中文题名: | 西番莲抗夜来香花叶病毒(TeMV)的种质评价与防治药剂效果研究 |
姓名: | |
学号: | 2022804208 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 095131 |
学科名称: | 农学 - 农业 - 农艺与种业 |
学生类型: | 硕士 |
学位: | 农业硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 果树生产原理与良种繁育 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
完成日期: | 2024-05-25 |
答辩日期: | 2024-05-26 |
外文题名: | Study on Germplasm Evaluation of Passiflora Resistance to Telosma Mosaic Virus (TeMV) and the Effectiveness of Preventive and Therapeutic Agents |
中文关键词: | |
外文关键词: | Passion flower ; TeMV ; Germplasm resources ; Photosynthesis ; Resistance gene |
中文摘要: |
西番莲是我国重要的热带经济作物,栽培种也称为百香果,在我国脱贫攻坚和乡村振兴中发挥重要作用。西番莲病毒病是一种侵染性病害,常造成植株的叶片和果实畸形、生长缓慢,严重影响西番莲的产量和品质,以及西番莲产业的健康发展。夜来香花叶病毒(Telosma mosaic virus, TeMV)被认为是感染西番莲最严重的病毒之一。目前没有抗TeMV的食用栽培品种,同时市面上也没有防治TeMV的有效药剂,这是西番莲对TeMV的防控以及西番莲抗病毒研究是产业面临的重大难题。因此,本文以现存于海南省儋州市西番莲种质圃的40份西番莲属不同种的种质为实验材料,开展扫描电子显微镜(Scanning Electron Microscope,SEM)观察、生理生化检测,筛选抗病基因(PAL、PR、NLR等)和RT-qPCR定量分析,探讨西番莲属不同种质材料在TeMV自然侵染的情况下生物学的变化,为未来西番莲抗病育种奠定理论基础。进一步利用防治药剂对已染病的两个西番莲主栽品种(‘台农1号’、‘黄金百香果’)进行处理,统计和分析不同药剂对TeMV的防治效果,筛选出较好的防治药剂。筛选抗病相关基因进行差异表达分析,明确这些抗性基因在防治前后的表达规律,探讨TeMV药剂的作用效果。主要研究内容与结果如下: 1. TeMV对西番莲植株的负面影响十分严重:在表型上,TeMV可以导致西番莲的部分品种叶片发生扭曲、凸起、斑驳、畸形、皱缩、花叶等不良变化;气孔也发生变化,其形状及大小不一。且感病症状明显的品种净光合速率低于5 µmol m-²s-¹,西番莲在TeMV侵染下,其光合和表型发生变化,光合和表型之间联系密切,相互影响,西番莲表型和光合特性表现较好的的品种,POD活性水平均较低。主栽品种‘黄金百香果’受TeMV侵染后其感病症状明显,在光合方面,导致净光合速率、蒸腾速率、气孔导度都低于健康对照211.8%、333%、362%,在抗氧化酶方面,感染病毒‘黄金百香果’的POD、CAT、SOD活性总体上高于其他种质材料。 2. 在本次研究对西番莲不同种质材料的抗病或感病特性分析发现,‘红花西番莲’(P. miniata)未检测出TeMV,光合性能优于健康的‘黄金百香果’(H-CK),抗氧化酶活性低,初步推断为免疫或高抗TeMV品种。 其余检测出TeMV的种质中,表型无病症、TeMV相对表达量极低、光合性能优良的种质有5种,分别为:‘玛格丽特’、‘木瓜-1’、‘金蜜橙黄’、‘瑞香’、‘兰香’,可初步推断具有较好的抗TeMV特性,可作为抗性育种的种质资源。 TeMV相对表达极显著高于感病对照、其他实验数据优于感染病毒的‘黄金百香果’(S-CK)S-CK的种质中的‘Q-1’、‘苹果绿皮’、‘青皮’、‘W-1’4个种质材料可初步推断为耐TeMV种质。各项实验数据高于S-CK,低于H-CK的种质有P. Spp的‘D-1’、‘DL-B1’、‘DZ-1’、‘XZ-B1’4个材料,这些种质可作为抗性育种材料。主栽种紫果(P. edulis)和黄果(P. edulis f.flavicarpa)的12个种质对于TeMV无明显抗性优势。黄果种杂交材料‘6-10-6’病毒含量高、表型症状较轻、光合性能好,初步推断具备较好的耐病毒特征,可作为抗病毒品种进一步选育和推向市场。 3. 扫描电镜观测发现7个品种有表皮毛,除了‘云尼’,其余6个品种(‘玛格丽特’、‘瑞香’、‘兰香’、‘Q-1’、‘红花西番莲’、‘龙珠果’)在光合性能方面极显著优于S-CK;15份种质有角质层外蜡,其中的13个品种的光合性能极显著优于S-CK,分别为:‘木瓜-1’、‘金蜜橙黄’(樟叶西番莲)、‘QZXXFL蓝冠’、‘兰香’、‘Q-1’、‘红花西番莲’、‘玛格丽特’、‘乌拉圭热情果’、‘云尼’、‘瑞香’、‘苹果绿皮’、‘青皮’、‘W-1’、‘Ⅱ-Y’。实验表明拥有丰富角质层外蜡和表皮毛的西番莲品种抗TeMV特性较强。 4. 2%香菇多糖对西番莲的TeMV具有防治效果。香菇多糖喷施西番莲,可以抑制TeMV表达量(下降62.1%)、显著降低4个抗病基因(PAL、PR、NLR)的表达量、降低抗氧化酶活性、提高光合性能;5%氨基寡糖素能提高主栽品种的光合作用、降低了‘台农1号’新叶POD活性,提升CAT活性,对TeMV无抑制效果;灵芝素仅可提升‘台农1号’的光合性能。 |
外文摘要: |
Passion flower, also known as passion fruit, is an important tropical cash crop in China, which plays an important role in poverty alleviation and rural revitalization. Passiflora virus disease is a kind of infectious disease, which often causes deformed leaves and fruits of plants and slow growth, seriously affecting the yield and quality of passiflora and the development of passiflora industry. Telosma mosaic virus (TeMV) is considered to be one of the most serious viruses infecting passion flower. Currently, there are no edible cultivars resistant to TeMV, and there is no effective drug to control TeMV in the market, which is a major problem in the prevention and control of TeMV in Passiflora and the study of antiviral therapy in Passiflora. Therefore, the germplasm of 40 Passiflora species in Danzhou City, Hainan Province were used as experimental materials for Scanning Electron Microscope (SEM) observation, physiological and biochemical tests. To screen resistance genes (PAL, PR, NLR, etc.) and quantitatively analyze them by RT-qPCR, and to explore the biological changes of different Passiflora germplasm materials under the condition of natural infection of TeMV, so as to lay a theoretical foundation for future breeding of Passiflora resistance. The control effects of different agents on TeMV were statistically analyzed, and the better control agent