中文题名: | 异色菊和菊花脑正反交F1代主要园艺性状和抗旱性的遗传分析 |
姓名: | |
学号: | 2017104113 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0902Z1 |
学科名称: | 农学 - 园艺学 - 观赏园艺学 |
学生类型: | 硕士 |
学位: | 农学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 观赏植物种质资源研究与创新 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2020-12-03 |
答辩日期: | 2020-12-03 |
外文题名: | Genetic Variation of Horticultural Traits and Drought Tolerance in Reciprocal F1 Progenies Derived from Chrysanthemum dichrum and C. nankingense |
中文关键词: | |
外文关键词: | Chrysanthemum related species ; Reciprocal crosses ; Horticultural traits ; Drought tolerance ; Genetic analysis ; Genetic polymorphism |
中文摘要: |
菊花(Chrysanthemum morifolium Ramat.)是我国传统名花和世界重要切花,具有很高的观赏和经济价值。干旱胁迫是限制菊花生长发育、产量和品质的重要非生物逆境因子之一,由于栽培菊花遗传基础狭窄,抗性遗传改良难度大。但我国有丰富的野生近缘种属植物资源,其中蕴含着许多重要的优良抗性或观赏特性基因,可通过属种间远缘杂交创制重要育种中间材料,为将这些优异性状基因引入到栽培菊花中创造条件。近年来,低倍性野生近缘种的挖掘与利用逐渐成为菊花种质创新研究的重要方向。然而,关于菊花近缘种杂交群体遗传机制的研究较少,正反交是否会造成杂交后代的显著遗传差异尚不明确。因此,以异色菊和菊花脑为亲本,人工杂交创制正反交F1代群体,利用SRAP分子标记和形态性状分析正反交F1群体的遗传多样性,并调查叶片和花序相关性状以及抗旱性等重要性状在异色菊和菊花脑正反交F1代的遗传差异,以期明确正反交对目标性状遗传特性的影响,为后续菊花近缘种优异种质创新和菊花新品种培育提供依据。 (1)利用SRAP分子标记和叶片、花序相关性状研究了异色菊和菊花脑正反交F1代群体的遗传多样性。结果发现,分别利用4对SRAP多态性引物鉴定异色菊和菊花脑正反交F1代群体杂种真实率为100%,说明SRAP杂种鉴定率较高。24对SRAP多态性引物组合在异色菊、菊花脑及其271个正反交F1杂种中扩增得到303个多态性条带,平均每对引物扩增出13条多态性条带。基于SRAP标记数据的UPGMA聚类分析在遗传相似系数为0.60处将亲本和175个正交后代分为6类,约40%杂种与母本异色菊聚为一类;在遗传相似系数为0.62处将亲本和反交后代分为4类,约33%杂种与母本菊花脑聚在一起。在形态方面,除了叶宽、叶柄长、舌状花长和管状花数外,叶长、叶长/叶宽、叶面积、叶齿数、舌状花宽、舌状花数、花序直径和心花直径等其他8个园艺性状在正交和反交F1群体之间存在极显著差异(P < 0.01),说明前4个性状主要为细胞核遗传,而后8个性状主要为细胞质遗传。基于形态性状的聚类分析结果验证了异色菊和菊花脑正反交F1代群体多与母本聚在一起,说明大部分F1杂种在遗传本质上与母本更为接近,表现为偏母性遗传。 (2)调查了12个叶片和花序相关性状在异色菊和菊花脑正反交F1代群体的杂种优势和主基因效应。结果发现,正反交后代12个表型性状的变异系数范围分别是8.81% ~ 30.09%和10.46% ~ 55.78%,且反交显著大于正交,说明亲本的杂交顺序显著影响目标性状的遗传变异水平。正交F1代中,除叶齿数和舌状花长外,其余10个表型性状的中亲优势值均达显著或极显著水平,中亲优势率在-1.39% ~ 53.02%之间;反交F1代中,除舌状花长和管状花数外,其他10个表型性状的中亲优势值达到显著或极显著水平,中亲优势率在-13.21% ~ 108.84%之间。正反交F1代群体中分别有26对和37对相关性达极显著。混合遗传分析结果表明,另外发现,异色菊和菊花脑正反交F1代中叶齿数无主基因控制,叶长、叶宽、叶面积、管状花数在异色菊和菊花脑正反交F1代中分别受控于不同的遗传模型;尽管叶长/叶宽、叶柄长、舌状花长、舌状花宽、舌状花数、花序直径和心花直径在正反交中均由两对表现为加性-显性-上位性效应的主基因控制(B-1模型),但是该模型下遗传参数估计值在正反交中差异较大。可见,叶片和花序相关性状在异色菊和菊花脑正反交后代中遗传差异较大。因此,在今后菊花近缘种属植物资源杂交种质创新过程中,应特别注意正反交对目标性状遗传变异的影响。 (3)采用穴盘自然干旱方法,结合9个抗旱相关指标的隶属函数值和主成分分析评价了异色菊和菊花脑及其正反交F1代群体的抗旱性,并比较了抗旱性的遗传差异。结果表明,正反交F1代群体干旱处理组各性状与对照组有极显著变化(P < 0.01),9个抗旱指标的胁迫指数在后代中发生了不同程度的变异,其中地下鲜重胁迫指数变异在正反杂交组合中均较大,变异系数分别为37.88%和36.76%,萎蔫指数的变异系数在反交F1代中最大(39.44%)。各抗旱指标之间存在显著或极显著相关。从9个抗旱指标中,通过主成分分析提炼得到两个主成分,可以解释72%的表型变异。结合隶属函数值分析将该群体分为高抗旱、抗旱、低抗旱、不抗旱和极不抗旱5类,其中高抗旱有7个株系(正交F1代Y80,Y38,Y66,Y59,Y65,Y34和反交F1代J51),抗旱隶属函数值为0.81 ~ 1.00,显著高于高抗亲本异色菊。混合遗传分析结果表明,抗旱性是由一对表现为加-显效应的主基因调控,正反交F1代主基因遗传率分别为50.02%和50.49%。研究结果为菊花近缘种抗旱种质创新和菊花抗旱遗传改良提供了根据。 |
