中文题名: | 即食果蔬中金黄色葡萄球菌快速分子检测技术的建立与应用 |
姓名: | |
学号: | 2018108005 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0832 |
学科名称: | 工学 - 食品科学与工程(可授工学、农学学位) |
学生类型: | 硕士 |
学位: | 工学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 食品微生物与生物技术 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2021-05-29 |
答辩日期: | 2021-05-30 |
外文题名: | Establishment and Application of Rapid Molecular Detection Technology for Staphylococcus Aureus in Ready-to-eat Fruits and Vegetables |
中文关键词: | |
外文关键词: | Staphylococcus aureus ; selective broth ; real-time PCR ; ready-to-eat fruits and vegetable |
中文摘要: |
金黄色葡萄球菌是常见的食源性致病菌之一,近年即食果蔬类食品消费量快速增长,食源性致病菌的控制与检测工作需要快速跟上脚步。实时荧光 PCR 结合高分辨率熔解曲线的技术作为一种分子检测的新方法,在过去十余年中不断发展,在医学领域已取得广泛应用,而在食品致病菌控制领域的运用还不够成熟。因此,针对食源性金黄色葡萄球菌建立一种快速、准确的检测方法,从污染源头控制感染风险十分重要。 |
外文摘要: |
Staphylococcus aureus is one of the common foodborne pathogens, a rapid growth in consumption of ready-to-eat fruits and vegetables has showed up in the last decade. New method to detect pathogens in these kind of food must be developed quickly. The combination of high-resolution melting curve(HRM) and real-time PCR has provided a new method of molecular detection. In the last few years, HRM has been applied widely in medical domain, however, with the detection of foodborne pathogen, it still had huge 2. The establishment of real-time PCR method to detect S. aureus and its enterotoxin |
参考文献: |
[1] 杨丹茹. 金黄色葡萄球菌肠毒素 U 的纯化、检测及其诱发乳腺上皮细胞炎症的初探[D]. 西南 民族大学, 2020. [2] 索原杰. 多重实时荧光 PCR 致病菌检测方法的构建及其在牛奶中的应用[D]. 浙江大学, 2018. [3] Kadariya J, Smith T C, Thapaliya D. Staphylococcus aureus and Staphylococcal Food-Borne Disease: An Ongoing Challenge in Public Health[J]. Biomed Research International, 2014, 2014: 9. [4] Hennekinne J A, De Buyser M L, Dragacci S. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation[J]. Fems Microbiology Reviews, 2012, 36(4): 815-836. [5] Cai H X, Kou X M, Ji H, et al. Prevalence and characteristics of Staphylococcus aureus isolated from Kazak cheese in Xinjiang, China[J]. Food Control, 2021, 123: 9. [6] Petroczki F M, Pasztor A, Szucs K D, et al. Occurrence and Characteristics of Staphylococcus aureus in a Hungarian Dairy Farm during a Control Program[J]. Pathogens, 2021, 10(2): 11. [7] 杨静. 食源性金黄色葡萄球菌肠毒素基因在液体培养基和牛肉制品中的表达研究[D]. 南京农 业大学, 2013. [8] Cebrian G, Arroyo C, Manas P, et al. Bacterial maximum non-inhibitory and minimum inhibitory concentrations of different water activity depressing solutes[J]. International Journal of Food Microbiology, 2014, 188: 67-74. [9] Argudin M A, Mendoza M C, Rodicio M R. Food Poisoning and Staphylococcus aureus Enterotoxins[J]. Toxins, 2010, 2(7): 1751-U342. [10] Oliveira D, Borges A, Simoes M. Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases[J]. Toxins, 2018, 10(6): 19. [11] Otto M. Staphylococcus aureus toxins[J]. Current Opinion in Microbiology, 2014, 17: 32-37. [12] Suzuki Y. Current Studies of Staphylococcal Food Poisoning[J]. Food Hygiene and Safety Science, 2019, 60(3): 27-37. [13] Bastos C P, Bassani M T, Mata M M, et al. Prevalence and expression of staphylococcal enterotoxin genes in Staphylococcus aureus isolated from food poisoning outbreaks[J]. Canadian Journal of Microbiology, 2017, 63(10): 834-840. [14] 赵朵, 肖娜, 裴曼君, et al. 金黄色葡萄球菌生物被膜形成及检测方法研究[J]. 教育教学论坛, 2020(47): 388-390. [15] Archer N K, Mazaitis M J, Costerton J W, et al. Staphylococcus aureus biofilms Properties, regulation and roles in human disease[J]. Virulence, 2011, 2(5): 445-459. [16] 马敏. 一起金黄色葡萄球菌肠毒素食物中毒调查分析[J]. 河南预防医学杂志, 2020, 31(12):931-933. [17] 刘海涛, 吕秋艳, 赵香菊, et al. 一起金黄色葡萄球菌食物中毒事件的实验室溯源分析[J]. 中 国卫生检验杂志, 2020, 30(22): 2793-2795. [18] 王健. 一起金黄色葡萄球菌引起食物中毒的实验室检测分析[J]. 医学食疗与健康, 2020, 18(18): 13-14. [19] 陈菲菲, 狄红霞, 蓝乐夫. 金黄色葡萄球菌重要毒力因子的功能及其抑制剂研究进展[J]. 科 学通报, 2013, 58(36): 3743-3752. [20] 李彦媚, 赵喜红, 徐泽智, et al. 