was selected. Results: The TEMV control rate of the infected two main passion fruit varieties (Tainong No.1 and Huangjin passion fruit) was significantly higher than that of the control agent. Resistance related genes were screened for differential expression analysis to clarify the expression rules of these resistance genes before and after treatment, and to explore the effect of TeMV. The main research contents and results are as follows: The negative effects of TeMV on Passiflora plants are very serious: in phenotype, TeMV can cause some varieties of Passiflora leaves to distort, convex, mottled, deformed, wrinkled, flower and other adverse changes; The stomata also varied in shape and size. The net photosynthetic rate of the varieties with obvious symptoms of disease was lower than 5 µmol m-²s-¹, and the photosynthesis and phenotype of Passiflora were changed under TeMV infection, and the photosynthesis and phenotype were closely related and influenced each other, and the varieties with better phenotype and photosynthetic characteristics had lower POD activity levels. Focus on the main variety golden passion fruit, after being infected with TeMV, the disease symptoms were obvious. In terms of photosynthesis, the net photosynthetic rate, transpiration rate and stomatal conductance were lower than the healthy control 211.8%, 333% and 362%. The POD, CAT and SOD activities of infected golden passion fruit were higher than those of other germplasm materials. 2. In this study, the disease resistance or susceptibility characteristics of different Passiflora germplasm materials were analyzed. It was found that no TeMV was detected in ‘Honghua Passionflower’ (P. miniata), its photosynthetic performance was better than that of healthy ‘Huangjin passion fruit’ (H-CK), and its antioxidant enzyme activity was low. Among the other TeMV germplasm, the phenotypic disease-free, TeMV relative expression is very low, and photosynthetic performance is excellent: ‘Margherita’, ‘Mugua-1’, ‘Jinmichenghuang’, ‘Ruixiang’, and ‘Lanxiang’, which can be preliminantly inferred that they have good TeMV resistance and can be used as germplasm resources for resistance breeding. The relative expression of TeMV was significantly higher than that of the infected control, and the experimental data of S-CK were better than those of S-CK infected with virus. The S-CK germplasm included ‘Q-1’, Pingguolvpi, green peel and ‘W-1’, which could be preliminatively inferred as TEMV-resistant germplasm. The germplasm whose experimental data were higher than S-CK and lower than H-CK included ‘D-1’, ‘DL-B1’, ‘DZ-1’ and ‘XZ-B1’ of P. spp., which could be used as resistance breeding materials. The 12 germplasm cultivars of purple fruit (P. edulis) and yellow fruit (P. edulis f.flavicarpa) had no obvious resistance to TeMV. Yellow fruit hybrid ‘6-10-6’ has high virus content, mild phenotypic symptoms and good photosynthetic performance. It is preliminically inferred that it has good virus resistance characteristics, and can be further selected and marketed as an antiviral variety. Scanning electron microscopy (SEM) observed that 7 varieties had epidermal fur, except for ‘Yunni’, the other 6 varieties (‘Marguerite’, ‘Ruixiang’, ‘Lanxiang’, ‘Q-1’, ‘Honghua Passionflower’ and ‘Longzhu fruit’) were significantly superior to S-CK in terms of photosynthetic performance; The photosynthetic performance of 13 cultivars were significantly better than S-CK, including: ‘Mugua 1’, ‘Jinmichenghua’, ‘QZXXFL Languan’, ‘Lanxiang’, ‘Q-1’, ‘Honghua Passionflower’, ‘Margarita’, ‘Uruguay passion fruit, Yuni’,’ Thyme’, ‘Pingguolvpi’, ‘Qingpi’, ‘W-1’, ‘Ⅱ-Y’. The results showed that the passionflower varieties with abundant exocerticular wax and epidermal fur had stronger resistance to TeMV. 4. 2% lentinan has control effect on TeMV of Passiflora. The application of lentinan could inhibit the expression of TeMV (decreased by 62.1%), significantly decrease the expression of 4 resistance genes (PAL, PR, NLR), decrease the activity of antioxidant enzymes, and improve the photosynthetic performance of Passiflora. 5%Amino-oligosaccharides could increase photosynthesis, decrease POD activity and increase CAT activity in Tainong No. 1 leaves, but had no inhibitory effect on TeMV. Ganoderma lucidum could only improve the photosynthetic performance of ‘Tainong NO 1’. |
