- 无标题文档
查看论文信息

中文题名:

 碱性氨基酸对宰后黄羽肉鸡胸大肌主要糖酵解酶磷酸化规律的影响研究    

姓名:

 王文琪    

学号:

 2021808159    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 095135    

学科名称:

 农学 - 农业 - 食品加工与安全    

学生类型:

 硕士    

学位:

 农业硕士    

学校:

 南京农业大学    

院系:

 食品科技学院    

专业:

 食品加工与安全(专业学位)    

研究方向:

 畜产品加工与质量控制    

第一导师姓名:

 张雅玮    

第一导师单位:

 南京农业大学    

完成日期:

 2023-04-12    

答辩日期:

 2023-05-25    

外文题名:

 Study on the effect of Basic Amino Acids on Phosphorylation Regularity of Major Glycolytic Enzymes from Pectoralis Major Muscles of Post-slaughter Yellow-feathered Broilers    

中文关键词:

 碱性氨基酸 ; 胸大肌 ; 蛋白质磷酸化 ; 糖酵解酶 ; 丙酮酸激酶    

外文关键词:

 Basic amino acids ; Pectoralis major ; Protein phosphorylation ; Glycolytic enzymes ; Pyruvate kinase    

中文摘要:

碱性氨基酸,L-组氨酸(L-histidine, L-His)、L-赖氨酸(L-lysine, L-Lys)和L-精氨酸(L-arginine, L-Arg)因可改善低盐肌肉蛋白功能特性,在肉品减盐保质中受到广泛的关注。近期的研究发现碱性氨基酸在低盐条件下具有调控肌肉蛋白磷酸化的潜力。无氧糖酵解是肌肉宰后的重要活动,多种糖酵解酶能够发生磷酸化反应后改变自身活性,进而影响糖酵解的速率和宰后肌肉的成熟。因此,本研究从蛋白质磷酸化角度出发,以宰后不同时间的黄羽肉鸡胸大肌为研究对象,探究低NaCl下碱性氨基酸预处理诱导的糖酵解酶磷酸化水平与活性的变化规律,建立二者之间的内在联系;明确差异磷酸化修饰位点,在不同磷酸化水平下,深入研究低盐下碱性氨基酸对关键糖酵解酶自身性质的影响规律,为肉品减盐保质及宰后品质改善提供理论基础。
主要研究结果如下:
(1)探究低盐条件下碱性氨基酸对糖酵解酶磷酸化水平及其活性的影响。对宰后1 h的胸大肌肉糜进行0% NaCl、1% NaCl、3% NaCl、1% NaCl+0.06% L-His/L-Lys/L-Arg处理,于宰后0、0.5、1、1.5、2、6、15和24 h测定丙酮酸激酶(pyruvate kinase, PK)、β-烯醇化酶(β-enolase, β-ENO)、甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase, GAPDH)、6-磷酸果糖激酶(6-phosphate fructokinase, PFK)的磷酸化水平和活性。结果表明:低盐条件下,碱性氨基酸对糖酵解酶的磷酸化水平整体上无显著影响,但对活性的影响显著。宰后1.5、2和6 h时,1%NaCl的基础上添加碱性氨基酸处理显著改变酶的磷酸化水平,正向增强酶活。相关性分析的结果显示,PK和GAPDH的磷酸化水平与活性之间均呈负相关,β-ENO和PFK的磷酸化水平与活性之间均呈正相关。
(2)体外验证PK的磷酸化水平与活性的关系,解析低盐下碱性氨基酸对丙酮酸激酶磷酸化的作用规律。PK与三磷酸腺苷(adenosine triphosphate, ATP)溶液、蛋白激酶A(protein kinases A, PKA)、4 ℃预冷的孵育缓冲液按比例混合,1 h后分六组添加0% NaCl、1% NaCl、3% NaCl、1% NaCl+0.06% L-His/L-Lys/L-Arg处理溶液,测定PK的磷酸化水平、活性、二级结构、磷酸化位点和降解。结果表明:体外体系中PK的磷酸化水平与活性呈负相关;碱性氨基酸处理组降低PK的磷酸化水平,增强PK的活性,同时PK的二级结构由有序转向无序,增大PK的降解程度;鉴定出不同处理组能够使不同位点的磷酸化水平发生上调或下调,集中在丝氨酸(serine, Ser)、苏氨酸(threonine, Thr)或酪氨酸(tyrosine, Tyr)的14个差异磷酸化位点,包括Ser22、Ser36、Ser66、Ser76、Ser96、Ser99、Ser126、Ser436、Thr79、Thr94、Thr128、Tyr82、Tyr369、Tyr520。
(3)基于宰后胸大肌主要糖酵解酶的磷酸化,探究低盐条件下碱性氨基酸对宰后胸大肌糖酵解潜力(glycolysis Potential, GP)、剪切力和肌原纤维小片化指数(myofibril fragmentation index, MFI)的影响。对宰后1 h的胸大肌肉糜进行0% NaCl、1% NaCl、3% NaCl、1% NaCl+0.06% L-His/L-Lys/L-Arg处理,于0、0.5、1、1.5、2、6、15和24 h分别测定与能量代谢相关的糖原、葡萄糖、葡萄糖-6-磷酸和乳酸含量,得到GP值,测定MFI指标;相同时间点对整块胸大肌进行相同分组处理,测定剪切力。结果显示:碱性氨基酸处理可以通过正向调节糖酵解酶的磷酸化水平,提高酶的活性,加速糖原代谢,显著降低GP值;宰后成熟期间剪切力先增大后减小,MFI值不断增大,与第二章糖酵解酶的磷酸化水平、活性数据结合分析,表明低盐条件下添加碱性氨基酸处理能够通过调节磷酸化水平增强酶的活性,显著降低宰后胸大肌的剪切力值、增大MFI值,进而改善肉的嫩度。