金黄色葡萄球菌引起食物中毒的作用机制与其耐药性的研究 进展[J]. 现代生物医学进展, 2011, 11(14): 2786-2792. [21] 李毅. 金黄色葡萄球菌及其肠毒素研究进展[J]. 中国卫生检验杂志, 2004(04): 392-395. [22] 徐振波, 刘晓晨, 李琳, et al. 金黄色葡萄球菌肠毒素在食源性微生物中的研究进展[J]. 现代 食品科技, 2013, 29(09): 2317-2324. [23] Tarisse C F, Goulard-Huet C, Nia Y, et al. Highly Sensitive and Specific Detection of Staphylococcal Enterotoxins SEA, SEG, SEH, and SEI by Immunoassay[J]. Toxins, 2021, 13(2): 28. [24] Alouf J E, Muller-Alouf H. Staphylococcal and streptococcal superantigens: molecular, biological and clinical aspects[J]. International Journal of Medical Microbiology, 2003, 292(7-8): 429-440. [25] Ewald S, Notermans S. EFFECT OF WATER ACTIVITY ON GROWTH AND ENTERO-TOXIN D-PRODUCTION OF STAPHYLOCOCCUS-AUREUS[J]. International Journal of Food Microbiology, 1988, 6(1): 25-30. [26] 王璇, 王娉, 葛毅强, et al. 食品中金黄色葡萄球菌致病性研究进展[J]. 中国人兽共患病学报, 2017, 33(06): 553-558. [27] 向红, 周藜, 廖春, et al. 金黄色葡萄球菌及其引起的食物中毒的研究进展[J]. 中国食品卫生 杂志, 2015, 27(02): 196-199. [28] Hwang A, Huang L. Ready-to-Eat Foods: Microbial Concerns and Control Measures[M]. 2010. [29] Balali G I, Yar D D, Afua Dela V G, et al. Microbial Contamination, an Increasing Threat to the Consumption of Fresh Fruits and Vegetables in Today's World[J]. International Journal of Microbiology, 2020, 2020: 3029295-Article No.: 3029295. [30] Hillier-Brown F C, Summerbell C D, Moore H J, et al. A description of interventions promoting healthier ready-to-eat meals (to eat in, to take away, or to be delivered) sold by specific food outlets in England: a systematic mapping and evidence synthesis[J]. Bmc Public Health, 2017, 17: 17. [31] Bari M L, Zaman S: 1 - Microbial biotechnology in food and health: present and future food safety regulation, Ray R C, editor, Microbial Biotechnology in Food and Health: Academic Press, 2021: 1- 20.[32] Kotzekidou P. Factors influencing microbial safety of ready-to-eat foods[M]. 2016: 33-50. [33] Yang S, Pei X, Yang D, et al. Microbial contamination in bulk ready-to-eat meat products of China in 2016[J]. Food Control, 2018, 91: 113-122. [34] Falah M a F, Nadine M D, Suryandono A. Effects of Storage Conditions on Quality and Shelf-life of Fresh-cut Melon (Cucumis Melo L.) and Papaya (Carica Papaya L.)[J]. Procedia Food Science, 2015, 3: 313-322. [35] Mahros M M, Abd-Elghany S M, Sallam K I. Multidrug-, methicillin-, and vancomycin-resistant Staphylococcus aureus isolated from ready-to-eat meat sandwiches: An ongoing food and public health concern[J]. International Journal of Food Microbiology, 2021: 109165. [36] Mir S A, Shah M A, Mir M M, et al. Microbiological contamination of ready-to-eat vegetable salads in developing countries and potential solutions in the supply chain to control microbial pathogens[J]. Food Control, 2018, 85: 235-244. [37] Huong B T M, Mahmud Z H, Neogi S B, et al. Toxigenicity and genetic diversity of Staphylococcus aureus isolated from Vietnamese ready-to-eat foods[J]. Food Control, 2010, 21(2): 166-171. [38] 肖兴宁, 王珍, 蔡铮, et al. 浙江省即食生鲜果蔬病原微生物污染调查分析[J]. 浙江农业科学, 2020, 61(03): 528-530. [39] 周厚德, 彭思露, 刘道峰, et al. 2015-2017 年江西省部分市售食品中金黄色葡萄球菌的污染情 况调查[J]. 现代预防医学, 2019, 46(12): 2158-2162. [40] Elias S D O, Decol L T, Tondo E C. Foodborne outbreaks in Brazil associated with fruits and vegetables: 2008 through 2014[J]. Food Quality and Safety, 2018, 2(4): 173-181. [41] Jamshidi A, Kazerani H R, Seifi H A, et al. Growth limits of Staphylococcus aureus as a function of temperature, acetic acid, NaCl concentration, and inoculum level[J]. Iranian Journal of Veterinary Research, 2008, 9(4): 353-359. [42] Parfentjev I A, Catelli A R. TOLERANCE OF STAPHYLOCOCCUS AUREUS TO SODIUM CHLORIDE[J]. Journal of bacteriology, 1964, 88: 1-3. [43] Hajmeer M, Ceylan E, Marsden J L, et al. Impact of sodium chloride on Escherichia coli O157:H7 and Staphylococcus aureus analysed using transmission electron microscopy[J]. Food Microbiology, 2006, 23(5): 446-452. [44] Pang L, Luo Y, Gu Y, et al. Recovery Method Development of Sodium Chloride-Susceptible Methicillin-Resistant Staphylococcus aureus Isolates from Ground Pork Samples[J]. Microbial Drug Resistance, 2015, 21(1): 1-6. [45] 李明阳, 胡朋, 高伟敏, et al. 