- 无标题文档
查看论文信息

中文题名:

 基于AFSM简化重测序的木薯指纹图谱构建    

姓名:

 江思容    

学号:

 2018816137    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085238    

学科名称:

 工学 - 工程 - 生物工程    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 南京农业大学    

院系:

 生命科学学院    

专业:

 生物工程(专业学位)    

研究方向:

 木薯分子育种技术    

第一导师姓名:

 王文泉    

第一导师单位:

 中国热带农业科学院热带生物技术研究所    

第二导师姓名:

 夏志强    

完成日期:

 2020-06-01    

答辩日期:

 2020-06-07    

外文题名:

 Fingerprinting Of Cassava Clones Based On Afsm Simplified Resequencing Technology    

中文关键词:

 木薯 ; AFSM简化重测序 ; SNP分子标记 ; 遗传算法 ; 指纹图谱 ; 品种鉴定    

外文关键词:

 Cassava ; AFSM simplifies resequencing ; SNP molecular marker ; Genetic algorithm ; Fingerprint ; Variety identification    

中文摘要:

木薯原产于巴西,随着现在经济的快速发展,木薯在世界各地的热带及亚热带地区都被广泛种植。目前,在中国的广西,广东,福建,云南,贵州及海南等省均广泛种植。木薯的块根富含淀粉,在我国工业淀粉产业中,木薯淀粉占到市场份额的10%左右,同时是重要的燃料乙醇和绿色化学工业材料。木薯是热带地区低收入农民的主要粮食作物,全球总产量的65%都被用来制作人类食品,木薯粉以及木薯叶则是高能量的饲料原料。木薯淀粉以及木薯干片也可作为制造酒精,柠檬酸,赖氨酸,谷氨酸,木薯蛋白,果糖,葡萄糖等的重要原料,生产的木薯制品在食品,饮料,药品,纺织品,造纸等各个方面都有极大的用途。木薯的工业利用和食用市场广大,我国年综合产值在200亿元人民币,并且保持数倍于产量的进口额度,保持和发展木薯产业意义重大。在木薯的科学研究和品种推广利用中,涉及万余份种质资源的保存、管理和性状鉴定评价,是木薯产业利用的物质基础,随着木薯育种和新品种选育工作的迅速发展,培育出了许多优良品种,构建基于SNP标记技术的指纹图谱有助于木薯遗传资源的进一步挖掘和利用,也有利于品种的登记保护,品种更新和品种资源的充分利用,与此同时,对于木薯品种特异性和真实性鉴别、种子纯度鉴定具有重要意义。

本研究将采用自有专利技术的AFSM简化重测序方法,获取544份木薯种质材料的SNP标记,经过一系列算法筛选以及群体结构分析,最终挑选出100条核心SNP位点来构建木薯品种指纹图谱, 期望应用于木薯品种特异性和真实性鉴别、种子纯度鉴定等,为木薯遗传资源的进一步挖掘和利用,品种的登记保护提供新的技术依据。

其主要研究结果如下:

  1. 针对544份木薯样本,依照AFSM简化重测序建库要求,分别构建两个EcoRI-MspI和EcoRI-HpaII文库,经过最后的单克隆检测合格后,将对应的EcoRI-MspI和EcoRI-HpaII文库混合成2个测序文库。经过对两个文库的双端测序,总共获得了650G的数据。经过统计我们选择了1641026个变异位点,相对均匀的分布在木薯的18条染色体上。
  2. 从原始的1641026个SNP位点中,通过两步过滤,去除缺失率过高以及单一变异率过高的SNP,最终保留了6886条SNP位点作为指纹图谱备选位点。
  3. 经过遗传算法对6886条备选SNP计算,最终得到了在染色体上分布均匀的100条SNP组成的指纹图谱库去区分所有的544个样本。
  4. 经检测,100个SNP变异位点能有效区分544份样品,并且通过计算遗传距离进行聚类分析,可以发现,相似来源的样本可以根据这100条SNP的信息聚类到一起,说明根据遗传算法计算得到的指纹图谱真实有效。
  5. 根据本研究的AFSM测序及遗传算法计算指纹图谱的方法,我们对284份马铃薯成功构建了由100条SNP构成的马铃薯指纹图谱,验证了该指纹图谱技术的实用性。
外文摘要:

Cassava originated from Brazil. With the rapid economic development, cassava is widely cultivated in tropical and subtropical regions around the world. At present, it is widely planted in Guangxi, Guangdong, Fujian, Yunnan, Guizhou and Hainan provinces in China. Cassava storage roots are rich in starch. In China's industrial starch market, cassava starch shared about 10%and also is an important fuel ethanol and green chemical industrial material. Cassava is the main food crop for low-income farmers in tropical areas. 65% of the world's total output is used to make human food, while cassava flour and cassava leaves are high-energy feed materials. Cassava starch and dried cassava slices can also be used as important raw materials for producing alcohol, citric acid, lysine, glutamic acid, tapioca protein, fructose, glucose, etc. The produced cassava products have great applications in various aspects such as food, beverage, medicine, textiles, paper making, etc. Cassava has a vast industrial use and food market. China's annual comprehensive output value is 20 billion yuan, and the import quota is several times the output. It is of great significance to maintain and develop the cassava industry. In the scientific research and variety promotion and utilization of cassava, it involves the preservation, management and character identification and evaluation of more than ten thousand germplasm resources, which is the material basis of cassava industrial utilization. With the rapid development of cassava breeding and new variety breeding, many excellent varieties have been cultivated. The construction of fingerprint based on SNP marker technology is helpful for further excavation and utilization of cassava genetic resources, as well as for the registration and protection of varieties, variety renewal and full utilization of variety resources. At the same time, it is of great significance for cassava variety specificity and authenticity identification and seed purity identification.

In this study, AFSM simplified resequencing method with proprietary technology will be adopted to obtain SNP markers of 544 cassava germplasm materials. After a series of algorithm screening and population structure analysis, 100 core SNP and INDEL loci were finally selected to construct cassava variety fingerprint. It is expected to be applied to cassava variety specificity and authenticity identification, seed purity identification, etc., that will provide new technical basis for further mining and utilization of cassava genetic resources and variety registration and protection. The main research results are as follows:

1. For 544 cassava samples, two EcoRI-MspI and EcoRI-HpaII libraries were respectively constructed according to AFSM simplified resequencing database requirements. After passing the final monoclonal detection, the corresponding EcoRI-MspI and EcoRI-HpaII libraries were mixed into two sequencing libraries. After double-ended sequencing of the two libraries, we obtained 650G of data in total. According to statistics, we selected  a total of 1,641,026 SNP  sites, which are relatively evenly distributed on 8 chromosomes of cassava genome.

2. From the original 1641026 SNP and INDEL sites, SNPs with too high deletion rate and too high single mutation rate were removed through two-step filtration, and 6,886 SNPs and INDELs sites were finally retained to be fingerprint candidate sites.

3. After calculating 6886 candidate SNPs by genetic algorithm, a fingerprint database composed of 100 SNPs and INDELs evenly distributed on chromosomes was finally obtained to distinguish all 544 samples.

4. Through detection, 100 SNPs and INDELs mutation sites can effectively distinguish 544 samples, and through clustering analysis by calculating genetic distance, it can be found that samples from similar sources can be clustered together according to the information of 100 SNPs and INDELs, which shows that the fingerprint calculated according to genetic algorithm is true and effective.

5. According to the same AFSM genotyping method and  the genetic algorithm obtained in this study, by calculating 284 potato SNP sites, we successfully constructed a potato fingerprint consisting of 100 SNPs, which verified the practicability of this fingerprint technique.

参考文献:

[1] 陈新,曾长英,王文泉.木薯分子标记辅助育种技术研究进展[J].分子植物育种,2015,13(08):1890-1894.

[2] 王定发,陈松笔,周汉林,周璐丽,侯冠彧.5种木薯茎叶营养成分比较[J].养殖与饲料,2016(06):48-50.

[3] 李文娟,王世琴,姜成钢,马涛,朱正廷,刁其玉.体外法评定南方4种经济作物副产品及3种暖季型牧草的营养价值研究[J].畜牧与兽医,2017,49(04):33-39.

[4] 崔艺燕,田志梅,李贞明,马现永.木薯及其副产品的营养价值及在动物生产中的应用[J].中国畜牧兽医,2018,45(08):2135-2146.

[5] Ferraro V, Piccirillo C, Tomlins K, et al.Cassava (Manihot esculenta Crantz) and yam (Dioscoreaspp.) crops and their derived foodstuffs:Safety, security and nutritional value [J].Critical Reviews in Food Science and Nutrition, 2016, 56 (16) :2714-2727.