外文摘要:

The basic amino acids, L-histidine (L-His), L-lysine (L-Lys) and L-arginine (L-Arg), have received much attention for their ability to improve the functional properties of low-salt muscle proteins in meat salt reduction and preservation. Recently, basic amino acids have been found to have the potential to regulate muscle protein phosphorylation under low salt conditions. Anaerobic glycolysis is an important activity in post-mortem muscle, and a variety of glycolytic enzymes are capable of altering their activity following phosphorylation reactions, which in turn affects the rate of glycolysis and post-mortem muscle maturation. Therefore, from the perspective of protein phosphorylation, this study took yellow-feathered broilers pectoralis major muscles at different times after slaughter as the research object, explored the change law of glycolytic enzyme phosphorylation level and activity induced by alkaline amino acid pretreatment under low NaCl, and established the intrinsic relationship between the two. The characteristics of differential phosphorylation modification were clarified, and the influence of basic amino acids on the properties of key glycolytic enzymes under different phosphorylation levels was deeply studied , which provided a theoretical basis for salt reduction and quality improvement of meat products.

The main findings are as follows:

(1) The effect of basic amino acids on the phosphorylation level and activity of glycolytic enzymes under low salt conditions was investigated. The minced pectoralis major meat was treated with 0% NaCl, 1% NaCl, 3% NaCl, 1% NaCl+0.06% L-His/L-Lys/L-Arg grouping for 1 h after slaughter. The phosphorylation levels and activities of pyruvate kinase (PK), β-enolase (β-ENO), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and 6-phosphate fructokinase (PFK) were measured at 0, 0.5, 1, 1.5, 2, 6, 15 and 24 h after slaughter. The results showed that basic amino acids had no significant effect on the overall phosphorylation level of glycolytic enzymes and a significant effect on the activity. At 1.5, 2 and 6 h after slaughter, basic amino acid treatment significantly altered the phosphorylation level of the enzyme and positively enhanced the activity under low salt conditions. Correlation analysis showed that there was negative correlations between phosphorylation levels and activities of PK and GAPDH, and positive correlations between phosphorylation levels and activities of β-ENO and PFK.

(2) The relationship between phosphorylation level and activity of PK was verified in vitro, and the effect of basic amino acids under low salt on pyruvate kinase phosphorylation was analyzed. PK was mixed with adenosine triphosphate (ATP) solution, protein kinases A (PKA), and incubation buffer precooled at 4 °C, and 0% NaCl, 1% NaCl, 3% NaCl, 1% NaCl+0.06% L-His/L-Lys/L-Arg treatment solution were added in six groups after 1 h, and the phosphorylation level, activity, secondary structure, Phosphorylation sites and degradation.The results showed that the phosphorylation level of PK in the in vitro system was negatively correlated with the activity; the basic amino acid treatment group decreased the phosphorylation level of PK and enhanced the activity of PK, while the secondary structure of PK shifted from order to disorder and the degradation of PK increased; different treatment groups were identified to stimulate different phosphorylation sites, resulting in up- or down-regulation of phosphorylation level at different sites, concentrating on serine (Ser) , threonine (Thr) and tyrosine (Tyr) in total Fourteen differential phosphorylation sites were identified, mainly Ser22, Ser36, Ser66, Ser76, Ser96, Ser99, Ser126, Ser436, Thr79, Thr94, Thr128, Tyr82, Tyr369 and Tyr520.

(3) Based on the phosphorylation of the main glycolytic enzymes of the postmortem pectoralis major muscle, the effects of alkaline amino acids on the glycolysis potential (GP), shear force and myofibril fragmentation index (MFI) of the postmortem pectoralis major muscle under low salt conditions were investigated. The round pectoralis major meat was treated with 0% NaCl, 1% NaCl, 3% NaCl, 1% NaCl+0.06% L-His/L-Lys/L-Arg at 1 h after slaughter. The contents of glycogen, glucose, glucose-6-phosphate and lactic acid related to energy metabolism were determined at 0, 0.5, 1, 1.5, 2, 6, 15 and 24 h respectively, and the GP value was obtained and the MFI index was measured. The whole pectoralis major muscle was grouped in the same time point to measure the shear force.The results showed that the basic amino acid treatment could increasing the activity of glycolysis enzymes by positively regulating phosphorylation levels , accelerated glycogen metabolism and significantly reduced the GP; the shear force increased and then decreased during post-slaughter maturation, and the MFI values increased continuously. The shear force and MFI values of pectoralis majors were increased, which in turn improved the tenderness of the meat.

参考文献:

[1] 摆玉蔷. 蛋白质磷酸化对肉羊宰后糖原磷酸化酶活性的调节机制[D]. 北京: 中国农业科学院, 2020.