探索 7.5%氯化钠肉汤增菌液 OD 值与金黄色葡萄球菌生物量的 关系[J]. 食品安全质量检测学报, 2019, 10(03): 603-607.[46] 藏程琳. 沙门氏菌快速检测方法构建及致病菌共增菌培养基的研制[D]. 吉林大学, 2020. [47] 钱红玫. 病原微生物快速检测中的快速增菌方法的优化及其应用研究[D]. 大连工业大学, 2017. [48] Dodd C E R, Richards P J, Aldsworth T G. Suicide through stress: A bacterial response to sub-lethal injury in the food environment[J]. International Journal of Food Microbiology, 2007, 120(1-2): 46- 50. [49] Zhang W L, Jiang W B. UV treatment improved the quality of postharvest fruits and vegetables by inducing resistance[J]. Trends in Food Science & Technology, 2019, 92: 71-80. [50] Kabir M N, Aras S, George J, et al. High-pressure and thermal-assisted pasteurization of habituated, wild-type, and pressure-stressed Listeria monocytogenes, Listeria innocua, and Staphylococcus aureus[J]. Lwt-Food Science and Technology, 2021, 137: 10. [51] Lan L, Zhang R, Zhang X, et al. Sublethal injury and recovery of Listeria monocytogenes and Escherichia coli O157:H7 after exposure to slightly acidic electrolyzed water[J]. Food Control, 2019, 106. [52] Miller F A, Silva C L M, Brandao T R S. A Review on Ozone-Based Treatments for Fruit and Vegetables Preservation[J]. Food Engineering Reviews, 2013, 5(2): 77-106. [53] Lu Y, Turley A, Dong X, et al. Reduction of Salmonella enterica on grape tomatoes using microwave heating[J]. International Journal of Food Microbiology, 2011, 145(1): 349-352. [54] Usall J, Ippolito A, Sisquella M, et al. Physical treatments to control postharvest diseases of fresh fruits and vegetables[J]. Postharvest Biology and Technology, 2016, 122: 30-40. [55] Fallik E. Prestorage hot water treatments (immersion, rinsing and brushing)[J]. Postharvest Biology and Technology, 2004, 32(2): 125-134. [56] Shao L, Liu Y, Tian X, et al. Inactivation and recovery of Staphylococcus aureus in milk, apple juice and broth treated with ohmic heating[J]. Lwt-Food Science and Technology, 2021, 139. [57] Bi X, Wang Y, Zhao F, et al. Sublethal injury and recovery of Escherichia coli O157:H7 by high pressure carbon dioxide[J]. Food Control, 2015, 50: 705-713. [58] Tian X J, Yu Q Q, Shao L L, et al. Sublethal injury and recovery of Escherichia coli O157:H7 after ohmic heating[J]. Food Control, 2018, 94: 85-92. [59] Valderrama W B, Dudley E G, Doores S, et al. Commercially Available Rapid Methods for Detection of Selected Food-borne Pathogens[J]. Critical Reviews in Food Science and Nutrition, 2016, 56(9): 1519-1531. [60] 吴任之, 胡欣洁, 韩国全, et al. 食源性金黄色葡萄球菌快速检测方法的研究进展[J]. 食品与 发酵工业: 1-8.[61] Maragos C M: Immunologically-based Methods for Detecting Masked Mycotoxins, Dallasta C, Berthiller F, editor, Masked Mycotoxins in Food: Formation, Occurrence and Toxicological Relevance, 2016: 32-49. [62] Stagnitta P, Micalizzi B, Guzman A M S. Clostridium perfringens enterotoxin quantitative detection with reversed passive agglutination test (RPLA) in different media[J]. Biocell, 2000, 24(3): 299-299. [63] Lai Y C, Feldman K L, Clark R S B. Enzyme-linked immunosorbent assays (ELISAs)[J]. Critical Care Medicine, 2005, 33(12): S433-S434. [64] Xiang W Q, Peng Z Y, Xu J L, et al. Evaluation of a commercial latex agglutination test for detecting rotavirus A and human adenovirus in children's stool specimens[J]. Journal of Clinical Laboratory Analysis, 2020, 34(5): 4. [65] Rubab M, Shahbaz H M, Olaimat A N, et al. Biosensors for rapid and sensitive detection of Staphylococcus aureus in food[J]. Biosensors & Bioelectronics, 2018, 105: 49-57. [66] 刘慧, 曾祥权, 蒋世卫, et al. 