[6] 杨霞. 采用酶水解物能值估测玉米、玉米DDGS及木薯鸡代谢能的研究[D].中国农业科学院,2016.

[7] Sugiharto S, Yudiarti T, Isroli I.Performances and haematological profile of broilers fed fermented dried cassava (Manihot esculenta Crantz) [J].Tropical Animal Health and Production, 2016, 48:1337-1341.

[8] 唐德富,Iji P,Choct M,汝应俊,宋淑玉,Clarke K L.木薯产品营养成分的分析与比较研究[J].中国畜牧兽医,2014,41(09):74-80.

[9] Saree S, Bunchasak C, Rakangtong C, et al.Comparative effects of corn-based diet and phase-fed cassava-based diet on growth rate, carcass characteristics and lipid profile of meat-type ducks[J]. Asian-Australasian Journal of Animal Sciences, 2017, 30 (6) :843-848.

[10] 魏艳,黄洁,林立铭,罗春芳.木薯块根不同部位的营养成分研究[J].西北农林科技大学学报(自然科学版),2016,44(06):53-61.

[11] 魏艳. 31份木薯种质营养、矿质成分及食味的评价[D].海南大学,2014.

[12] 魏艳,黄洁,许瑞丽,安飞飞.木薯肉与木薯皮营养成分的研究初报[J].热带作物学报,2015,36(03):536-540.

[13] Ravindran V, Cassava leaves as animal feed: potential and limitations. Journal of the Science of Food & Agriculture, 2010, 61 (2):141-150.

[14] Reichwald K A, Petzold P, Koch B R, Downie N, Hartmann S, Pietsch M, Baumgart D, Chalopin M, Felder M, Bens A, Sahm K, Szafranski S, Taudien M, Groth I, Arisi, A, Weise C, Englert M, Insights into Sex Chromosome Evolution and Aging from the Genome of a Short-Lived Fish. Cell, 2015, 163 (6):1527-1538.

[15] Purcell S B, Neale K, Todd-Brown L, Thomas M A R, Ferreira D, Bender J, Maller P,Sklar P I W D, Bakker M J, PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. American Journal of Human Genetics, 2017, 81 (3):559-575.

[16] 张圣奎. 木薯种质资源综合评价及主要农艺性状的全基因组关联分析[D].华中农业大学,2018.

[17] 朱玉贤,李毅.现代分子生物学[M] .第2版.北京:高等教育出版社, 2002.

[18] William J C K, Kubel ik A R, Livak K J.DNA polymorphism ampl ified by arbitrary primers are useful genetic markers[ J] .Nucleic Acids Res, 1990, 18: 6531-6537.

[19] 王志林,赵树进,吴新荣.分子标记技术及其进展[J] .生命的化学, 2001, 21(1): 39-42.

[20] Velappam N, Sondgrass J L, Hakovirta J R.Rapid identification of pathogenic bacteria by single_enzyme amplified fragment length polymorphism analysis[J] . DiagnosticMicrobiology and infections Disease, 2001, 39: 77-83.

[21] 黎裕,贾继增,王天宇.分子标记的种类及其发展[J] .生物技术通报, 1999,15(4): 19-22.

[22] 冯龙仁, 牛安欧.微卫星简单重复序列锚定PCR扩增技术(SSR_PCR)及其在寄生虫基因研究中的应用[J] .实用寄生虫 杂志, 2000, 8(1): 33-34.

[23] 杨昭庆,洪坤学,褚嘉佑.单核苷酸多态性的研究进展[J] .国外医学遗传学分册, 2000,23(1): 4-8.

[24] Baird, N. A., P. D. Etter, T. S. Atwood, M. C. Currey, A. L. Shiver, Z. A. Lewis, E. U. Selker, W. A. Cresko, and E. A. Johnson. Rapid SNP discovery and genetic mapping using sequenced RAD markers. Plos One, 2008, 3 (10):e3376.

[25] Elshire R J J C, Glaubitz Q, Sun J A, Poland K, Kawamoto E S, Buckler S E, A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. Plos One, 2011, 6 (5):e19379.

[26] Peterson B K J N, Weber E H, Kay H S, Fisher H. E, Hoekstra. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. Plos One, 2012, 7 (5):e37135.

[27] Wang S E, Meyer J K, McKay M V,2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Methods, 2012, 9 (8):808-810.