参考文献: |
[1]边秀秀.大麦颖壳蜡质缺失突变体Cer-GN1中蜡质缺失候选基因鉴定与功能分析[D].甘肃农业大学,2023. [2]陈光禄.台湾西番莲生产现状及其栽培管理[J].福建果树1991(04):26–27. [3]陈礼浪,杨天章,蔡儒平,等人.海南西番莲主要病毒种类的分子检测与鉴定[J].园艺学报,2022,49(08):1785–1794. [4]陈思雨.‘翠鸟’玉簪和东北玉簪叶片表皮蜡质对 光照强度的响应[D].沈阳农业大学,2023. [5]董汉松.植物分子免疫学[M].科学出版社,2020. [6]冯岩.TuMV侵染对不结球白菜光合特性和抗氧化酶代谢的影响及病毒CP和HC-Pro基因的克隆[D].南京农业大学,2009. [7]甘勇辉,连建技.多种提取液浸提金线莲叶片叶绿素效果研究[J].热带农业科学,2021,41(03):86–91. [8]顾俊,王飞,张鹏,胡梁斌,徐朗莱.2007.植物叶表皮蜡质的生物学功能.江苏农业学报,(2):144–148. [9]何金祥,黄宁珍,付传明,等.烟草花叶病毒对烟草叶片光合特征和POD表达的影响[J].西北植物学报,2009,29(05):961–967. [10]黄诚梅,胡春锦,史国英,等.TeMV与PWV侵染对西番莲代谢生理及组织微结构的影响[J].植物病理学报,2023,53(01):22–30. [11]焦楠,朱宁,程春振,等.西番莲TeMV和CMV双重RT-PCR检测体系的建立及应用[J].果树学报,2019,36(07):947–953. [12]焦楠.西番莲快繁体系建立及脱毒技术研究[D].福建农林大学,2019. [13]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:164–165. [14]李景远.广东番木瓜曲叶病毒和大戟曲叶病毒的致病性分析[D].福建农林大学,2022. [15]李巍,李春俭,张福锁,黄彪.西番莲营养品质与功能性成分研究及应用进展[J].中国农业大学学报,2022,27(11):79–92. [16]柳勤海,兰平秀,吕霞,李凡,谭冠林.侵染云南鸡蛋果的病毒种类鉴定及CMV cp基因序列分析[J].植物病理学报,2022,52(06):1021–1024. [17]罗金水,周知恩,王隆燊,陈振东,吴祖建,林荣耀.西番莲病毒病的发生与防控[J].东南园艺,2019,7(06):36–40. [18]马乐乐.光辐射对设施番茄日蒸腾与水分传输的作用机理及蒸腾模型研究[D].西北农林科技大学,2023. [19]任羽羽,王立娟,陈楠,袁启凤,马玉华.贵州百香果病毒病病原的鉴定[J].贵州农业科学,2023,51(01):35–41. [20]史斌斌,袁启凤,李仕品.西番莲营养及功能性成分的研究进展[J].贵州农业科学,2019,47(12):95–98. [21]宋若楠,侯永翔,崔梦迪等.广东百香果病毒的检测[J].仲恺农业工程学院学报,2020,33(01):11–15,20. [22]王群,刘朝巍,徐文娟.紫外分光光度法测定玉米过氧化氢酶活性新进展[J].中国农学通报,2016,32(15):159–165. [23]王学奎,黄见良.植物生理生化实验原理与技术(第3版).北京:高等教育出版社,2015. [24]王莹,秦阳阳,曾婷等.柑橘黄脉病毒侵染对柠檬光合特性和叶绿体超微结构的影响[J].园艺学报,2022,49(04):861–867. [25]王雨.扫描电镜下小麦物理性状与抗麦长管蚜相关性分析[D].西北农林科技大学,2014. [26]谢慧婷,李战彪,崔丽贤等.广西局地西番莲病毒病的病原鉴定及优势病毒分析[J].植物病理学报,2020,50(04):387–393. [27]徐品三,贾娟,孙冰轮,等.百合无症病毒对百合光合生理、酶活性及叶绿体超微结构的影响[J].植物病理学报,2014,44(04):387–392. [28]徐馨蕾,施令祥,段延碧,等.斑驳病毒对‘牛尾’山药叶片光合作用的影响[J].热带亚热带植物学报,2023,31(04):566–572. [29]严佳文,袁启凤,彭志军,王立娟,解璞,陈楠,马玉华.西番莲病毒病害研究进展[J].热带农业科学,2018,38(04):85–94. [30]杨振欣,朱雅静,陆庄跃,等.不同倍性紫果西番莲满天星的形态特征和光合特性比较研究[J].植物遗传资源学报,2023,24(06):1659–1668. [31]张磊,任婷璐,刘艳,孙平平,马捷,娜日苏,李正男,甜瓜病毒研究进展[J],中国果树,2023(4):24–30. [32]张小艳,谢丽雪,张立杰等.福建省百香果病毒病的发生特点及综合防控技术[J].东南园艺,2021,9(04):58–60. [33]张玉川.吊瓜中病毒的分子检测及其光合生理研究[D].浙江理工大学,2011. [34]赵芷.CMV对百香果果实品质的影响及防控研究[D].贵州大学,2021. [35]Adams MJ, Antoniw JF, Beaudoin F. Overview and analysis of the polyprotein cleavage sites in the family Potyviridae[J]. Mol Plant Pathol. 2005, 6(4):471-87. [36]Adams MJ, Antoniw JF, Fauquet CM. Molecular criteria for genus and species discrimination within the family Potyviridae[J]. Arch Virol. 2005, 150(3):459-79. [37]Alexandre M.A. Fonseca, Marina V. Geraldi, Mário R. Maróstica Junior, et al. Rocha,Purple passion fruit (Passiflora edulis f. edulis): A comprehensive review on the nutritional value, phytochemical profile and associated health effects[J]. Food Research International, 2022, 160, 111665. [38]Tang, Y., He, Z., & Zhou, G. Passiflora edulis is a new host of Cotton leaf curl Multan virus-betasatellite complex in China[J]. Canadian Journal of Plant Pathology, 2020, 42(4), 493-498. [39]Barros DR, Alfenas-Zerbini P, Beserra JE Jr, et al. Comparative analysis of the genomes of two isolates of cowpea aphid-borne mosaic virus (CABMV) obtained from different hosts[J]. Arch Virol, 2011, 156(6):1085-91. [40]Bera S, Arena GD, Ray S, et al. The Potyviral Protein 6K1 Reduces Plant Proteases Activity during Turnip