生物传感器在食源性金黄色葡萄球菌快速检测中的应用[J]. 食 品科学: 1-18. [67] Teles F R R, Fonseca L R. Trends in DNA biosensors[J]. Talanta, 2008, 77(2): 606-623. [68] Epstein J R, Biran I, Walt D R. Fluorescence-based nucleic acid detection and microarrays[J]. Analytica Chimica Acta, 2002, 469(1): 3-36. [69] Wolcott M J. ADVANCES IN NUCLEIC ACID-BASED DETECTION METHODS[J]. Clinical Microbiology Reviews, 1992, 5(4): 370-386. [70] Olsen J E. DNA-based methods for detection of food-borne bacterial pathogens[J]. Food Research International, 2000, 33(3-4): 257-266. [71] Souii A, Ben M'hadheb-Gharbi M, Gharbi J. Nucleic acid-based biotechnologies for food-borne pathogen detection using routine time-intensive culture-based methods and fast molecular diagnostics[J]. Food Science and Biotechnology, 2016, 25(1): 11-20. [72] Jofre J, Blanch A R. Feasibility of methods based on nucleic acid amplification techniques to fulfil the requirements for microbiological analysis of water quality[J]. Journal of Applied Microbiology, 2010, 109(6): 1853-1867. [73] Sergentet-Thevenot D, Montet M R, Vernozy-Rozand C. Challenges to developing nucleic acid sequence based amplification technology for the detection of microbial pathogens in food[J]. Revue De Medecine Veterinaire, 2008, 159(10): 514-527. [74] Rahman H U, Yue X, Yu Q, et al. Current PCR-based methods for the detection of mycotoxigenic fungi in complex food and feed matrices[J]. World Mycotoxin Journal, 2020, 13(2): 139-150. [75] Hanna S E, Connor C J, Wang H H. Real-time polymerase chain reaction for the food microbiologist:Technologies, applications, and limitations[J]. Journal of Food Science, 2005, 70(3): R49-R53. [76] Gao R, Liao X Y, Zhao X H, et al. The diagnostic tools for viable but nonculturable pathogens in the food industry: Current status and future prospects[J]. Comprehensive Reviews in Food Science and Food Safety: 30. [77] Notomi T, Mori Y, Tomita N, et al. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects[J]. Journal of Microbiology, 2015, 53(1): 1-5. [78] Yang Q R, Domesle K J, Ge B L. Loop-Mediated Isothermal Amplification for Salmonella Detection in Food and Feed: Current Applications and Future Directions[J]. Foodborne Pathogens and Disease, 2018, 15(6): 309-331. [79] Kang T S. Basic principles for developing real-time PCR methods used in food analysis: A review[J]. Trends in Food Science & Technology, 2019, 91: 574-585. [80] Zhang M Y, Ye J, He J S, et al. Visual detection for nucleic acid-based techniques as potential on-site detection methods. A review[J]. Analytica Chimica Acta, 2020, 1099: 1-15. [81] Tse C, Capeau J. Real time PCR methodology for quantification of nucleic acids[J]. Annales De Biologie Clinique, 2003, 61(3): 279-293. [82] Smith C J, Osborn A M. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology[J]. Fems Microbiology Ecology, 2009, 67(1): 6-20. [83] Hodek J, Ovesna J, Kucera L. Interferences of PCR Effectivity: Importance for Quantitative Analyses[J]. Czech Journal of Food Sciences, 2009, 27: 42-49. [84] Taylor S C, Nadeau K, Abbasi M, et al. The Ultimate qPCR Experiment: Producing Publication Quality, Reproducible Data the First Time[J]. Trends in Biotechnology, 2019, 37(7): 761-774. [85] Kang S J, Jang C S, Son J M, et al. Comparison of Seven Commercial TaqMan Master Mixes and Two Real-Time PCR Platforms Regarding the Rapid Detection of Porcine DNA[J]. Food Science of Animal Resources, 2021, 41(1): 85-94. [86] Nadkarni M A, Martin F E, Jacques N A, et al. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set[J]. Microbiology-Sgm, 2002, 148: 257-266. [87] Osada H, Chon I, Phyu W W, et al. Development of cycling probe based real-time PCR methodology for influenza A viruses possessing the PA/I38T amino acid substitution associated with reduced baloxavir susceptibility[J]. Antiviral Research, 2021, 188: 105036. [88] Livak K J, Flood S J A, Marmaro J, et al. OLIGONUCLEOTIDES WITH FLUORESCENT DYES AT OPPOSITE ENDS PROVIDE A QUENCHED PROBE SYSTEM USEFUL FOR DETECTING PCR PRODUCT AND NUCLEIC-ACID HYBRIDIZATION[J]. Pcr-Methods and Applications, 1995, 4(6): 357-362.[89] Liu Y, Gao Y, Wang T, et al. Detection of 12 Common Food-Borne Bacterial Pathogens by TaqMan Real-Time PCR Using a Single Set of Reaction Conditions[J]. Frontiers in Microbiology, 2019, 10: 9. [90] Kadiroglu P, Korel F, Ceylan C. Quantification of Staphylococcus aureus in white cheese by the improved DNA extraction strategy combined with TaqMan and LNA probe-based qPCR[J]. Journal of Microbiological Methods, 2014, 105: 92-97. [91] Klotz M, Opper S, Heeg K, et al. Detection of Staphylococcus aureus enterotoxins A to D by real- time fluorescence PCR assay[J]. Journal of Clinical Microbiology, 2003, 41(10): 4683-4687. [92] Jansson L, Koliana M, Sidstedt M, et al. Blending DNA binding dyes to improve detection in real- time PCR[J]. Biotechnology reports (Amsterdam, Netherlands), 2017, 14: 34-37. [93] Arya M, Shergill I S, Williamson M, et al. Basic principles of real-time quantitative PCR[J]. Expert Review of Molecular Diagnostics, 2005, 5(2): 209-219. [94] Orlando C, Pinzani P, Pazzagli M. Developments in quantitative PCR[J]. Clinical Chemistry and Laboratory Medicine, 1998, 36(5): 255-269. [95] Rodriguez-Lazaro D, Hernandez M. Real-time PCR in Food Science: Introduction[J]. Current Issues in Molecular Biology, 2013, 15(2): 25-37. [96] Cheng N, Xu Y C, Yan X H, et al. AN ADVANCED VISUAL QUALITATIVE AND EVA GREEN- BASED QUANTITATIVE ISOTHERMAL AMPLIFICATION METHOD TO DETECT LISTERIA MONOCYTOGENES[J]. Journal of Food Safety, 2016, 36(2): 237-246. [97] Pornprasert S, Panyasai S, Waneesorn J, et al. Rapid Identification of Heterozygous and Homozygous Hemoglobin Constant Spring by SYTO9 with a High Resolution Melting Analysis[J]. Clinical Laboratory, 2012, 58(7-8): 829-833. [98] Elkins K M, Perez A C U, Sweetin K C. Rapid and inexpensive species differentiation using a multiplex real-time polymerase chain reaction high-resolution melt assay[J]. Analytical Biochemistry, 2016, 500: 15-17. [99] Hasanpour M, Najafi A. Development of a multiplex real-time PCR assay for phylogenetic analysis of Uropathogenic Escherichia coli[J]. Journal of Microbiological Methods, 2017, 137: 25-29. [100] Pereira L, Gomes S, Barrias S, et al. Applying high-resolution melting (HRM) technology to olive oil and wine authenticity[J]. Food Research International, 2018, 103: 170-181. [101] Rahimi H M, Pourhosseingholi M A, Yadegar A, et al. High-resolution melt curve analysis: A real- time based multipurpose approach for diagnosis and epidemiological investigations of parasitic infections[J]. Comparative Immunology Microbiology and Infectious Diseases, 2019, 67: 6. [102] Asfaram S, Fakhar M, Mirani N, et al. HRM-PCR is an accurate and sensitive technique for thediagnosis of cutaneous leishmaniasis as compared with conventional PCR[J]. Acta Parasitologica, 2020, 65(2): 310-316. [103] Ebili H, Ilyas M. High Resolution Melt Analysis, DNA Template Quantity Disparities and Result Reliability[J]. Clinical Laboratory, 2015, 61(1-2): 155-159. [104] Pakbin B, Basti A A, Khanjari A, et al. Differentiation of stx1A gene for detection of Escherichia coli serotype O157: H7 and Shigella dysenteriae type 1 in food samples using high resolution melting curve analysis[J]. Food Science & Nutrition: 8. [105] Xiao X-L, Zhang L, Wu H, et al. Simultaneous Detection of Salmonella, Listeria monocytogenes, and Staphylococcus aureus by Multiplex Real-Time PCR Assays Using High-Resolution Melting[J]. Food Analytical Methods, 2014, 7(10): 