[28] Palaiokostas C S, Ferraresso R, Franch R D, Houston L,Genomic Prediction of Resistance to Pasteurellosis in Gilthead Sea Bream (Sparus aurata) Using 2b-RAD Sequencing. G3, 2016, 6 (11) :3693-3700

[29] 李乐晨,朱国忠,苏秀娟,郭旺珍.适于海岛棉指纹图谱构建的SNP核心位点筛选与评价[J].作物学报,2019,45(05):647-655.

[30] 李志远,于海龙,方智远,杨丽梅,刘玉梅,庄木,吕红豪,张扬勇.甘蓝SNP标记开发及主要品种的DNA指纹图谱构建[J].中国农业科学,2018,51(14):2771-2788.

[31] 魏庆镇,王五宏,胡天华,胡海娇,汪精磊,包崇来.浙茄类型茄子品种DNA指纹图谱构建[J].浙江农业学报,2019,31(11):1863-1870.

[32] 赵仁欣,李森业,郭瑞星,曾新华,文静,马朝芝,沈金雄,涂金星,傅廷栋,易斌.利用SNP芯片构建我国冬油菜参试品种DNA指纹图谱[J].作物学报,2018,44(07):956-965.

[33] Li F G,Ji Z J,Xiu Y K. A SNP-Based Molecular Barcode for Characterization of Common Wheat.[J]. PLoS ONE,2017,11(3)

[34] Holtz J, Olek K, Higuchi M. [Forensic application of DNA fingerprints][J]. Beitr?ge Zur Gerichtlichen Medizin, 1987, 45:5-10.

[35] Azevedo A O N , Azevedo C D D O , Pedro Henrique Araújo Diniz Santos, et al. Selection of legitimate dwarf coconut hybrid seedlings using DNA fingerprinting[J]. Crop Breeding & Applied Biotechnology, 2018, 18(4):409.

[36] Kopp R,Smart L,Maynard C,Tuskan G,Abrahamson L.Predicting with in-family variability in juvenile height growth of Salix based upon similarity among parental AFLP ?ngerprints[J]. Theor. Appl. Genet. 2002, 105, 106–112.

[37] Chen Y H, Jia J H, Li C Y, Rice seed identification by computerized AFLP-DNA fingerprint-ing[J]. Chinese Rice Research Newsletter, 2000(01):4-5.

[38] Qing C Z, Zi F X, Ke Y Z, Construction of DNA Fingerprint Using SSR Marker for Hybrid Rice Cultivars Approved by Hunan Province[J]. Agricultural Biotechnology, 2012(04):9-12+16.

[39] Liu H , Cui J , Ma Y , et al. Application of DNA fingerprint based on SSR in rice adulteration detection and origin traceability[M]Food Hygiene, Agriculture and Animal Science:Proceedings of the 2015 International Conference on Food Hygiene, Agriculture and Animal Science.

[40] Liu H , Cui J , Ma Y , et al. Application of DNA fingerprint based on SSR in rice adulteration detection and origin traceability[C]International Conference on Food Hygiene. 2016.

[41] Dong L, Sun Y H, Zhao K Q; Zhang, J ; Li, XY ; Xun, SH ; Zhang, JT; Wang, SM; Li, Y. Development and Application of EST-SSR Markers for DNA Fingerprinting and Genetic Diversity Analysis of the Main Cultivars of Black Locust (Robinia pseudoacacia L.) in China[J]. FORESTS.2019,10(8):644

[42] Siew G Y, Ng W L, Tan S W, Genetic variation and DNA fingerprinting of durian types in Malaysia using simple sequence repeat (SSR) markers[J]. Peerj, 2018, 6:42-66.

[43] Huang L K,Huang X Y,Hai D,Constructing DNA fingerprinting ofHemarthriacultivars using EST-SSR and SCoT markers[J]. Genetic Resources & Crop Evolution, 2014, 61(6):1047-1055.

[44] Ma L Y, Kong D, Liu H, Wang S Q, Li Y Y, Pang X M, Construction of SSR ?ngerprint on 36 Chinese jujube cultivars[J]. Acta Hortic. Sin. 2012, 39, 647. 8.

[45] Chen C,Zhang X, Cheng F,Zhuang M,Liu Y,Yang L,Zhang Y, Fang Z, Establishment of SSR ?ngerprinting on autumn cabbage hybrids and their parents[J]. Acta Hortic. Sin. 2011, 38, 159-164.