mosaic virus Infection[J]. Viruses, 2022, 20;14(6):1341. [41]Bhattacharyya D, Chakraborty S. Chloroplast: the Trojan horse in plant-virus interaction[J]. Mol Plant Pathol, 2018, 19(2):504-518. [42]Breen S, Williams SJ, Outram M, et al. Solomon PS. Emerging Insights into the Functions of Pathogenesis-Related Protein 1[J]. Trends Plant Sci, 2017, 22(10):871-879. [43]Breves SS, Silva FA, Euclydes NC, et al. Begomovirus-Host Interactions: Viral Proteins Orchestrating Intra and Intercellular Transport of Viral DNA While Suppressing Host Defense Mechanisms[J]. Viruses, 2023, 21;15(7):1593. [44]Cai, H., Wang, W., Rui, L., et al. The TIR-NBS protein TN13 associates with the CC-NBS-LRR resistance protein RPS5 and contributes to RPS5-triggered immunity in Arabidopsis[J]. Plant J, 2021, 107:775-786. [45]Camelo-Garcia VM, Esquivel-Fariña A, Ferro CG, et al. Strongylodon macrobotrys:new host of soybean mosaic virus in Brazil[J]. Plant Dis, 2021, 12. [46]Cardona D, Restrepo A, Higuita M,, et al. Natural infection of purple passion fruit (Passiflora edulis f. edulis) by a novel member of the family Tymoviridae in Colombia[J]. Acta Virol, 2022, 66(3):254-262. [47]Chen B, Wu D, Zheng H, et al. Complete genome sequence of passiflora virus Y infecting passion fruit in China[J]. Arch Virol, 2021, 166(5):1489-1493. [48]Chen J, Luo X, Chen Y, et al. Recent Research Progress:Discovery of Anti-Plant Virus Agents Based on Natural Scaffold[J]. Front Chem, 2022, 26;10:926202. [49]Chen L, Sun D, Zhang X, et al.Transcriptome analysis of yellow passion fruit in response to cucumber mosaic virus infection[J]. PLoS One, 2021, 24;16(2):e0247127. [50]Chen S, Yu N, Yang S, et al. Identification of Telosma mosaic virus infection in Passiflora edulis and its impact on phytochemical contents[J]. Virol J, 2018, 1;15(1):168. [51]Chen, L.J., Sun, D.L., Lu, Y.L. et al. First report of ramie mosaic virus on passion fruit in Guangdong, southern China[J]. J Plant Pathol, 2020, 102, 1305. [52]Cheng YH, Deng TC, Chen CC, et al.First Report of Euphorbia leaf curl virus and Papaya leaf curl Guangdong virus on Passion Fruit in Taiwan[J]. Plant Dis, 2014, 98(12):1746. [53]Correa, M.F., Pinto, A.P.C., Rezende, J.A.M. et al. Genetic transformation of sweet passion fruit (Passiflora alata) and reactions of the transgenic plants to Cowpea aphid borne mosaic virus[J]. Eur J Plant Pathol, 2015, 143, 813–821. [54]Costa, J.L.; Jesus, O.N.D.; Oliverira, G.A.F., et al. Effect of selection on genetic variability in yellow passion fruit[J]. Crop Breed. Appl. Biotechnol, 2012, 12, 253–260. [55]Crestani, O A, Kitajima, E W, Lin M T, et al. Passion fruit yellow mosaic virus, a new Tymovirus found in Brazil [J]. Phytopathology, 1986, 76 (9):951-955. [56]da Silva, M.L., Paim Pinto, D.L., Passos, A.B. et al. Novel and efficient transformation of wild passion fruit (Passiflora cincinnata Mast.) using sonication-assisted Agrobacterium-mediated transformation[J]. In Vitro Cell.Dev.Biol.-Plant, 2021, 57, 380-386. [57]Deng P, Wu Z, Wang A. The multifunctional protein CI of potyviruses plays interlinked and distinct roles in viral genome replication and intercellular movement[J]. Virol J, 2015, 15;12:141. [58]Do DH, Chong YH, Ha VC, et al. Characterization and Detection of Passiflora Mottle Virus and Two Other Potyviruses Causing Passionfruit Woodiness Disease in Vietnam[J]. Phytopathology, 2021, 111(9):1675-1685. [59]Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant-pathogen interactions[J]. Nat Rev Genet, 2010, 11(8):539-48. [60]Fan H, Yan X, Fu M, et al. Interactive Effect of Biological Agents Chitosan, Lentinan and Ningnanmycin on Papaya Ringspot Virus Resistance in Papaya (Carica papaya L.)