1960-1972. [106] Jaeger L H, Nascimento T C, Rocha F D, et al. Adjusting RT-qPCR conditions to avoid unspecific amplification in SARS-CoV-2 diagnosis[J]. International Journal of Infectious Diseases, 2021, 102: 437-439. [107] Bustin S A, Nolan T. RT-qPCR Testing of SARS-CoV-2: A Primer[J]. International Journal of Molecular Sciences, 2020, 21(8): 9. [108] Bustin S, Huggett J. qPCR primer design revisited[J]. Biomolecular detection and quantification, 2017, 14: 19-28. [109] Meena B, Anburajan L, Varma K S, et al. A multiplex PCR kit for the detection of three major virulent genes in Enterococcus faecalis[J]. Journal of Microbiological Methods, 2020, 177: 106061. [110] Ye L, Zhu Z, Guo Z, et al. Human rare blood group multiplex PCR detection method and kit: US 10266882[P]. Apr 23 2019. [111] Leamon J, Andersen M, Thornton M. Methods and compositions for multiplex PCR: US 08728728[P]. May 20 2014. [112] Kawasaki S, Fratamico P M, Kamisaki-Horikoshi N, et al. Development of the Multiplex PCR Detection Kit for Salmonella spp., Listeria monocytogenes, and Escherichia coli O157:H7[J]. Jarq- Japan Agricultural Research Quarterly, 2011, 45(1): 77-81. [113] Chen W, Li Z G, Yang Y W, et al. Development of the PCR kit for simultaneous detection of Staphylococcus aureus, Listeria monocytogenes and Bacillus cereus in food[J]. Journal of Food Agriculture & Environment, 2010, 8(3-4): 96-99. [114] Lee S H, Jung B Y, Rayamahji N, et al. A multiplex real-time PCR for differential detection and quantification of Salmonella spp., Salmonella enterica serovar Typhimurium and Enteritidis in meats[J]. Journal of Veterinary Science, 2009, 10(1): 43-51. [115] Shushe O, Wroblewski D, Macgowan C E, et al. Detection of Salmonella spp. in retail meat products:a comparison between a discontinued commercial kit and a laboratory-developed screening method[J]. Letters in Applied Microbiology, 2019, 69(2): 116-120. [116] Duan S Q, Ai J X, Sun L Y, et al. Development and validation of a rapid kit for authenticity of murine meat in meat products with a species-specific PCR assay[J]. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 2020, 37(4): 552-560. [117] Zhang R, Lan L S, Shi H. Sublethal injury and recovery of Escherichia coli O157:H7 after freezing and thawing[J]. Food Control, 2021, 120: 8. [118] Shao L L, Liu Y, Tian X J, et al. Inactivation of Staphylococcus aureus in phosphate buffered saline and physiological saline using ohmic heating with different voltage gradient and frequency[J]. Journal of Food Engineering, 2020, 274: 8. [119] Hu A, Gao C, Lu Z, et al. Detection of Exiguobacterium spp. and E. acetylicum on fresh-cut leafy vegetables by a multiplex PCR assay[J]. Journal of Microbiological Methods, 2021, 180: 106100. [120] 陈先锐, 王肇悦, 何秀萍. 酵母菌合成 2-苯乙醇的研究进展[J]. 生物工程学报, 2016, 32(09): 1151-1163. [121] 朱敏, 梅玲玲, 程苏云. 改良李斯特菌增菌液的研究[J]. 中国卫生检验杂志, 2007(02): 293- 295. [122] Qu Y, Bai Y L, Liu Y H, et al. SSEL, a selective enrichment broth for simultaneous growth of Salmonella enterica, Staphylococcus aureus, Escherichia coli O157:H7, and Listeria monocytogenes[J]. Journal of Food Safety, 2020, 40(5): 13. [123] 李敏, 马凌云, 陈超阳, et al. 丙酮酸钠药理学作用的研究现状[J]. 中国临床药理学杂志, 2021, 37(03): 341-344. [124] Yoon J H, Wei S, Oh D H. A highly selective enrichment broth combined with real-time PCR for detection of Staphylococcus aureus in food samples[J]. Lwt-Food Science and Technology, 2018, 94: 103-110. [125] Myers R H, Khuri A I, Carter W H. RESPONSE-SURFACE METHODOLOGY - 1966-1988[J]. Technometrics, 1989, 31(2): 137-157. [126] Lu Y, Turley A, Dong X, et al. Reduction of Salmonella enterica on grape tomatoes using microwave heating[J]. Int J Food Microbiol, 2011, 145(1): 349-52. [127] Chen X Q, Tango C N, Daliri E B M, et al. Disinfection Efficacy of Slightly Acidic Electrolyzed Water Combined with Chemical Treatments on Fresh Fruits at the Industrial Scale[J]. Foods, 2019, 8(10): 19. [128] Wan J J, Lu Z X, Bie X M, et al. Improvement of a new selective enrichment broth for culturing Salmonella in ready-to-eat fruits and vegetables[J]. Journal of Food Safety, 2020, 40(5): 12.