[46] Spindel J,Wright M,Chen C,etal.Bridging the genotyping gap:using genotyping by sequencing (GBS) to add high-density SNP markers and new value totraditional bi-parental mapping and breeding populations[J].The oretical and Applied Genetics,2013,126(11):2699-2716.

[47] Zhou X J,Xia Y L,Ren X P,etal.Construction of a SNP-based genetic link age map in cultivated peanut based on large scale marker development using next-generation double-digest restriction site-associated DNA sequencing(ddRADseq)[J].BMC Genomics,2014,15(351):1-14.

[48] Liu L Z,Qu C M,Wittkop B,etal.Ahigh-density SNP map for accurate mapping of seed fibreQTL in BrassicanapusL.[J].PLoSOne,2013,8(12):e83052.

[49] 王亚琦,孙子淇,郑峥,黄冰艳,董文召,汤丰收,张新友.作物分子标记辅助选择育种的现状与展望[J].江苏农业科学,2018,46(05):6-12.

[50] 齐兰,王文泉,张振文,叶剑秋,李开绵.利用SRAP标记构建18个木薯品种的DNA指纹图谱[J].作物学报,2010,36(10):1642-1648.

[51] 付瑜华,李杰,王海燕,杨子贤,王文泉.木薯商业品种的指纹图谱构建[J].植物遗传资源学报,2007(01):51-55.

[52] 孙俊丽.谈遗传算法[J].办公自动化,2019,24(12):48-49.

[53] KumarM,HusianM,UpretiN,etal.Geneticalgorithm:Reviewandapplication[J].Computer,2010,2(2):451-454.

[54] 宗德才,王康康.一种混合局部搜索算法的遗传算法求解旅行商问题[J].计算机应用与软件,2015,32(03):266-270+305.

[55] Xia, Z., M. Zou, S. Zhang, B. Feng, and W. Wang. AFSM sequencing approach: a simple and rapid method for genome-wide SNP and methylation site discovery and genetic mapping. Scientific Rreport, 2014, 4:7300.

[56] Langmead, B., and S. L. Salzberg. Fast gapped-read alignment with Bowtie 2. Nature Methods,2012, 9 (4):357.

[57] Alexander, D. H., J. Novembre, and K. Lange. K.L.: Fast model-based estimation of ancestry in unrelated individuals. Genome Res, 1997, 19, 1655– 1664.

[58] Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. W. D. Bakker, and M. J. Daly. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. American Journal of Human Genetics, 2017, 81 (3):559-575.

[59] 孔祥彬,张春庆,许子锋.DNA指纹图谱技术在作物品种(系)鉴定与纯度分析中的应用[J].生物技术,2005(04):74-77.

[60] 王忠华.DNA指纹图谱技术及其在作物品种资源中的应用[J].分子植物育种,2006(03):425-430.

[61] Mba, R. E. C., Stephenson, P., Edwards, K., Melzer, S., Nkumbira, J., Gullberg, U., Apel, K., Gale, M., Tohme, J. and Fregene, M. ‘Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: Towards an SSR‐based molecular genetic map of cassava’, Theoretical Applied Genetics, Vol. 102, 2001, pp. 21-31.

[62] Hurtado, P., Olsen, K. M., Buitrago, C., Ospina, C., Marin, J. A., Duque, M. C., de Vicente, M. C., Wongtiem, P., Wenzl, P., Killian, A., Adekele, M. and Fregene, M. A. ‘Comparison of simple sequence repeat (SSR) and diversity array technology (DArT) markers for assessing genetic diversity in cassava (Manihot esculenta Crantz)’, Plant Genetic Resources: Characterization and Utilization, Vol. 6, 2008, pp. 208-214.

[63] Victorino O. Floro IV ,Ricardo A. Labarta ,Luis A. Becerra López‐Lavalle,etc.Household Determinants of the Adoption of Improved Cassava Varieties using DNA Fingerprinting to Identify Varieties in Farmer Fields: A Case Study in Colombia[J].Journal of Agricultural Economic,JUN 2018,69(2):518-536.

[64] Fang D.Q., and Roose M.L., 1997, Identification of closely relatedcitrus cultivars with inter- simple sequence repeat markers,Theor.Appl.Genet.,95:408-471

[65] Zebeau M., and Vos P., 1993, Selective restriction fragment amplification: a general method for DNA fingerprinting, Europeau Patent Application Number 92402629, Publication Number0534858A1

[66] Primmer C.R., Borge T., Lindell J., and Saetre G.P., 2002, Single-nucleotide polymorphism characterization in species with limited available sequence information:high nucleotide diversity revealed in the avian genome, Mol. Ecol., 11(3): 603-612

[67] Komusiewicz C, Bulteau L, Hüffner F, et al.Multivariate algorithmics for NP-hard string problems[J].Bulletin of Eatcs, 2014, 114 (114) .

