水生藻类的环境指示作用 [J]. 中国农学通报, 2011, 27(32): 257-265. [270] Greco W R. The search for synergy: a critical review from a response surface perspective [J]. Pharmacological Reviews, 1995, 47(2): 331-385. [271] Bliss C I. The toxicity of poisons applied jointly 1 [J]. Annals of applied biology, 1939, 26(3): 585-615. [272] 莫凌云, 梁丽营, 覃礼堂, 等. 定性与定量评估四种重金属及两种农药混合物对费氏弧菌的毒性相互作用 [J]. 生态毒理学报, 2018, 13(1): 251-260. [273] Saunders J K, Rocap G. Genomic potential for arsenic efflux and methylation varies among global Prochlorococcus populations [J]. The ISME journal, 2016, 10(1): 197-209. [274] Oremland R S, Kulp T R, Blum J S, et al. A microbial arsenic cycle in a salt-saturated, extreme environment [J]. Science, 2005, 308(5726): 1305-1308. [275] Oremland R S, Stolz J F. Arsenic, microbes and contaminated aquifers [J]. Trends in microbiology, 2005, 13(2): 45-49. [276] Díaz S, De F P, Olsson S, et al. Toxicity, physiological, and ultrastructural effects of arsenic and cadmium on the extremophilic microalga Chlamydomonas acidophila [J]. International Journal of Environmental Research and Public Health, 2020, 17(5): 1650. [277] Waldron K J, Firbank S J, Dainty S J, et al. Structure and metal loading of a soluble periplasm cuproprotein [J]. Journal of Biological Chemistry, 2010, 285(42): 32504-32511. [278] Hussain M M, Wang J, Bibi I, et al. Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae [J]. Journal of Hazardous Materials, 2021, 403: 124027. [279] Bennett J. Regulation of photosynthesis by reversible phosphorylation of the light-harvesting chlorophyll a/b protein [J]. The Biochemical journal, 1983, 212(1): 1-13. [280] Chen J, Yoshinaga M, Garbinski L D, et al. Synergistic interaction of glyceraldehydes-3-phosphate dehydrogenase and ArsJ, a novel organoarsenical efflux permease, confers arsenate resistance [J]. Molecular Microbiology, 2016, 100(6): 945-953. [281] Levy J L, Stauber J L, Adams M S, et al. Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum) [J]. Environmental Toxicology & Chemistry, 2010, 24(10): 2630-2639. [282] Carfagna S, Lanza N, Salbitani G, et al. Physiological and morphological responses of Lead or Cadmium exposed Chlorella sorokiniana 211-8K (Chlorophyceae) [J]. 2013, 2(1): 1-7. [283] Brányiková I, Maršálková B, Doucha J, et al. Microalgae—novel highly efficient starch producers [J]. 2011, 108(4): 766-776. [284] Gupta P, Diwan B. Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies [J]. Biotechnology Reports, 2017, 13: 58-71. [285] Zhang J, Zhou F, Liu Y, et al. Effect of extracellular polymeric substances on arsenic accumulation in Chlorella pyrenoidosa [J]. 2020, 704: 135368. [286] Kostal J, Yang R, Wu C H, et al. Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR [J]. 2004, 70(8): 4582-4587. [287] Shen L, Li Z, Wang J, et al. Characterization of extracellular polysaccharide/protein contents during the adsorption of Cd (II) by Synechocystis sp. PCC6803 [J]. 2018, 25(21): 20713-20722. [288] Naveed S, Yu Q, Zhang C, et al. Extracellular polymeric substances alter cell surface properties, toxicity, and accumulation of arsenic in Synechocystis PCC6803 [J]. 2020, 261: 114233. [289] Kumar K S, Dahms H-U, Won E-J, et al. Microalgae–a promising tool for heavy metal remediation [J]. 2015, 113: 329-352. [290] Boyle N R, Sengupta N, Morgan J A J P O. Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii [J]. 2017, 12(5): e0177292. [291] Bilbao P S, Salvador G A, Leonardi P I. Fatty acids from microalgae: targeting the accumulation of triacylglycerides [M]. Fatty acids. IntechOpen. 2017: 120-141. [292] Nishikawa K, Yamakoshi Y, Uemura I, et al. Ultrastructural changes in Chlamydomonas acidophila (Chlorophyta) induced by heavy metals and polyphosphate metabolism [J]. 