[2] 曹清明, 王蔚婕, 张琳, 等. 中国居民平衡膳食模式的践行——《中国居民膳食指南(2022)》解读[J]. 食品与机械, 2022, 38(6): 22–29.

[3] 曹云刚, 梁光灿, 张鑫, 等. 碱性氨基酸调控肌原纤维蛋白加工性能及肉品品质研究进展[J]. 食品科学, 2022, 43(21): 341–348.

[4] 陈骋, 郭雨轩, 师希雄, 等. HIF 1α作用下宰后成熟初期牛肉糖酵解能力研究[J]. 农业机械学报, 2022, 53(4): 403–411.

[5] 陈立娟. 羊肉嫩度的磷酸化蛋白质组分析[D]. 北京: 中国农业科学院, 2015.

[6] 陈武东, 杜险峰. 肉类嫩度的影响因素及盐类嫩化牛肉技术研究进展[J]. 中国调味品, 2021, 46(6): 192–195.

[7] 陈霞, 罗良煌. 蛋白质翻译后修饰简介[J]. 生物学教学, 2017, 42(2): 70–72.

[8] 杜曼婷. 蛋白质磷酸化介导的μ-钙蛋白酶活性变化机理[D]. 北京: 中国农业科学院, 2018.

[9] 方芮, 朱宗帅, 郭秀云, 等. L-赖氨酸对鸡腿肉肌原纤维蛋白磷酸化的影响[J]. 食品科学, 2020, 41(20): 1–6.

[10] 方芮. L-赖氨酸和L-组氨酸对鸡肉蛋白质宰后磷酸化的影响[D]. 南京: 南京农业大学, 2020.

[11] 付国良, 黄晓红. 甘油醛-3-磷酸脱氢酶功能的研究进展[J]. 生物物理学报, 2013, 29(3): 181–191.

[12] 郭谦, 沈清武, 罗洁. 畜禽宰后肌肉能量代谢与肉品质研究进展[J]. 食品工业科技, 2020, 41(9): 357–361.

[13] 胡博, 辛可启, 余群力, 等. 脯氨酰羟化酶对宰后牦牛肉糖酵解及肉品质的影响[J]. 食品科学, 2022, 43(18): 9–15.

[14] 黄宇菲. 烯醇化酶在模式生物中的功能研究进展[J]. 冶金与材料, 2019, 39(4): 15–17.

[15] 李斌. 浅谈肉类加工的腌制工艺[J]. 肉类工业, 2016(3): 8-10+13.

[16] 李加慧, 狄雨晗, 王文琪, 等. 基于宰后蛋白质磷酸化研究L-组氨酸和L-赖氨酸对鸡胸肉加工特性的影响[J]. 肉类研究, 2022, 36(7): 20–26.

[17] 李蒙. 蛋白质磷酸化调控肉色稳定性的作用机制[D]. 北京: 中国农业科学院, 2017.

[18] 李升升. 基于蛋白质组学的牦牛平滑肌嫩度形成机制研究[D]. 兰州: 甘肃农业大学, 2019.

[19] 李铮, 李欣, 杜曼婷, 等. 肌原纤维蛋白磷酸化对其被μ-钙蛋白酶降解的影响[J]. 食品科学, 2017, 38(15): 1–6.

[20] 刘世欣, 张雅玮, 郭秀云, 等. 肉制品绿色制造——低钠干腌肉制品研究进展[J]. 肉类研究, 2020, 34(3): 82–87.

[21] 刘云龙, 陈绍森, 朱文斌, 等. M2型丙酮酸激酶对乳腺癌评价标准研究[J]. 中国标准化, 2023(4): 253–255.

[22] 罗欣, 周光宏. 电刺激和延迟冷却对牛肉食用品质的影响[J]. 中国农业科学, 2008(1): 188–194.

[23] 马天怡, 张唯唯, 何振东, 等. 碱性氨基酸改造食品蛋白质功能性研究进展[J]. 精细化工, 2021, 38(2): 294–305.

[24] 马晓冰, 苏琳, 林在琼, 等. 不同品种肉羊肌肉的糖酵解潜力及其与肉品质的相关性[J]. 食品科学, 2015, 36(15): 1–4.

[25] 马晓丽, 黄雅萍, 张龙涛, 等. 肉制品加工中的低钠策略研究[J]. 食品与发酵工业, 2019, 45(14): 256–262.

[26] 马旭华, 杨波, 李亚蕾, 等. 宰后成熟期间结构蛋白对秦川牛肉嫩度的影响[J]. 食品科学, 2022, 43(17): 199–207.

[27] 任驰, 侯成立, 李欣, 等. 温度、pH值对离体模型中肌原纤维蛋白去磷酸化反应的影响[J]. 食品科学, 2019, 40(16): 1–7.

[28] 阮班军, 代鹏, 王伟, 等. 蛋白质翻译后修饰研究进展[J]. 中国细胞生物学学报, 2014, 36(7): 1027–1037.

[29] 苏正秀. 盐对CRF大鼠的心脏磷酸化蛋白质组及OVLT内RAS的影响[D]. 广州: 南方医科大学, 2013.

[30] 孙天利. 冰温保鲜技术对牛肉品质的影响研究[D]. 沈阳: 沈阳农业大学, 2013.

[31] 孙圳, 杨方威, 李侠, 等. ATR-FTIR分析冻结—解冻后的牛肉蛋白二级结构变化[J]. 光谱学与光谱分析, 2016, 36(11): 3542–3546.