[129] 郭建平, 万佳佳, 陆兆新, et al. 基于可视化环介导等温扩增技术快速检测金黄色葡萄球菌[J]. 食品科学, 2019, 40(20): 325-331. [130] 张阳. 猪源金黄色葡萄球菌的毒力基因分布,生物被膜形成和凝血致病性的研究[D]. 华南理 工大学, 2018. [131] 王冬梅, 刘传桂, 梁晓静, et al. 91 株金黄色葡萄球菌毒力基因和耐药基因分布研究[J]. 检验 医学与临床, 2017, 14(14): 2143-2146. [132] Wang W, Wang X, Wei T, et al. A multiplex real-time PCR approach for identification and quantification of sheep/goat, fox and murine fractions in meats using nuclear DNA sequences[J]. Food Control, 2021, 126: 108035. [133] Wang L, Chen F, You D, et al. Development and validation of a multiplex-PCR based assay for the detection of 18 pathogens in the cerebrospinal fluid of hospitalized children with viral encephalitis[J]. Journal of Virological Methods, 2020, 277: 113804. [134] Li F, Ye Q, Chen M, et al. Mining of novel target genes through pan-genome analysis for multiplex PCR differentiation of the major Listeria monocytogenes serotypes[J]. International Journal of Food Microbiology, 2021, 339: 109026. [135] Guan H, Xue P, Zhou H, et al. A multiplex PCR assay for the detection of five human pathogenic Vibrio species and Plesiomonas[J]. Molecular and Cellular Probes, 2021, 55: 101689. [136] Wolff N, Geiss A F, Bari?i? I. Crosslinking of PCR primers reduces unspecific amplification products in multiplex PCR[J]. Journal of Microbiological Methods, 2020, 178: 106051. [137] Zhong Y, Wang Y, Zhao T, et al. Multiplex real-time SYBR Green I PCR assays for simultaneous detection of 15 common enteric pathogens in stool samples[J]. Molecular and Cellular Probes, 2020, 53: 101619. [138] Utekal P, Kocanda L, Matousek P, et al. Real-time PCR-based genotyping from whole blood using Taq DNA polymerase and a buffer supplemented with 1,2-propanediol and trehalose[J]. Journal of Immunological Methods, 2015, 416: 178-182. [139] Masalov Y K, Heydarov R N, Shashkov I A, et al. Exogenous contaminating DNA in Taq polymerases: A method to avoid false-positive results when detecting the blaTEM gene[J]. Journal of Microbiological Methods, 2019, 160: 36-41. [140] Masoodi K Z, Lone S M, Rasool R S: Chapter 19 - Polymerase chain reaction (PCR), Masoodi K Z, Lone S M, Rasool R S, editor, Advanced Methods in Molecular Biology and Biotechnology: Academic Press, 2021: 109-116. [141] Liu Z, Sun J, Zhao G, et al. Transient stem-loop structure of nucleic acid template may interfere with polymerase chain reaction through endonuclease activity of Taq DNA polymerase[J]. Gene, 2021,764: 145095. [142] Spangler R, Goddard N L, Thaler D S. Optimizing Taq Polymerase Concentration for Improved Signal-to-Noise in the Broad Range Detection of Low Abundance Bacteria[J]. Plos One, 2009, 4(9). [143] Zhou L, Toydemir R, Wittwer C. Analyzing Copy Number Variation Inheritance with dNTP Limited PCR and High-resolution Melting Analysis[J]. Journal of Molecular Diagnostics, 2018, 20(6): 1035- 1035. [144] Wittwer C T, Reed G H, Gundry C N, et al. High-resolution genotyping by amplicon melting analysis using LCGreen[J]. Clinical Chemistry, 2003, 49(6): 853-860. [145] Lilliebridge R A, Tong S Y C, Giffard P M, et al. The Utility of High-Resolution Melting Analysis of SNP Nucleated PCR Amplicons-An MLST Based Staphylococcus aureus Typing Scheme[J]. Plos One, 2011, 6(6). [146] Druml B, Cichna-Markl M. High resolution melting (HRM) analysis of DNA – Its role and potential in food analysis[J]. Food Chemistry, 2014, 158: 245-254. [147] Farrar J S, Wittwer C T: Chapter 6 - High-Resolution Melting Curve Analysis for Molecular