[68] Wicker J, Fenner K, Kramer S.A hybrid machine learning and knowledge based approach to limit combinatorial explosion in biodegradation prediction [M]//Computational Sustainability.Springer International Publishing, 2016.

[69] Melkonian V.An integer programming model for the kenken problem[J].American Journal of Operations Research, 2016, 6 (3) :213-225.

[70] Chebil K, Khemakhem M.A dynamic programming algorithm for the knapsack problem with setup[J]. Computers&Operations Research, 2015, 64 (C) :40-50.

[71] 吴金荣.求解课程表问题的分支定界算法[J].运筹与管理, 2002, 11 (1) :17-22.

[72] Ross G T, Soland R M.A branch and bound algorithm for the generalized assignment problem[J]. The Journal of Chemical Physics, 1953, 21 (6) :1087-1092.

[73] Holland J H.Erratum:genetic algorithms and the optimal allocation of trials[J].Siam Journal on Computing, 2006, 2 (2) :88-105.

[74] Glover F.Future paths for integer programming and links to artificial intelligence[J].Computers& Operations Research, 1986, 13 (5) :533-549.

[75] Glover F.Tabu search-Part I[J].Orsa J on Computing, 1989, 1 (1) :89-98.

[76] Glover F, Marti R.Tabu search[J].General Information, 1989, 106 (2) :221-225.

[77] Colorni A, Dorigo M, Maniezzo V.Distributed optimization by ant colonies[C]European Conference on Artificial Life.The MIT Press, 1992.

[78] Hopfield J J.Neural networks and physical systems with emergent collective computational abilities[J].Proceedings of the National Academy of Sciences of the United States of A-merica, 1982, 79 (8) :2554-2558.

[79] Jungnickel D.The greedy algorithm[M]//Graphs, Networks and Algorithms.Springer Berlin Heidelberg, 1999:135-161

[80] Kumar M, Husian M, Upreti N, et al.Genetic algorithm:Review and application[J].Computer, 2010, 2 (2) :451-454.

[81] 丁建立,陈增强,袁著祉. 遗传算法与蚂蚁算法的融合[J].计算机研究与发展,2003,40(9):1351-1356.

[82] 陶阳明.经典人工智能算法综述[J/OL].软件导刊,2019:1-6.

[83] Suzuki Y, Sekiya T, Hayashi K.Allele-specific polymerase chain reaction:a method for amplification and sequence determination of a single component among a mixture of sequence variants. Anal Biochem, 1991, 192:82-84.

[84] Semagn K, Babu R, Hearne S, Olsen M.Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP) :overview of the technology and its application in crop improvement.Mol Breed, 2014, 33:1-14.

[85] 李乐晨,朱国忠,苏秀娟,郭旺珍.适于海岛棉指纹图谱构建的SNP核心位点筛选与评价[J].作物学报,2019,45(05):64

[86] Patwardhan A, Ray S, Roy A.Molecular markers in phylogenetic studies-a review[J]. Journal of Phylogenetics&Evolutionary Biology, 2014, 2 (2) :100-131.

[87] Gupta P K, Rustgi S, Kulwal P L.Linkage disequilibrium and association studies in higher plants :present status and future prospects[J].Plant Molecular Biology, 2005, 57 (4) :461-485.

[88] Snowdon R J, Luy F L I.Potential to improve oilseed rape and canola breeding in the genomics era[J].Plant Breeding, 2012, 131 (3) :351-360.

[89] Liu L Z, Qu C M, Wittkop B, Yi B, Xiao Y, He Y J, Snowdon R J, Li J N.A high-density SNP map for accurate mapping of seed fiber QTL in Brassica napus L.[J].PLo S One, 2013, 8 (12) :e83052.

[90] Wang N, Li F, Chen B Y, Xu K, Yan G X, Qiao J W, Li J, Gao GZ, Bancroft I, Meng J L, King G J, Wu X M.Genome-wide investigation of genetic changes during modern breeding of Brassica napus[J]. Theoretical and Applied Genetics, 2014, 127 (8) :1817-1829.