2003, 44(2): 253-259. [293] Kirchman D L. Processes in microbial ecology [M]. Oxford University Press, 2018. [294] Jiang Z, Sun Y, Guan H, et al. Contributions of polysaccharides to arsenate resistance in Chlamydomonas reinhardtii [J]. Ecotoxicology and Environmental Safety, 2022, 229: 113091. [295] Ji Y, Sherrell R M. Differential effects of phosphorus limitation on cellular metals in Chlorella and Microcystis [J]. Limnology and Oceanography, 2008, 53(5): 1790-1804. [296] Rocha G S, Lombardi A T, Maria DA Graça G M. Influence of phosphorus on copper toxicity to Selenastrum gracile (Reinsch) Korshikov [J]. Ecotoxicology and Environmental Safety, 2016, 128: 30-35. [297] Słaba M, Bernat P, Różalska S, et al. Comparative study of metal induced phospholipid modifications in the heavy metal tolerant filamentous fungus Paecilomyces marquandii and implications for the fungal membrane integrity [J]. Acta Biochimica Polonica, 2013, 60(4): 695-700. [298] Zhang W, Robertson J D, Savage M, et al. Use of particle-induced X-ray emission for evaluation of competitive metal binding on algae [J]. Microchemical journal, 1997, 56(3): 403-412. [299] Shafiq-ur-rehman. Lead-exposed increase in movement behavior and brain lipid peroxidation in fish [J]. Journal of Environmental Science and Health, Part A, 2003, 38(4): 631-643. [300] Rehman S, Chandra O, Abdulla M. Evaluation of malondialdehyde as an index of lead damage in rat brain homogenates [J]. Biometals, 1995, 8(4): 275-279. [301] Pierella Karlusich J J, Carrillo N. Evolution of the acceptor side of photosystem I: ferredoxin, flavodoxin, and ferredoxin-NADP+ oxidoreductase [J]. Photosynthesis research, 2017, 134(3): 235-250. [302] Butt J N, Fawcett S E, Breton J, et al. Electrochemical potential and pH dependences of [3Fe-4S]↔[M3Fe-4S] cluster transformations (M= Fe, Zn, Co, and Cd) in Ferredoxin III from Desulfovibrio africanus and detection of a cluster with M= Pb [J]. Journal of the American Chemical Society, 1997, 119(41): 9729-9737. [303] Nieboer E, Richardson D H. The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions [J]. Environmental Pollution Series B, Chemical and Physical, 1980, 1(1): 3-26. [304] Matsumura H, Mizohata E, Ishida H, et al. Crystal structure of rice Rubisco and implications for activation induced by positive effectors NADPH and 6-phosphogluconate [J]. Journal of molecular biology, 2012, 422(1): 75-86. [305] Bachate S P, Nandre V S, Ghatpande N S, et al. Simultaneous reduction of Cr(VI) and oxidation of As(III) by Bacillus firmus TE7 isolated from tannery effluent [J]. Chemosphere, 2012, 90(8): 2273-2278. [306] Mirghaffari N, Moeini E, Farhadian O. Biosorption of Cd and Pb ions from aqueous solutions by biomass of the green microalga, Scenedesmus quadricauda [J]. Journal of Applied Phycology, 2015, 27(1): 311-320. [307] Wang N X, Li Y, Deng X H, et al. Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes [J]. Water Research, 2013, 47(7): 2497-2506. [308] Jain C K, Ali I. Arsenic: occurrence, toxicity and speciation techniques [J]. Water Research, 2000, 34(17): 4304-4312. [309] Zhao F J, Ma J F, Meharg A A, et al. Arsenic uptake and metabolism in plants [J]. New Phytologist, 2009, 181. [310] Sanders J G. Interactions between arsenic species and marine algae [J]. Scitech Connect Interactions Between Arsenic Species & Marine Algae, 1978: 77. [311] Siripornadulsil S, Traina S, Verma D P S, et al. Molecular Mechanisms of Proline-Mediated Tolerance to Toxic Heavy Metals in Transgenic Microalgae [J]. Plant Cell, 2002, 14(11): 2837-2847. [312] Conner S D, Schmid S L. Regulated portals of entry into the cell [J]. Nature, 2003, 422(6927): 37-44. [313] Yan C L, Hong Y T, Fu S Z, et al. Effect of Cd, Pb stress on the activated oxygen scavenging system in tobacco leaves [J]. Chinese Journal of Geochemistry, 1998. 