[J]. Molecules, 2022; 2;27(21):7474. [61]Ferreira, D. R. Barros, M. R, et al. De Almeida.Characterization of Passionfruit severe leaf distortion virus, a novel begomovirus infecting passionfruit in Brazil,reveals a close relationship with tomato-infecting begomoviruses).Plant Pathology, 2010, 59(4):221-230 [62]Fischer I H, Rezende J A M. Diseases of Passion flower (Passiflora spp.)[J]. Pest Technology, 2008, 2(1):1-19. [63]Fontenele RS, Abreu RA, Lamas NS, et al.Passion Fruit Chlorotic Mottle Virus: Molecular Characterization of a New Divergent Geminivirus in Brazil[J]. Viruses, 2018, 2;10(4):169. [64]Fresnillo P, Jover-Gil S, Samach A, et al. Complete Genome Sequence of an Isolate of Passiflora chlorosis virus from Passion Fruit (Passiflora edulis Sims)[J]. Plants (Basel), 2022, 13;11(14):1838. [65]Fukumoto T, Nakamura M, Wylie SJ, et al. Complete nucleotide sequence of a new isolate of passion fruit woodiness virus from Western Australia[J]. Arch Virol, 2013, 158(8):1821-4. [66]Fukumoto, T., Nakamura, M., Rikitake, et al. Molecular characterization and specific detection of two genetically distinguishable strains of East Asian Passiflora virus (EAPV) and their distribution in southern Japan[J]. Virus Genes, 2012, 44, 141–148 [67]Fukuzawa N, Itchoda N, Ishihara T, et al. HC-Pro, a potyvirus RNA silencing suppressor, cancels cycling of Cucumber mosaic virus in Nicotiana benthamiana plants[J]. Virus Genes, 2010, 40(3):440-6. [68]Geng C, Cong QQ, Li XD, et al. DEVELOPMENTALLY REGULATED PLASMA MEMBRANE PROTEIN of Nicotiana benthamiana contributes to potyvirus movement and transports to plasmodesmata via the early secretory pathway and the actomyosin system[J]. Plant Physiol, 2015, 167(2):394-410. [69]Ghanim M, Kontsedalov S. Gene expression in pyriproxyfen-resistant Bemisia tabaci Q biotype[J]. Pest Manag Sci, 2007, 63(8):776-83. [70]Gilbert L E. Butterfly-plant co-evolution:Has Passiflora adenopold won the selectional race with Heliconiine butterflies[J].Science, 1971, 172:585-586. [71]Ha, Cuong Viet. Detection and identification of potyviruses and geminiviruses in Vietnam[D]. PhD by Publication, Queensland University of Technology, 2007. [72]Hajimorad MR, Domier LL, Tolin SA, et al. Soybean mosaic virus:a successful potyvirus with a wide distribution but restricted natural host range[J]. Mol Plant Pathol, 2018 Jul;19(7):1563-1579. [73]Hajimorad MR, Domier LL, Tolin SA, et al. Soybean mosaic virus: a successful potyvirus with a wide distribution but restricted natural host range[J]. Mol Plant Pathol, 2018 Jul;19(7):1563-1579. [74]Hameed, A., Tahir, M.N., Asad, S. et al. RNAi-Mediated Simultaneous Resistance Against Three RNA Viruses in Potato[J]. Mol Biotechnol, 2017, 59, 73–83. [75]He YZ, Wang YM, Yin TY, et al. A plant DNA virus replicates in the salivary glands of its insect vector via recruitment of host DNA synthesis machinery[J]. Proc Natl Acad Sci USA, 2020, 21;117(29):16928-16937. [76]Huang C, Sede AR, Elvira-González L, et al. DsRNA-induced immunity targets plasmodesmata and is suppressed by viral movement proteins[J]. Plant Cell, 2023 28:koad176. [77]Huang M, Wu Z, Li J, et al. Plant Protection against Viruses: An Integrated Review of Plant Immunity Agents[J]. Int J Mol Sci, 2023, 23;24(5):4453. [78]Kim, Hyun Jung et al. “Morphological Classification of Trichomes Associated with Possible Biotic Stress Resistance in the Genus Capsicum.” Plant Pathology Journal, 2012, 28:107-113. [79]Ishibashi K, Ishikawa M. Replication of Tobamovirus RNA[J]. Annu Rev Phytopathol, 2016, 4;54:55-78. [80]Javaid S, Amin I, Jander G, et al. A transgenic approach to control hemipteran insects by expressing insecticidal genes under phloem-specific promoters[J]. Sci Rep, 2016, 6;6:34706. [81]Jiang J, Laliberté JF. The genome-linked protein VPg of plant viruses-a protein with many partners[J]. Curr Opin Virol, 2011, 1(5):347-54. [82]Jover-Gil S, Beeri A, Fresnillo