[32] 王双双, 张彤帅, 王丹丹, 等. 高盐饮食加重脑缺血损伤机制[J]. 哈尔滨医科大学学报, 2017, 51(2): 95-98+103.

[33] 王文琪, 张雅玮, 李加慧, 等. 蛋白质磷酸化对宰后肉品质影响研究进展[J]. 食品科学, 2023, 44(09): 221-230.

[34] 王耀松, 马天怡, 胡荣蓉, 等. L-组氨酸修饰乳清蛋白结构及其热诱导凝胶特性[J]. 食品科学, 2021, 42(6): 16–23.

[35] 王耀松, 马天怡, 张唯唯, 等. L-精氨酸/L-赖氨酸对乳清蛋白凝胶质构和持水性的影响[J]. 食品与发酵工业, 2020, 46(17): 46–53.

[36] 魏燕超, 刘满顺, 刘永峰. 宰后成熟过程中羊肉食用品质及蛋白稳定性的变化研究[J]. 食品与发酵工业, 2018, 44(6): 205–210.

[37] 辛建增, 李铮, 李欣, 等. 甘油醛-3-磷酸对羊肉色泽稳定性和高铁肌红蛋白还原的影响[J]. 食品科学, 2018, 39(16): 112–117.

[38] 杨媛媛, 李敬, 赵青余, 等. 猪肌肉糖原酵解潜力的影响因素及其营养调控研究进展[J]. 中国畜牧杂志, 2019, 55(11): 8–15.

[39] 尹敬, 任晓镤, 钱烨, 等. 含KCl、氨基酸的低钠盐替代食盐对风干草鱼加工过程中理化特性的影响[J]. 食品工业科技, 2019, 40(3): 12-19+24.

[40] 禹淞文, 李清明. 甘油醛-3-磷酸脱氢酶的应用进展[J]. 农产品加工(学刊), 2014(9): 51–53.

[41] 张彩霞, 王振宇, 李铮, 等. 腌制温度对羊肉蛋白质磷酸化水平的影响[J]. 现代食品科技, 2016, 32(11): 215–221.

[42] 张道静, 周存六. L-精氨酸和L-赖氨酸在肉及肉制品中的应用研究进展[J]. 肉类研究, 2020, 34(6): 96–102.

[43] 张德权, 惠腾, 王振宇. 我国肉品加工科技现状及趋势[J]. 肉类研究, 2020, 34(1): 1–8.

[44] 张蒙蒙, 罗欣, 张一敏, 等. 钙盐对肉与肉制品肉色的影响及其机理研究进展[J]. 食品科学, 2019, 40(23): 327–333.

[45] 张诗泉, 刘永峰, 葛鑫禹, 等. 鸭肉宰后成熟过程中食用品质、营养品质及嫩度变化研究[J/OL]. 食品与发酵工业: 1-10 [2023-04-06]. DOI:10.13995/j.cnki.11-1802/ts.032891.

[46] 张爽, 张楠, 朱良齐, 等. 宰后早期猪肉、牛肉和鸡肉中能量代谢及蛋白质磷酸化[J]. 食品科学, 2017, 38(9): 72–78.

[47] 张熙桐, 关博元, 孔繁华, 等. 人乳、牛乳、羊乳中乳清部分氨基酸组成及乳清蛋白中蛋白质二级结构的对比[J]. 食品科学, 2017, 38(24): 107–112.

[48] 张艳, 李欣, 李铮, 等. 冰温贮藏对羊肉中蛋白质磷酸化水平的影响[J]. 中国农业科学, 2016, 49(22): 4429–4440.

[49] 张银银. 外源性L-精氨酸和L-赖氨酸对卤鸡胸肉嫩度的影响及机理研究[D]. 合肥: 合肥工业大学, 2020.

[50] 赵保平, 杨金增. 猪肌肉组织中糖原酵解酶活性和PSE肉的相关性[J]. 华中农业大学学报, 1993(5): 482–484.

[51] 赵玉强, 陈鑫, 李清春, 等. 大白猪ENO3基因多态性及其与生长性状的关联分析[J]. 中国畜牧兽医, 2022, 49(1): 188–196.

[52] Abulikemu B, Abudoukere P, Rouziaji, et al. Analysis of quality characteristics of lamb from different anatomical locations of Bashbay sheep[J]. Xinjiang Agricultural Sciences, 2012, 49(9): 1734–1741.

[53] Aljarbou W A, England E M, Velleman S G, et al. Phosphorylation state of pyruvate dehydrogenase and metabolite levels in turkey skeletal muscle in normal and pale, soft, exudative meats[J]. British Poultry Science, 2021, 62(3): 379–386.

[54] Apaoblaza A, Strobel P, Ramírez-Reveco A, et al. Effect of season, supplementation and fasting on glycolytic potential and activity of AMP-activated protein kinase, glycogen phosphorylase and glycogen debranching enzyme in grass-fed steers as determined in Longissimus lumborum muscle[J]. Livestock Science, 2017, 202: 101–108.

[55] Baba T, Kobayashi H, Kawasaki H, et al. Glyceraldehyde-3-phosphate dehydrogenase interacts with phosphorylated Akt resulting from increased blood glucose in rat cardiac muscle[J]. FEBS Letters, 2010, 584(13): 2796–2800.