17: 372–378. [314] Yamaoka Y, Takimura O, Fuse H. Effects of various elements on arsenic accumulation of the alga Dunaliella salina [J]. Applied Organometallic Chemistry, 2010, 8(3): 229-235. [315] Zhang X, Zhang H, Zhang Y, et al. Arbuscular mycorrhizal fungi alter carbohydrate distribution and amino acid accumulation in Medicago truncatula under lead stress [J]. Environmental and Experimental Botany, 2019, 171: 103950. [316] Priatni S, Ratnaningrum D, Warya S, et al. Phycobiliproteins production and heavy metals reduction ability of Porphyridium sp [C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2018, 160(1): 012006. [317] Balaji S, Kalaivani T, Shalini M, et al. Sorption sites of microalgae possess metal binding ability towards Cr(VI) from tannery effluents-a kinetic and characterization study [J]. Desalination & Water Treatment, 2016, 57(31): 14518-14529. [318] Jiang Z, Wang T, Sun Y, et al. Application of Pb(II) to probe the physiological responses of fungal intracellular vesicles [J]. Ecotoxicology and Environmental Safety, 2020, 194: 110441. [319] Adamczuk Z, Nowińska K. Environmental mobility of trace elements present in dusts emitted from Zn–Pb metallurgical processes [J]. Environmental Earth Sciences, 2016, 75(11): 1-6. [320] Mlachlan C, Craw D. Environmental mineralogy and geochemistry of processing residues at Prohibition historic gold mine site, Waiuta, Westland, New Zealand [J]. New Zealand Journal of Geology and Geophysics, 2018, 61(2): 180-194. [321] Yan S, Wu H, Qin J, et al. Halogen-free organophosphorus flame retardants caused oxidative stress and multixenobiotic resistance in Asian freshwater clams (Corbicula fluminea) [J]. Environmental Pollution, 2017, 225: 559-568. [322] Li C, Zheng C, Fu H, et al. Contrasting detoxification mechanisms of Chlamydomonas reinhardtii under Cd and Pb stress [J]. Chemosphere, 2021, 274: 129771. [323] Geebelen W, Vangronsveld J, Adriano D C, et al. Effects of Pb-EDTA and EDTA on oxidative stress reactions and mineral uptake in Phaseolus vulgaris [J]. Physiologia plantarum, 2002, 115(3): 377-384. [324] Shapiro J. Current beliefs regarding dominance by blue-greens: the case for the importance of CO2 and pH [J]. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 1990, 24(1): 38-54. [325] Ekmekçi Y, Tanyolac D, Ayhan B. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars [J]. Journal of plant physiology, 2008, 165(6): 600-611. [326] Zhu Z, Cao H, Li X, et al. A carbon fixation enhanced Chlamydomonas reinhardtii strain for achieving the double-win between growth and biofuel production under non-stressed conditions [J]. Frontiers in Bioengineering and Biotechnology, 2021, 8: 603513. [327] Romano R L, Liria C W, Machini M T, et al. Cadmium decreases the levels of glutathione and enhances the phytochelatin concentration in the marine dinoflagellate Lingulodinium polyedrum [J]. Journal of Applied Phycology, 2017, 29(2): 811-820. [328] Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins: Roles [J]. Annu Rev Plant Biol, 2002, 53: 159-182. [329] Bellou S, Triantaphyllidou I-E, Mizerakis P, et al. High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium [J]. Journal of Biotechnology, 2016, 234: 116-126. [330] Geigenberger P. Regulation of starch biosynthesis in response to a fluctuating environment [J]. Plant Physiology, 2011, 155(4): 1566-1577. [331] Morales-Sánchez D, Kyndt J, Ogden K, et al. Toward an understanding of lipid and starch accumulation in microalgae: A proteomic study of Neochloris oleoabundans cultivated under N-limited heterotrophic conditions [J]. Algal research, 2016, 20: 22-34. [332] Ho S-H, Nakanishi A, Kato Y, et al. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4 [J]. Scientific reports, 2017, 7(1): 1-11. [333] Arora N, Gulati K, Patel A, et al. A hybrid approach integrating arsenic detoxification with biodiesel production using oleaginous microalgae [J]. Algal Research, 2017, 24: 29-39. [334] Chia M A, Lombardi A T, Gama Melao M D G. Calorific values of Chlorella vulgaris (Trebouxiophyceae) as a function of different phosphorus concentrations [J]. Phycological Research, 2013, 61(4): 286-291. [335] Hossain M F. Arsenic contamination in Bangladesh—an overview [J]. Agriculture, ecosystems & environment, 2006, 113(1-4): 1-16. [336] Shanker A K, Cervantes C, Loza-Tavera H, et al. Chromium