P, et al. Complete genome sequence of a novel virus, classifiable within the Potyviridae family, which infects passion fruit (Passiflora edulis)[J]. Arch Virol, 2018, 163(11):3191-3194. [83]Kehoe MA, Coutts BA, Buirchell BJ, et al. Plant virology and next generation sequencing: experiences with a Potyvirus[J]. PLoS One, 2014, 9(8):e104580. [84]Kim M, Lim HS, Lee HH, et al. Role Identification of Passiflora Incarnata Linnaeus:A Mini Review[J]. J Menopausal Med, 2017, 23(3):156-159. [85]Kiss ZA, Medina V, Falk BW. Crinivirus replication and host interactions[J]. Front Microbiol, 2013, 20;4:99. [86]Kitajima EW, Chagas CM, Rodrigues JC. Brevipalpus-transmitted plant virus and virus-like diseases:cytopathology and some recent cases[J]. Exp Appl Acarol, 2003, 30(1-3):135-60. [87]Kitajima EW, Rezende JA, Rodrigues JC. Passion fruit green spot virus vectored by Brevipalpus phoenicis (Acari:Tenuipalpidae) on passion fruit in Brazil[J]. Exp Appl Acarol, 2003, 30(1-3):225-31. [88]Kumar R, Dasgupta I. Geminiviral C4/AC4 proteins: An emerging component of the viral arsenal against plant defence[J]. Virology, 2023, 579:156-168. [89]Laranjeira FF, Silva SX, de Andrade EC, et al. Infestation dynamics of Brevipalpus phoenicis (Geijskes) (Acari:Tenuipalpidae) in citrus orchards as affected by edaphic and climatic variables[J]. Exp Appl Acarol, 2015, 66(4):491-508. [90]Léonard S, Plante D, Wittmann S, et al. Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity[J]. J Virol, 2000, 74(17):7730-7. [91]Liu J, Wu X, Fang Y, et al. A plant RNA virus inhibits NPR1 sumoylation and subverts NPR1-mediated plant immunity[J]. Nat Commun, 2023, Jun, 16;14(1):3580. [92]Mandadi KK, Scholthof KB. Plant immune responses against viruses: how does a virus cause disease[J]. Plant Cell, 2013, 25(5):1489-505. [93]Martínez-Turiño S, García JA. Potyviral coat protein and genomic RNA: A striking partnership leading virion assembly and more[J]. Adv Virus Res, 2020;108:165-211. [94]Maxwell DJ, Partridge JC, Roberts NW, et al. The Effects of Plant Virus Infection on Polarization Reflection from Leaves[J]. PLoS ONE, 2016, 11(4): e0152836. [95]Mbeyagala EK, Maina S, Macharia MW, et al. Illumina Sequencing Reveals the First Near-Complete Genome Sequence of Ugandan Passiflora Virus[J]. Microbiol Resour Announc, 2019, 16;8(20):e00358-19. [96]Mituti, Tatiana;Spadotti, David;Narita, Nobuyoshi, et al. . First Report of Sida Mottle Alagoas Virus Infecting Passiflora edulis in Brazil. Plant Disease, 2018, 103. [97]Munguti F, Maina S, Nyaboga EN, Kilalo D, et al. Transcriptome Sequencing Reveals a Complete Genome Sequence of Cowpea Aphid-Borne Mosaic Virus from Passion Fruit in Kenya[J]. Microbiol Resour Announc, 2019, 10;8(2):e01607-18. [98]Na Chu, Jing-Ru Zhou, Philippe C, et al. ScPR1 plays a positive role in the regulation of resistance to diverse stresses in sugarcane (Saccharum spp.) and Arabidopsis thaliana[J]. Industrial Crops and Products, 2022, 180, 114736, ISSN 0926-6690, [99]Novaes, Q.S., Freitas-Astua, J., Yuki, et al. Partial characterization of a bipartite begomovirus infecting yellow passion flower in Brazil[J]. Plant Pathology, 2003, 52:648-654. [100]Oliveira C R B, Marinho V L A, Astolfi Fo S, et al. Purification, serology and some properties of the purple granadilla (Passiflora edulis) mosaic virus[J]. Fitopatologia Brasileira, 1994, 19(3):455-462. [101]Olmedo Velarde A, Roy A, Larrea-Sarmiento A, et al.First report of the hibiscus strain of citrus leprosis virus C2 infecting passionfruit (Passiflora edulis)[J]. Plant Dis, 2022, Mar, 6. [102]Pares R D, Martin A B, Morrison W. Rhabdovirus-like particles in Passion fruit[J]. Australasian Plant Pathology[J]. 1983, 12(3):51-52 [103]Parrella G, Arch Virol CL. Identification of a new pathotype of Bean yellow mosaic virus (BYMV) infecting blue passion flower and some evolutionary characteristics of BYMV[J]. 