[56] Bai Y Q, Li X, Zhang D Q, et al. Role of phosphorylation on characteristics of glycogen phosphorylase in lamb with different glycolytic rates post-mortem[J]. Meat Science, 2020, 164: 108096.

[57] Bell R A, Storey K B. P06: Posttranslational modification of glyceraldehyde-3-phosphate dehydrogenase from a hibernating mammal: Insight into cold-adaptation and structural diversity of a housekeeping enzyme[J]. Cryobiology, 2014, 69(1): 196–197.

[58] Bolten K E, Marsh A E, Reed S M, et al. Sarcocystis neurona: Molecular characterization of enolase domain I region and a comparison to other protozoa[J]. Experimental Parasitology, 2008, 120(1): 108–112.

[59] Cai G Z, Callaci T P, Luther M A, et al. Regulation of rabbit muscle phosphofructokinase by phosphorylation[J]. Biophysical Chemistry, 1997, 64(1): 199–209.

[60] Canto A C V C S, Costa-Lima B R C, Suman S P, et al. Color attributes and oxidative stability of longissimus lumborum and psoas major muscles from Nellore bulls[J]. Meat Science, 2016, 121: 19–26.

[61] Cao L C, Wang Z Y, Zhang D Q, et al. Phosphorylation of myosin regulatory light chain at Ser17 regulates actomyosin dissociation[J]. Food Chemistry, 2021, 356: 129655.

[62] Chauhan S S, England E M. Postmortem glycolysis and glycogenolysis: insights from species comparisons[J]. Meat Science, 2018, 144: 118–126.

[63] Chen L, Bai Y Q, Everaert N, et al. Effects of protein phosphorylation on glycolysis through the regulation of enzyme activity in ovine muscle[J]. Food Chemistry, 2019a, 293: 537–544.

[64] Chen L, Chai Y W, Luo J, et al. Apoptotic changes and myofibrils degradation in post-mortem chicken muscles by ultrasonic processing[J]. LWT - Food Science and Technology, 2021, 142: 110985.

[65] Chen L, Li Z, Everaert N, et al. Quantitative phosphoproteomic analysis of ovine muscle with different postmortem glycolytic rates[J]. Food Chemistry, 2019b, 280: 203–209.

[66] Chen L J, Li X, Ni N, et al. Phosphorylation of myofibrillar proteins in post-mortem ovine muscle with different tenderness[J]. Journal of the Science of Food and Agriculture, 2016, 96(5): 1474–1483.

[67] Culler R D, Jr F C P, Smith G C, et al. Relationship of Myofibril Fragmentation Index to Certain Chemical, Physical and Sensory Characteristics of Bovine Longissimus Muscle[J]. Journal of Food Science, 1978, 43(4): 1177–1180.

[68] D’Alessandro A, Marrocco C, Rinalducci S, et al. Chianina beef tenderness investigated through integrated Omics[J]. Journal of Proteomics, 2012, 75(14): 4381–4398.

[69] Dang D S, Buhler J F, Thornton K J, et al. Myosin heavy chain isoform and metabolic profile differ in beef steaks varying in tenderness[J]. Meat Science, 2020, 170: 108266.

[70] Doumit M E, Bates R O. Regulation of pork water holding capacity, color, and tenderness by protein phosphorylation[J]. Pork Quality, 2000, 1(63): 17–22.

[71] Du M T, Li X, Li Z, et al. Effects of phosphorylation on μ-calpain activity at different incubation temperature[J]. Food Research International, 2017, 100: 318–324.

[72] England E M, Matarneh S K, Oliver E M, et al. Excess glycogen does not resolve high ultimate pH of oxidative muscle[J]. Meat Science, 2016, 114: 95–102.

[73] Erlichman J, Rubin C S, Rosen O M. Physical Properties of a Purified Cyclic Adenosine 3′:5′-Monophosphate-dependent Protein Kinase from Bovine Heart Muscle[J]. Journal of Biological Chemistry, 1973, 248(21): 7607–7609.

[74] Fernie A R, Carrari F, Sweetlove L J. Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport[J]. Current Opinion in Plant Biology, 2004, 7(3): 254–261.

[75] Franco D, Mato A, Salgado F J, et al. Tackling proteome changes in the longissimus thoracis bovine muscle in response to pre-slaughter stress[J]. Journal of Proteomics, 2015, 122: 73–85.

[76] Gao X, Li X, Li Z, et al. Dephosphorylation of myosin regulatory light chain modulates actin-myosin interaction adverse to meat tenderness[J]. International Journal of Food Science & Technology, 2017, 52(6): 1400–1407.

[77] Geesink G H, Taylor R G, Bekhit A E D, et al. Evidence against the non-enzymatic calcium theory of tenderization[J]. Meat Science, 2001, 59(4): 417–422.

[78] Grant M M. Pyruvate Kinase, Inflammation and Periodontal Disease: 7[J]. Pathogens, 2021, 10(7): 784.

[79] Graves J D, Krebs E G. Protein Phosphorylation and Signal Transduction[J]. Pharmacology & Therapeutics, 1999, 82(2–3): 111–121.

[80] Guo X Y, Chen S A, Cao J Y, et al. Hydrolysis and oxidation of protein and lipids in dry-salted grass carp ( Ctenopharyngodon idella ) as affected by partial substitution of NaCl with KCl and amino acids[J]. Royal Society of Chemistry Advances, 2019, 9(68): 39545–39560.