外文摘要: |
Chrysanthemum (Chrysanthemum morifolium Ramat.) is one of ten famous traditional flowers in China and one of the four leading cut flowers in the world, thus possessing high ornamental and economic values. Drought stress is one of the important abiotic stress factors that limit palnt growth and yield. Understanding the genetic model of drought resistance is crucial to its breeding improvement. Due to the narrow genetic base of cultivated chrysanthemum, it is difficult to improve resistance traits by intracutlivar hybridization. However, our country possess abundant chryanthemum related wild species or genera sharing many important resistance or ornamental traits, and distant hybridization proves to be an efficient way of transferring the important traits into cutlivated chyrsanthemum. Recently, the utilization of wild species with low ploidy is becoming an important point in chrysanthemum germplasm innovation. Whereas, few researches focus on the genetic pattern in chrysanthemum related species, and whether reciprocal hybridization brings about genetic difference remains unknow. In this study, we took the interspecific reciprocal F1 progenies derived from C. dichrum and C. nankingense as materials, and compared the genetic difference by SRAP markers, horticultral traits and drought tolerance-related traits, and finally created some excellent materials for future use in chrysnthemum breeding activities. The main results are as follows: (1) The hybrid authenticity and genetic diversity of the reciprocal F1 progenies derived from C. dichrum and C. nankingense were studied using SRAP markers and morphological traits. The results showed that the 271 hybrid F1 generations were all true hybrids with hybrid authenticity rate 100%. The 24 pairs of SRAP primers amplified 303 polymorphic bands with 13 polymorphic bands per pair of primers amplified on average. The genetic similarity coefficient of C. dichrum and C. nankingense was 0.45, indicating that the genetic relationship is relatively distant. The UPGMA cluster analysis divided the parent and 175 hybrids of C. dichrum × C. nankingense into 6 categories at the genetic similarity coefficient of 