2009;154(10):1689-94. [104]Paul S, de la Fuente-Jiménez JL, Manriquez CG, et al. Identification, characterization and expression analysis of passion fruit (Passiflora edulis) microRNAs[J]. 3 Biotech. 2020, 10(1):25. [105]Pečenková T, Pleskot R, Žárský V. Subcellular Localization of Arabidopsis Pathogenesis-Related 1 (PR1) Protein[J]. Int J Mol Sci, 2017, 13, 18(4):825. [106]Brown, J.K. Phylogenetic Biology of the Bemisia tabaci Sibling Species Group. In: Stansly, P., Naranjo, S. (eds) Bemisia: Bionomics and Management of a Global Pest. Springer, Dordrecht, 2009. [107]Polston JE, Londoño MA, Cohen AL, et al.Genome Sequence of Euphorbia mosaic virus from Passionfruit and Euphorbia heterophylla in Florida[J]. Genome Announc, 2017, 2;5(9):e01714-16. [108]Riska, Sato, Y., Inudo, K. et al. East Asian Passiflora distortion virus: a novel potyvirus species causing deformation of passionfruits in Japan[J]. J Gen Plant Pathol, 2019,85, 221–231. [109]Rizwan, H.M.; Yang, Q.; Yousef, A.F., et al. Establishment of a Novel and Efficient Agrobacterium-Mediated in Planta Transformation System for Passion Fruit (Passiflora edulis)[J]. Plants, 2021, 10, 2459. [110]Rohozková J, Navrátil M. P1 peptidase-a mysterious protein of family Potyviridae[J]. J Biosci, 2011, 36(1):189-200. [111]Rosen R, Kanakala S, Kliot A, et al. Persistent, circulative transmission of begomoviruses by whitefly vectors[J]. Curr Opin Virol, 2015, 15:1-8. [112]Sabharwal P, Srinivas S, Savithri HS. Mapping the domain of interaction of PVBV VPg with NIa-Pro: Role of N-terminal disordered region of VPg in the modulation of structure and function[J]. Virology, 2018, 524:18-31. [113]Santos, E.A.; Souza, M.M.; Abreu, P.P., et al. Confirmation and characterization of interspecific hybrids of Passiflora L. (Passifloraceae) for ornamental use[J]. Euphytica, 2012, 184,389. [114]Sett S, Prasad A, Prasad M. Resistance genes on the verge of plant-virus interaction[J]. Trends Plant Sci, 2022, 27(12):1242-1252. [115]Shen W, Shi Y, Dai Z, et al. The RNA-Dependent RNA Polymerase NIb of Potyviruses Plays Multifunctional, Contrasting Roles during Viral Infection[J]. Viruses, 2020, 12(1):77. [116]Shukla, A., Upadhyay, S., Mishra, M. et al. Expression of an insecticidal fern protein in cotton protects against whitefly[J]. Nat Biotechnol, 2016, 34, 1046–1051. [117]Siqueira-Júnior CL, Jardim BC, Urményi TP, et al. Wound response in passion fruit (Passiflora f. edulis flavicarpa) plants: gene characterization of a novel chloroplast-targeted allene oxide synthase up-regulated by mechanical injury and methyl jasmonate[J]. Plant Cell Rep, 2008, 27(2):387-97. [118]Song YS, Min BE, Hong JS, et al.Molecular evidence supporting the confirmation of maracuja mosaic virus as a species of the genus Tobamovirus and production of an infectious cDNA transcript[J]. Arch Virol, 2006, 151(12):2337-48. [119]Song YS, Ryu KH. The complete genome sequence and genome structure of passion fruit mosaic virus[J]. Arch Virol, 2011, 156(6):1093-5. [120]Song, S.; Zhang, D.; Ma, F., et al. Genome-Wide Identification and Expression Analyses of the Aquaporin Gene Family in Passion Fruit (Passiflora edulis), Revealing PeTIP3-2 to Be Involved in Drought Stress[J]. Int. J. Mol. Sci, 2022, 23, 5720. [121]Spadotti, D.M.A., Bello, et al.Passiflora edulis: new natural host of Melochia yellow mosaic virus in Brazil[J]. Australasian Plant Dis. 2019, 14, 23. [122]Spiegel S, Zeidan M, Sobolev I, et al.The complete nucleotide sequence of Passiflora latent virus and its phylogenetic relationship to other carlaviruses[J]. Arch Virol, 2007, 152(1):181-9. [123]Zhang, Chaoyue, Jiang, Junmei, Chen, Songshu, et al. Telosma mosaic virus : An emerging plant RNA virus causing