Diagnostics, Patrinos G P, editor, Molecular Diagnostics (Third Edition): Academic Press, 2017: 79- 102. [148] Yu Z, Xu Q, Xiao C, et al. SYBR Green real-time qPCR method: Diagnose drowning more rapidly and accurately[J]. Forensic Science International, 2021, 321: 110720. [149] Lai M Y, Lau Y L. Detection of Plasmodium knowlesi using recombinase polymerase amplification (RPA) combined with SYBR Green I[J]. Acta Tropica, 2020, 208: 105511. [150] Zheng Y, Hu P, Ren H, et al. RPA-SYBR Green I based instrument-free visual detection for pathogenic Yersinia enterocolitica in meat[J]. Analytical Biochemistry, 2021, 621: 114157. [151] Monis P T, Giglio S, Saint C P. Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis[J]. Analytical Biochemistry, 2005, 340(1): 24-34. [152] Forghani F, Singh P, Seo K-H, et al. A novel pentaplex real time (RT)- PCR high resolution melt curve assay for simultaneous detection of emetic and enterotoxin producing Bacillus cereus in food[J]. Food Control, 2016, 60: 560-568. [153] 邵晓青, 吕申, 冯璐, et al. 三种荧光染料 SYBR GreenⅠ、LCGreen PLUS、EvaGreen 在实时 定量 PCR 应用中的比较[J]. 大连医科大学学报, 2016, 38(05): 428-431. [154] Vandesompele J, De Paepe A, Speleman F. Elimination of Primer–Dimer Artifacts and Genomic Coamplification Using a Two-Step SYBR Green I Real-Time RT-PCR[J]. Analytical Biochemistry, 2002, 303(1): 95-98.[155] Poritz M A, Ririe K M. Getting Things Backwards to Prevent Primer Dimers[J]. The Journal of Molecular Diagnostics, 2014, 16(2): 159-162. [156] 邵碧英, 董建, 陈彬, et al. 沙门氏菌核酸检测试剂盒的评价[J]. 食品科学, 2015, 36(24): 242- 245. [157] Morio F, Poirier P, Le Govic Y, et al. Assessment of the first commercial multiplex PCR kit (ParaGENIE Crypto-Micro Real-Time PCR) for the detection of Cryptosporidium spp., Enterocytozoon bieneusi, and Encephalitozoon intestinalis from fecal samples[J]. Diagnostic Microbiology and Infectious Disease, 2019, 95(1): 34-37. [158] Bavisetty S C B, Vu H T K, Benjakul S, et al. Rapid pathogen detection tools in seafood safety[J]. Current Opinion in Food Science, 2018, 20: 92-99. [159] Ma H, Bell K N, Loker R N. qPCR and qRT-PCR analysis: Regulatory points to consider when conducting biodistribution and vector shedding studies[J]. Molecular Therapy - Methods & Clinical Development, 2021, 20: 152-168. [160] Sena-Torralba A, Pallás-Tamarit Y, Morais S, et al. Recent advances and challenges in food-borne allergen detection[J]. TrAC Trends in Analytical Chemistry, 2020, 132: 116050. [161] Van Der Weijden F, Rijnen M, Valkenburg C. Comparison of three qPCR-based commercial tests for detection of periodontal pathogens[J]. Scientific Reports, 2021, 11(1). [162] 陈亚明. 奶牛乳房炎致病菌分离鉴定及快速诊断试剂盒的研发与应用[D]. 广西大学, 2014. [163] 陈思. 牛羊猪犬种布鲁氏菌多重 PCR 方法的建立及试剂盒研制[D]. 中国人民解放军军事医 学科学院, 2014. [164] 栾云艳. 检测牛奶中布鲁氏菌套式 PCR 试剂盒研制[D]. 黑龙江八一农垦大学, 2016. [165] Sadykova E, Tyshko N, Grouzdev D, et al. Duplex PCR protocol elaboration for detection and quantification of GM potato event EH92-527-1 in raw material and food[J]. Febs Open Bio, 2019, 9: 371-372. [166] Li F, Li B, Dang H, et al. Viable pathogens detection in fresh vegetables by quadruplex PCR[J]. Lwt- Food Science and Technology, 2017, 81: 306-313. [167] Gao A L, Fischer-Jenssen J, Cooper C, et al. Evaluation of a Multiplex PCR for Detection of the Top Seven Shiga-Producing Escherichia coli Serogroups in Ready-to-Eat Meats, Fruits, and Vegetables[J]. Journal of Aoac International, 2018, 101(6): 1828-1832. [168] Sombat S, Reanwarakorn K, Ling K-S. Developing a multiplex real-time RT-PCR for simultaneous detection of Pepper chat fruit viroid and Columnea latent viroid[J]. Australasian Plant Pathology, 2018, 47(6): 615-621. [169] 区楚君, 尚岱麒, 吴酉芝, et al. 消除食品背景杂菌干扰的金黄色葡萄球菌分离方法[J]. 中国食品学报: 1-6. [170] 周明东. 食源性致病菌快速检测方法的建立及其试剂盒的研制与应用[D]. 山东农业大学,2012. |
中图分类号: | TS2 |
开放日期: | 2021-06-18 |