[81] Guo X Y, Gao F, Zhang Y W, et al. Effect of l-histidine and l-lysine on the properties of oil-in-water emulsions stabilized by porcine myofibrillar proteins at low/high ionic strength[J]. LWT - Food Science and Technology, 2021, 141: 110883.

[82] Guo X Y, Peng Z Q, Zhang Y W, et al. The solubility and conformational characteristics of porcine myosin as affected by the presence of l-lysine and l-histidine[J]. Food Chemistry, 2015, 170: 212–217.

[83] Hammelman J E, Bowker B C, Grant A L, et al. Early postmortem electrical stimulation simulates PSE pork development[J]. Meat Science, 2003, 63(1): 69–77.

[84] Han J, Zhao Z, Zhang N, et al. Transcriptional dysregulation of TRIM29 promotes colorectal cancer carcinogenesis via pyruvate kinase-mediated glucose metabolism[J]. Aging, 2021, 13(4): 5034–5054.

[85] Hawley S A, Pan D A, Mustard K J, et al. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase[J]. Cell Metabolism, 2005, 2(1): 9–19.

[86] Hitosugi T, Kang S, Vander Heiden M G, et al. Tyrosine Phosphorylation Inhibits PKM2 to Promote the Warburg Effect and Tumor Growth[J]. Science Signaling, 2009, 2(97).

[87] Huang H G, Larsen M R, Karlsson A H, et al. Gel-based phosphoproteomics analysis of sarcoplasmic proteins in postmortem porcine muscle with pH decline rate and time differences[J]. PROTEOMICS, 2011, 11(20): 4063–4076.

[88] Huang H G, Larsen M R, Lametsch R. Changes in phosphorylation of myofibrillar proteins during postmortem development of porcine muscle[J]. Food Chemistry, 2012, 134(4): 1999–2006.

[89] Huang H G, Larsen M R, Palmisano G, et al. Quantitative phosphoproteomic analysis of porcine muscle within 24 h postmortem[J]. Journal of Proteomics, 2014, 106: 125–139.

[90] Jin X, Wang L S, Xia L, et al. Hyper-phosphorylation of α-enolase in hypertrophied left ventricle of spontaneously hypertensive rat[J]. Biochemical and Biophysical Research Communications, 2008, 371(4): 804–809.

[91] Joseph P, Suman S P, Rentfrow G, et al. Proteomics of Muscle-Specific Beef Color Stability[J]. Journal of Agricultural and Food Chemistry, 2012, 60(12): 3196–3203.

[92] Kim H W, Hwang K E, Song D H, et al. Effect of Pre-rigor Salting Levels on Physicochemical and Textural Properties of Chicken Breast Muscles[J]. Korean Journal for Food Science of Animal Resources, 2015, 35(5): 577–584.

[93] Krupa A, Preethi G, Srinivasan N. Structural Modes of Stabilization of Permissive Phosphorylation Sites in Protein Kinases: Distinct Strategies in Ser/Thr and Tyr Kinases[J]. Journal of Molecular Biology, 2004, 339(5): 1025–1039.

[94] Li C B, Li J, Zhou G H, et al. Electrical stimulation affects metabolic enzyme phosphorylation, protease activation, and meat tenderization in beef1[J]. Journal of Animal Science, 2012, 90(5): 1638–1649.

[95] Li C B, Zhou G H, Xu X L, et al. Phosphoproteome analysis of sarcoplasmic and myofibrillar proteins in bovine longissimus muscle in response to postmortem electrical stimulation[J]. Food Chemistry, 2015, 175: 197–202.

[96] Li J H, Chen H S, Guo X Y, et al. Changes in phosphorylation of chicken breast muscle in response to L-histidine introduction under low-NaCl conditions[J]. Cyta-Journal of Food, 2021, 19(1): 579–587.

[97] Li M, Li X, Xin J, et al. Effects of protein phosphorylation on color stability of ground meat[J]. Food Chemistry, 2017, 219: 304–310.

[98] Li X, Chen L J, He F, et al. A comparative analysis of phosphoproteome in ovine muscle at early postmortem in relationship to tenderness[J]. Journal of the Science of Food and Agriculture, 2017, 97(13): 4571–4579.

[99] Li X, Fang T, Zong M H, et al. Phosphorproteome Changes of Myofibrillar Proteins at Early Post-mortem Time in Relation to Pork Quality As Affected by Season[J]. Journal of Agricultural and Food Chemistry, 2015, 63(47): 10287–10294.

[100] Li Z, Li M, Du M T, et al. Dephosphorylation enhances postmortem degradation of myofibrillar proteins[J]. Food Chemistry, 2018, 245: 233–239.

[101] Liu M S, Wei Y C, Li X, et al. Quantitative phosphoproteomic analysis of caprine muscle with high and low meat quality[J]. Meat Science, 2018, 141: 103–111.

[102] Lomiwes D, Farouk M M, Wiklund E, et al. Small heat shock proteins and their role in meat tenderness: A review[J]. Meat Science, 2014, 96(1): 26–40.

[103] Lv L, Li D, Zhao D, et al. Acetylation Targets the M2 Isoform of Pyruvate Kinase for Degradation through Chaperone-Mediated Autophagy and Promotes Tumor Growth[J]. Molecular Cell, 2011, 42(6): 719–730.