production loss in passion fruit across Asia[J]. Plant Pathology, 2023, 73. [124]Alfenas, Poliane, Braz, Antônio; Torres, Leonardo, et al Transgenic passionfruit expressing RNA derived from Cowpea aphid-borne mosaic virus is resistant to passionfruit woodiness disease[J]. Fitopatologia Brasileira, 2005, 30 [125]Tu Y, Jin Y, Ma D, et al. Interaction between PVY HC-Pro and the NtCF1β-subunit reduces the amount of chloroplast ATP synthase in virus-infected tobacco[J]. Sci Rep, 2015, 26;5:15605. [126]Twayana M, Girija AM, Mohan V,, et al. Phloem: At the center of action in plant defense against aphids[J]. J Plant Physiol, 2022, 273:153695. [127]Usovsky M, Chen P, Li D, et al. Decades of Genetic Research on Soybean mosaic virus Resistance in Soybean[J]. Viruses, 2022, 24;14(6):1122. [128]Vaca-Vaca JC, Carrasco-Lozano EC, López-López K. Molecular identification of a new begomovirus infecting yellow passion fruit (Passiflora edulis) in Colombia[J]. Arch Virol, 2017, 162(2):573-576. [129]Vidal AH, Lacorte C, Sanches MM, et al. Characterization of Cucurbit Aphid-Borne Yellows Virus (CABYV) from Passion Fruit in Brazil: Evidence of a Complex of Species within CABYV Isolates[J]. Viruses, 2023, 1;15(2):410. [130]Vidal, A.H., Felix, G.P., Abreu, E.F.M., et al. Occurrence of lettuce chlorosis virus in Passiflora spp. in Brazil[J]. J Plant Pathol, 2021, 103:443–447. [131]wai H, Yamashita Y, Nishi N, et al. The potyvirus associated with the dappled fruit of Passiflora edulis in Kagoshima prefecture, Japan is the third strain of the proposed new species East Asian Passiflora virus (EAPV) phylogenetically distinguished from strains of Passion fruit woodiness virus[J]. Arch Virol, 2006, 151(4):811-8. [132]Wang J, Song W, Chai J. Structure, biochemical function, and signaling mechanism of plant NLRs[J]. Mol Plant, 2023, 2;16(1):75-95. [133]Wang J, Wang HY, Xia XM, et al. Inhibitory effect of sulfated lentinan and lentinan against tobacco mosaic virus (TMV) in tobacco seedlings[J]. Int J Biol Macromol, 2013, 61:264-9. [134]Wang Z, Yan H, Yang Y, Wu Y. Biotype and insecticide resistance status of the whitefly Bemisia tabaci from China[J]. Pest Manag Sci, 2010, 66(12):1360-6. [135]Wu X, Valli A, García JA, et al. The Tug-of-War between Plants and Viruses: Great Progress and Many Remaining Questions[J]. Viruses, 2019, 28;11(3):203. [136]Xiao H, Lord E, Sanfaçon H. Proteolytic Processing of Plant Proteins by Potyvirus NIa Proteases[J]. J Virol, 2022, 26;96(2):e0144421. [137]Xie L, Gao F, Shen J, et al. Molecular characterization of two recombinant isolates of telosma mosaic virus infecting Passiflora edulis from Fujian Province in China[J]. PeerJ, 2020, 21;8:e8576. [138]Xie L, Gao F, Zheng S, et al. Molecular characterization of a new potyvirus infecting passion fruit[J]. Arch Virol, 2019, 164(7):1903-1906. [139]Yang K, Yan H, Song L, et al. Analysis of the complete genome sequence of a potyvirus from passion fruit suggests its taxonomic classification as a member of a new species[J]. Arch Virol, 2018, 163(9):2583-2586. [140]Yuan M, Jiang Z, Bi G, et al. Pattern-recognition receptors are required for NLR-mediated plant immunity[J]. Nature, 2021, 592(7852):105-109. [141]Zhang S, Huang A, Zhou X, et al. Natural Defect of a Plant Rhabdovirus Glycoprotein Gene: A Case Study of Virus-Plant Coevolution. Phytopathology[J]. 2021, 111(1):227-236. [142]Zhang W, Zhao F, Jiang L,, et al. Different Pathogen Defense Strategies in Arabidopsis: More than Pathogen Recognition[J]. Cells, 2018, 7;7(12):252. [143]Zhiqiang Xia, Dongmei Huang, Shengkui Zhang, , et al. Chromosome-scale genome assembly provides insights into the evolution and flavor synthesis of passion fruit (Passiflora edulis Sims)[J]. Horticulture Research, Volume, 2021, 8. |
中图分类号: | S66 |
开放日期: | 2024-06-19 |