0.60, and 40% of the hybrids were clustered together with the female parent C. dichrum. At the genetic similarity coefficient of 0.62, the parents and the hybrids of C. nankingense × C. dichrum were divided into 4 categories, and 33.33% hybrids were clustered with the female parent C. nankingense, while the male parents of the reciprocal crosses were grouped together separately. Eight of 12 investigated horticultural traits showed significant difference (P < 0.01) between the reciprocal crosses. Results of the morphological traits-based clustering confirm that most hybrids were grouped with the corresponding female parent, pointing the presence of partial maternal inheritance. (2) The variation of the 12 leaf- and flower- related traits, i.e., leaf length, leaf width, leaf length/leaf width, leaf area, petiole length, leaf tooth number, flower diameter, center flower diameter, ray floret length, ray floret width, ray floret number and tubular floret number was analyzed using major gene plus polygene mixed inheritance model. The results showed that the coefficients of variation of the 12 traits in the reciprocal progenies ranged in 8.81% ~ 30.09% and 10.46% ~ 55.78%, respectively. Heterosis ratio of the 12 traits varied in a range of -1.39% ~ 53.02% and -13.21% ~ 108.84%, most of which reached significance at 0.01 level. There were 26 and 37 significant pair-wise correlation (P < 0.01) were observed in the reciprocal F1 progenies. Mixed genetic analysis showed that no major gene were detected for leaf tooth number, and different geneitc models were detected for leaf length, leaf width, leaf area, tubular floret number in the reciprocal F1 progenies; in addition, leaf length/leaf width, petiole length, flower diameter, center flower diameter, ray floret length, ray floret width, and ray floret number were all governed by B1 model, but the reciprocal F1 populations differed largely in genetic parameters of the former mentioned traits. Thus, leaf- and flower-related traits show genetic difference in the reciprocal F1 populations, and we should take the effect of reciprocal crosses into consideration in future breeding program involving with those wild species. The drought tolerance in the reciprocal progenies of C. dichrum and C. nankingense were evaluated based on nine drought tolerance component traits, i.e., wilting index, plant height, root length, fresh root weight, fresh