toxicity in plants [J]. Environment international, 2005, 31(5): 739-753. [337] Burke J J, Steinback K E, Arntzen C J. Analysis of the light-harvesting pigment-protein complex of wild type and a chlorophyll-b-less mutant of barley [J]. Plant Physiology, 1979, 63(2): 237-243. [338] Wang P, Liu J, Liu B, et al. Ferredoxin: thioredoxin reductase is required for proper chloroplast development and is involved in the regulation of plastid gene expression in Arabidopsis thaliana [J]. Molecular plant, 2014, 7(10): 1586-1590. [339] Zhao A, Fang Y, Chen X, et al. Crystal structure of Arabidopsis glutamyl-tRNA reductase in complex with its stimulator protein [J]. Proceedings of the National Academy of Sciences, 2014, 111(18): 6630-6635. [340] Hasan M K, Cheng Y, Kanwar M K, et al. Responses of plant proteins to heavy metal stress—a review [J]. Frontiers in plant science, 2017, 8: 1492. [341] Sáez C A, Roncarati F, Moenne A, et al. Copper-induced intra-specific oxidative damage and antioxidant responses in strains of the brown alga Ectocarpus siliculosus with different pollution histories [J]. Aquatic Toxicology, 2015, 159: 81-89. [342] Wang W, Vinocur B, Shoseyov O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response [J]. Trends in plant science, 2004, 9(5): 244-252. [343] Hradilová J, Řehulka P, Řehulková H, et al. Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure [J]. Electrophoresis, 2010, 31(2): 421-431. [344] Ge Y, Ning Z, Wang Y, et al. Quantitative proteomic analysis of Dunaliella salina upon acute arsenate exposure [J]. Chemosphere, 2016, 145: 112-118. [345] Wingler A, Lea P J, Quick W P, et al. Photorespiration: metabolic pathways and their role in stress protection [J]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2000, 355(1402): 1517-1529. [346] D’alessandro A, Taamalli M, Gevi F, et al. Cadmium stress responses in Brassica juncea: hints from proteomics and metabolomics [J]. Journal of proteome research, 2013, 12(11): 4979-4997. [347] Coleman M G, Hudson A O. Isolation, total synthesis, and biological activities of 1-aminocyclopropane-1-carboxylic acid (ACC) containing natural compounds [J]. Studies in Natural Products Chemistry, 2016, 47: 405-430. [348] Papadakis A K, Roubelakis-Angelakis K A. Polyamines inhibit NADPH oxidase-mediated superoxide generation and putrescine prevents programmed cell death induced by polyamine oxidase-generated hydrogen peroxide [J]. Planta, 2005, 220(6): 826-837. [349] Zou-X, Pang Q-Y, Zhang A-Q, et al. Excess copper induced proteomic changes in the marine brown algae Sargassum fusiforme [J]. Ecotoxicology and Environmental Safety, 2015, 111: 271-280. [350] Feng X, Xu J, Liang Y, et al. A proteomic‐based investigation of potential copper‐responsive biomarkers: Proteins, conceptual networks, and metabolic pathways featuring Penicillium janthinellum from a heavy metal‐polluted ecological niche [J]. MicrobiologyOpen, 2017, 6(4): e00485. [351] Gracioso L H, Baltazar M P G, Avanzi I R, et al. Analysis of copper response in Acinetobacter sp. by comparative proteomics [J]. Metallomics, 2019, 11(5): 949-958. [352] Kanjee U, Houry W A. Mechanisms of acid resistance in Escherichia coli [J]. Annu Rev Microbiol, 2013, 67(1): 65-81. [353] Yao J, Ericson M E, Frank M W, et al. Enoyl-acyl carrier protein reductase I (FabI) is essential for the intracellular growth of Listeria monocytogenes [J]. Infection and Immunity, 2016, 84(12): 3597-3607. [354] Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances [J]. The plant journal, 2008, 54(4): 621-639. [355] Yilancioglu K, Cokol M, Pastirmaci I, et al. Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain [J]. PloS one, 2014, 9(3): e91957. [356] Davis T A, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae [J]. 2003, 37(18): 4311-4330. [357] Gorman D S, Levine R P. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi [J]. Proc Natl Acad Sci U S A, 1965, 54(6): 1665-1669. |
中图分类号: | X13 |
开放日期: | 2022-12-17 |