[104] Mahmood S, Turchinsky N, Paradis F, et al. Proteomics of dark cutting longissimus thoracis muscle from heifer and steer carcasses[J]. Meat Science, 2018, 137: 47–57.

[105] Marsin A S, Bertrand L, Rider M H, et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia[J]. Current Biology, 2000, 10(20): 1247–1255.

[106] Matarneh S K, Yen C-N, Elgin J M, et al. Phosphofructokinase and mitochondria partially explain the high ultimate pH of broiler pectoralis major muscle[J]. Poultry Science, 2018, 97(5): 1808–1817.

[107] Mennecke B E, Townsend A M, Hayes D J, et al. A study of the factors that influence consumer attitudes toward beef products using the conjoint market analysis tool1[J]. Journal of Animal Science, 2007, 85(10): 2639–2659.

[108] Mente A, O’Donnell M, Rangarajan S, et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community-level prospective epidemiological cohort study[J]. The Lancet, 2018, 392(10146): 496–506.

[109] Monin G, Sellier P. Pork of low technological quality with a normal rate of muscle pH fall in the immediate post-mortem period: The case of the Hampshire breed[J]. Meat Science, 1985, 13(1): 49–63.

[110] O’Quinn T G, Legako J F, Brooks J C, et al. Evaluation of the contribution of tenderness, juiciness, and flavor to the overall consumer beef eating experience1[J]. Translational Animal Science, 2018, 2(1): 26–36.

[111] Pallast S, Arai K, Pekcec A, et al. Increased nuclear apoptosis-inducing factor after transient focal ischemia: a 12/15-lipoxygenase-dependent organelle damage pathway[J]. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 2010, 30(6): 1157–1167.

[112] Piattoni C V, Ferrero D M L, Dellaferrera I, et al. Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase Is Phosphorylated during Seed Development[J]. Frontiers in Plant Science, 2017, 8.

[113] Plaxton W C. Leucoplast Pyruvate Kinase from Developing Castor Oil Seeds: Characterization of the Enzyme’s Degradation by a Cysteine Endopeptidase[J]. Plant Physiology, 1991, 97(4): 1334–1338.

[114] Pomponio L, Ertbjerg P, Karlsson A H, et al. Influence of early pH decline on calpain activity in porcine muscle[J]. Meat Science, 2010, 85(1): 110–114.

[115] Rao R S P, Møller I M. Large-scale analysis of phosphorylation site occupancy in eukaryotic proteins[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2012, 1824(3): 405–412.

[116] Reiss N, Kanety H, Schlessinger J. Five enzymes of the glycolytic pathway serve as substrates for purified epidermal-growth-factor-receptor kinase[J]. Biochemical Journal, 1986, 239(3): 691–697.

[117] Rhoades R D, King D A, Jenschke B E, et al. Postmortem regulation of glycolysis by 6-phosphofructokinase in bovine M. Sternocephalicus pars mandibularis[J]. Meat Science, 2005, 70(4): 621–626.

[118] Sale E M, White M F, Kahn C R. Phosphorylation of glycolytic and gluconeogenic enzymes by the insulin receptor kinase[J]. Journal of Cellular Biochemistry, 1987, 33(1): 15–26.

[119] Sasaki K, Motoyama M, Yasuda J, et al. Beef texture characterization using internationally established texture vocabularies in ISO5492:1992: Differences among four different end-point temperatures in three muscles of Holstein steers[J]. Meat Science, 2010, 86(2): 422–429.

[120] Schwägele F., Buesa P L L, Honikel K O. Enzymological investigations on the causes for the PSE-syndrome, II. Comparative studies on glycogen phosphorylase from pig muscles[J]. Meat Science, 1996a, 44(1–2): 41–53.

[121] Schwägele F., Haschke C, Honikel K O, et al. Enzymological investigations on the causes for the PSE-syndrome, I. Comparative studies on pyruvate kinase from PSE- and normal pig muscles[J]. Meat Science, 1996b, 44(1–2): 27–40.

[122] Schwägele F, Haschke C, Krauss G, et al. Comparative studies of pyruvate kinase from PSE and normal pig muscles[J]. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 1996, 203(1): 14–20.

[123] Shen Q W, Underwood K R, Means W J, et al. The halothane gene, energy metabolism, adenosine monophosphate-activated protein kinase, and glycolysis in postmortem pig longissimus dorsi muscle1[J]. Journal of Animal Science, 2007, 85(4): 1054–1061.

[124] Silva L H P, Rodrigues R T S, Assis D E F, et al. Explaining meat quality of bulls and steers by differential proteome and phosphoproteome analysis of skeletal muscle[J]. Journal of Proteomics, 2019, 199: 51–66.

[125] Sola-Penna M, Da Silva D, Coelho W S, et al. Regulation of Mammalian Muscle Type 6-Phosphofructo-1-kinase and Its Implication for the Control of the Metabolism[J]. Iubmb Life, 2010, 62(11): 791–796.

[126] Tindall A J, Reinhart G D. Kinetic Characterization of Human Liver Phosphofructokinase[J]. Biophysical Journal, 2016, 110(3, Supplement 1): 398a.