shoot weight, root dry weight, shoot dry weight, fresh weight root/shoot ratio, dry weight root/shoot ratio, and the genetic difference were investigated. The results showed that dought stress caused a significant (P < 0.01) variation of the nine investigated traits in the reciprocal progenies, and the stress index varied in a wide range, of which fresh weight root/shoot ratio show relatively large coefficient of variation 37.88% and 36.76 in the reciprocal progenies, and wilting index show largest coeffecient of variation 39.44% in C. nankingense × C. dichrum. Principal component analysis extracted two principal components from the nine drought resistance indicators, which explained larger than 70% of the phenotypic variation. Comprehensive evaluation divided the reciprocal progenies into five categories: high drought resistance, drought resistance, low drought resistance, non-drought resistance and extremely non-drought resistance. There are 7 hybrid lines with higher drought resistance than resistant parent C. dichrum, namely Y80, Y38, Y66, Y59, Y65, Y34 in C. dichrum × C. nankingense and J51 in C. nankingense × C. dichrum. The major gene plus polygene mixed inheritance model analysis obvered that the drought resistance in the reciprocal F1 progenies was controlled by an pair of major genes with additive-dominant effect, and the heritability of the major genes of reciprocal crosses was 50.02% and 50.49%, respectively. The findings This study is the genetic improvement and drought resistance QTL mapping of chrysanthemum provided important basis for germplasm innovation and genetic breeding with emphasis on drought tolerance in chrysanthemum. |
参考文献: |
1. 奥妮, 仰小东, 李晨曦, 于瑞宁, 房伟民, 陈发棣, 张飞. 菊花正反交F1代株高和叶形相关性状的遗传差异[J]. 分子植物育种, 2020, 18(17):5825-5859. 2. 陈发棣, 陈佩度, 房伟民, 李鸿渐. 栽培小菊与野生菊间杂交一代的细胞遗传学初步研究[J]. 园艺学报, 1998, 25(3):308-309 3. 陈发棣, 陈佩度, 李鸿渐. 几种中国野生菊的染色体组分析及亲缘关系初步研究[J]. 园艺学报, 1996, 23(1):67-72. 4. 陈发棣, 陈素梅 房伟民 张飞, 蒋甲福, 滕年军, 管志勇. 王海滨. 宋爱萍. 赵爽. 菊花优异种质资源挖掘与种质创新研究[J]. 中国科学基金, 2016, 30(2):112-115. 5. 陈劲枫, 庄飞云, 娄群峰, 徐玉波, 钱春桃, 任刚, 罗向东. 甜瓜属植物种间正反交在形态及分子水平上的差异性[C]. 中国园艺学会.中国园艺学会第九届学术年会论文集, 2001, 4:330-333. 6. 陈瑞丹, 张启翔. 梅花杂交育种中GA对结实率影响的研究初报[J]. 北京林业大学学报, 2004, 26(增刊):57-63. 7. 陈雪鹃, 孙明, 菅琳, 李贤利, 张启翔. 部分菊属植物及其近缘种的胚拯救与杂种鉴定[J]. 东北林业大学学报, 2014, 42(7):74-79+86. 8. 程曦. 菊属种间杂交和抗性种质创新研究[D]. 南京: 南京农业大学, 2010. 9. 迟天华, 徐婷婷, 刘颖鑫, 马杰, 管志勇, 房伟民, 陈发棣, 张飞. 异色菊×菊花脑种间杂交后代耐寒性的遗传变异[J]. 