[91] Cabezas J A, Ibá?ez J, Lijavetzky D, Vélez D, Bravo G, Rodríguez V, Carre?o I, Jermakow A M, Carre?o J, Ruiz-García L, Thomas M R.A 48 SNP set for grapevine cultivar identification[J]. BMC Plant Biology, 2011, 11 (1) :153.

[92] Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley C T, Gasic K, Micheletti D, Rosyara U R, Cattonaro F, Vendramin E, Main D.Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm[J].PLo S One,2012, 7 (4) :e35668.

[93] Chen C, Mitchell S E, Elshire R J, Buckler E S, El-Kassaby Y A.Mining conifers’mega-genome using rapid and efficient multiplexed high-throughput genotyping-by-sequencing (GBS) SNP discovery platform[J].Tree Genetics&Genomes, 2013, 9 (6) :1537-1544.

[94] Jiang D, Ye Q L, Wang F S, Li C A.The mining of citrus EST-SNP and its application in cultivar discrimination[J].Agricultural Sciences in China, 2010, 9 (2) :179-190.

[95] Fang W P, Meinhardt L W, Tan H W, Zhou L, Mischke S, Zhang D.Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers[J].Horticulture Research, 2014, 1:14035.

[96] Wang B, Tan H W, Fang W, Meinhardt L W, Mischke S, Matsumoto T, Zhang D. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm[J]. Horticulture Research, 2015, 2 (1) :14065.

[97] Zhou L, Vega F E, Tan H, Lluch A E, Meinhardt L W, Fang W, Mischke S, Irish B, Zhang D. Developing single nucleotide polymorphism (SNP) markers for the identification of coffee germplasm [J].Tropical Plant Biology, 2016, 9 (2) :82-95.

[98] Weirather J L, de Cesare M, Wang Y, Piazza P, Sebastiano V, Wang X J, Buck D, Au K F.Comprehensive comparison of pacific biosciences and oxford nanopore technologies and their applications to transcriptome analysis[J].F1000Research, 2017 (3) :6.

[99] Schmidt M H, Vogel A, Denton A, Istace B, Wormit A, van de Geest H, Bolger M E, ,Alseekh S, Mass J, Pfaff C, Schurr U.Reconstructing the gigabase plant genome of Solanum pennellii using nanopore sequencing[J].Biorxiv, 2017 (1) :129-148.

[100] Tsuchihashi Z, Dracopoli N C.Progress in high throughput SNP genotyping methods[J]. The Pharmacogenomics Journal, 2002, 2 (2) :103-110.

[101] Thiel T, Kota R, Grosse I, Stein N, Graner A.SNP 2 CAPS:a SNP and INDEL analysis tool for CAPS marker development[J].Nucleic Acids Research, 2004, 32 (1) :e5.

[102] Helyar S J, Limborg M T, Bekkevold D, Babbucci M, Van Houdt J, Maes G E, Bargelloni L, Nielsen R O, Taylor M I, Ogden R, Cariani A.SNP Discovery using next generation transcriptomic sequencing in atlantic herring (Clupea harengus) [J].PLo S ONE, 2012, 7 (8) :e42089.

[103] Boutet G, Carvalho S A, Falque M, Peterlongo P, Lhuillier E, Bouchez O, Lavaud C, Pilet-Nayel M L, Rivière N, Baranger A.SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL population[J].BMC Genomics, 2016, 17 (1) :121.

[104] Distefano G, La Malfa S, Gentile A, Wu S B.EST-SNP genotyping of citrus species using high-resolution melting curve analysis[J].Tree Genetics&Genomes, 2013, 9 (5) :1271-1281.

[105] Pootakham W, Chanprasert J, Jomchai N, Sangsrakru D, Yoocha T, Therawattanasuk K, Tangphatsornruang S.Single nucleotide polymorphism marker development in the rubber tree, Hevea brasiliensis (Euphorbiaceae) [J].American Journal of Botany, 2011, 98 (11) :e337-e338.

[106] Ji K, Zhang D, Motilal L A, Boccara M, Lachenaud P, Meinhardt L W.Genetic diversity and parentage in farmer varieties of cacao (Theobroma cacao L.) from Honduras and Nicaragua as revealed by single nucleotide polymorphism (SNP) markers[J]. Genetic Resources and Crop Evolution, 2013, 60 (2) :441-453.

中图分类号:

 Q819    

开放日期:

 2020-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式