[127] Tomasevic I, Djekic I, Font-i-Furnols M, et al. Recent advances in meat color research[J]. Current Opinion in Food Science, 2021, 41: 81–87.

[128] Van Laack R L, Kauffman R G. Glycolytic potential of red, soft, exudative pork longissimus muscle.[J]. Journal of Animal Science, 1999, 77(11): 2971.

[129] Vidal V A S, Santana J B, Paglarini C S, et al. Adding lysine and yeast extract improves sensory properties of low sodium salted meat[J]. Meat Science, 2020, 159: 107911.

[130] Wang Z Y, He F, Rao W L, et al. Proteomic analysis of goat Longissimus dorsi muscles with different drip loss values related to meat quality traits[J]. Food Science and Biotechnology, 2016, 25(2): 425–431.

[131] Wang Y, Li X, Li Z, et al. Phosphorylation of sarcoplasmic and myofibrillar proteins in three ovine muscles during postmortem ageing[J]. Journal of Integrative Agriculture, 2019, 18(7): 1643–1651.

[132] Wang Z Y, Zhang C X, Li Z, et al. Comparative analysis of muscle phosphoproteome induced by salt curing[J]. Meat Science, 2017, 133: 19–25.

[133] Warner R D, Wheeler T L, Ha M, et al. Meat tenderness: advances in biology, biochemistry, molecular mechanisms and new technologies[J]. Meat Science, 2022, 185: 108657.

[134] Xin J Z, Li Z, Li X, et al. Meat Color Stability of Ovine Muscles Is Related to Glycolytic Dehydrogenase Activities: Meat color stability of ovine muscles[J]. Journal of Food Science, 2018, 83(10): 2432–2438.

[135] Xiong G Y, Fu X Y, Pan D, et al. Influence of ultrasound-assisted sodium bicarbonate marination on the curing efficiency of chicken breast meat[J]. Ultrasonics Sonochemistry, 2020, 60: 104808.

[136] Xiong Y L, Noel D C, Moody W G. Textural and Sensory Properties of Low-Fat Beef Sausages with Added Water and Polysaccharides as Affected by pH and Salt[J]. Journal of Food Science, 1999, 64(3): 550–554.

[137] Zeng X M, Li X, Li C B.Seasons affect the phosphorylation of pork sarcoplasmic proteins related to meat quality[J]. Animal Bioscience, 2021, 35(1): 96–104.

[138] Zhang B, Liu J Y. Serine phosphorylation of the cotton cytosolic pyruvate kinase GhPK6 decreases its stability and activity[J]. FEBS Open Bio, 2017, 7(3): 358–366.

[139] Zhang C X, Wang Z Y, Li Z, et al. Phosphoproteomic profiling of myofibrillar and sarcoplasmic proteins of muscle in response to salting[J]. Food Science and Biotechnology, 2016, 25(4): 993–1001.

[140] Zhang D J, Li H J, Emara A M, et al. Study on the mechanism of KCl replacement of NaCl on the water retention of salted pork[J]. Food Chemistry, 2020, 332: 127414.

[141] Zhang L, Yue H Y, Zhang H J, et al. Erratum to “Transport stress in broilers: I. Blood metabolism, glycolytic potential, and meat quality” (Poult. Sci. 88:2033–2041)[J]. Poultry Science, 2009, 88(11): 2468.

[142] Zhang T F, Wang S W, Lin Y, et al. Acetylation Negatively Regulates Glycogen Phosphorylase by Recruiting Protein Phosphatase 1[J]. Cell Metabolism, 2012, 15(1): 75–87.

[143] Zhang Y W, Guo X Y, Liu T T, et al. Effects of substitution of NaCl with KCl, L-histidine, and L-lysine on instrumental quality attributes of cured and cooked pork loin[J]. CyTA - Journal of Food, 2018, 16(1): 877–883.

[144] Zhang Y W, Guo X Y, Muneer Ahmed J, et al. Influence of l-histidine and l-lysine on the phosphorylation of myofibrillar and sarcoplasmic proteins from chicken breast in response to salting[J]. LWT - Food Science and Technology, 2020, 133: 110125.

[145] Zhang Y W, Guo X Y, Peng Z Q, et al. A review of recent progress in reducing NaCl content in meat and fish products using basic amino acids[J]. Trends in Food Science & Technology, 2022, 119: 215–226.

[146] Zhang Y W, Jamali M A, Peng Z Q. Influence of salt substitute containing KCl, L-histidine and L-lysine on the secondary structure and gel properties of myosin[J]. CyTA-Journal of Food, 2019, 17(1): 44–50.

[147] Zhang Y W, Wu J J, Jamali M A, et al. Heat-induced gel properties of porcine myosin in a sodium chloride solution containing L-lysine and L-histidine[J]. LWT - Food Science and Technology, 2017, 85: 16–21.

[148] Zhang Y Y, Zhang D J, Huang Y J, et al. L-arginine and L-lysine degrade troponin-T, and L-arginine dissociates actomyosin: Their roles in improving the tenderness of chicken breast[J]. Food Chemistry, 2020, 318: 126516.

[149] Zhu Y J, Lu Y F, Ye T, et al. The Effect of Salt on the Gelling Properties and Protein Phosphorylation of Surimi-Crabmeat Mixed Gels: 1[J]. Gels, 2022, 8(1): 10.

中图分类号:

 TS2    

开放日期:

 2023-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式