核农学报, 2018, 32(12):2298-2304. 10. 戴思兰, 陈俊愉. 菊属7个种的人工种间杂交试验[J].北京林业大学学报, 1996, 18(4):16-22. 11. 戴思兰, 陈俊愉. 中国菊属一些种的分支分类学研究[J]. 武汉植物学研究, 1997, 15(1):27-34. 12. 戴思兰, 王文奎, 黄家平. 菊属系统学及菊花起源的研究进展[J]. 北京林业大学学报, 2002, 24(5/6):234-238. 13. 戴思兰, 钟杨, 张晓艳. 中国菊属植物部分种的数量分类研究[J]. 北京林业大学学报, 1995, 17(4):9-15. 14. 戴思兰. 中国栽培菊花起源的综合研究[D]. 北京: 北京林业大学, 1994. 15. 邓衍明, 叶晓青, 佘建明, 汤日圣. 植物远缘杂交育种研究进展[J]. 华北农学报, 2011, 26(增刊): 52-55. 16. 邓衍明. 利用属间远缘杂交创造栽培菊花抗逆新种质的研究[D]. 南京: 南京农业大学, 2010. 17. 付晓. 切花菊抗蚜性分子标记的关联分析与QTL定位研究[D]. 南京: 南京农业大学, 2018. 18. 盖钧镒, 章元明, 建康. 植物数量性状遗传体系[M]. 北京: 科学出版社, 2003. 19. 顾菁. 菊属野生种抗旱生理机理及抗旱蛋白质组学研究[D]. 南京: 南京农业大学, 2013. 20. 郭天亮, 李春志, 柴风琴, 王孝立. 菊花(秋菊)人工杂交育种试验[J]. 林业科技开发, 2003, 17(5):61-62. 21. 郭衍龙, 聂以春, 郝三辉, 叶胜池. 华杂棉H318 F2杂种优势及F1正反交差异比较[J]. 中国棉花, 2012, 39(11):19-21. 22. 韩洁, 胡楠, 李玉阁, 尚富德. 菊花品种资源遗传多样性的AFLP分析[J]. 园艺学报, 2007, 34(4):1041-1046. 23. 胡新颖, 杨迎东, 王伟东, 白一光, 李雪艳. 抗寒地被菊新品种‘丹菲’的选育[J]. 北方园艺, 2017, (20):225-228. 24. 胡新颖, 杨迎东, 颜范悦. ‘辽菊046’地被菊新品种的选育[J]. 辽宁林业科技, 2014, (3):43-44. 25. 孔德政, 于红芳, 李永华, 田彦彦. 干旱胁迫对不同品种菊花叶片光合生理特性的影响[J]. 西北农林科技大学学报(自然科学版), 2010, 38(11):103-108. 26. 雷加文. 双受精:有花植物的胚和胚乳发育[M]. 北京: 科学出版社, 2007. 27. 李峰, 范荣, 慕晶, 宋亚丽, 李可夫. 红小豆综合抗旱性评价研究[J]. 陕西农业科学, 2020,66(5):1-4. 28. 李鸿渐. 中国菊花[M]. 南京:江苏科学技术出版社, 1993. 29. 李洁. 植物干旱胁迫适应机制研究进展[J]. 广东农业科学, 2014, 41(019):154-159. 30. 李沛曈, 迟天华, 刘颖鑫, 范宏虹, 王海滨, 管志勇, 房伟民, 陈发棣, 张飞. 异色菊×菊花脑种间杂交F1代SSR遗传多态性分析、耐旱性鉴定及关联分析[J]. 南京农业大学学报, 2020, 43(2):238-246. 31. 李丕睿. 切花菊品种遗传多样性及观赏性状、抗逆性与分子标记的关联分析[D]. 南京: 南京农业大学, 2014. 32. 李卫宁. 广西农业干旱监测与评估系统的研究[D]. 南宁: 广西师范学院, 2012. 33. 李辛雷, 陈发棣, 崔娜欣. 菊属种间杂种的鉴定[J]. 南京农业大学学报, 2005, 28(1):24-28. 34. 李辛雷, 陈发棣, 赵宏波. 菊属植物远缘杂交亲和性研究[J]. 园艺学报, 2008, 35(2):257-262. 35. 李辛雷, 陈发棣. 部分菊属植物种间杂种难稔性及其克服[J]. 林业科学研究, 2007, 20(1):139-142. 36. 李辛雷, 陈发棣. 菊花二倍体野生种与栽培种间杂种的幼胚拯救[J]. 林业科学, 2006, 42(11):42-46. 37. 李辛雷, 陈发棣. 菊属野生种、栽培菊花及种间杂种的RAPD分析[J]. 南京农业大学学报, 2004, 27(3):29-33. 38. 李永清, 江金兰, 叶炜, 曹奕鸯, 雷伏贵, 杨学. SSR分子标记鉴定铁皮石斛与霍山石斛的正反交后代[J]. 福建农业学报, 2017, 32(8):870-873. 39. 黎裕, 李英慧, 杨庆文, 张锦鹏, 张金梅, 邱丽娟, 王天宇. 基于基因组学的作物种质资源研究:现状与展望[J]. 中国农业科学, 2015, 53(17): 3333-3353 40. 李佐, 肖文芳, 陈和咎, 刘金维, 吕复兵. 蝴蝶兰Phalaenopsis ‘Frigdaas Oxford’和Phal. SH49 正反交后代观赏性状遗传倾向研究[J]. 热带作物学报, 2017, 38(1):4-11. 41. 栗燕, 黎明, 袁晓晶, 李永华. 干旱胁迫下菊花叶片的生理响应及抗旱性评价[J]. 石河子大学学报(自然科学版), 2011, 29(1):30-34. 42. 刘家成, 章秋平, 牛铁泉, 刘宁, 张玉萍, 徐铭, 马晓雪, 张玉君, 刘硕, 刘威生. ‘串枝红’与‘赛买提’杏正、反交后代果实性状遗传倾向分析[J]. 果树学报, 2020, 37(5):625-364. 43. 刘球, 吴际友, 李志辉. 干旱胁迫对植物叶片解剖结构影响研究进展[J]. 湖南林业科技, 2015, 42(3):101-104. 44. 刘蕤, 杨际双. 菊属植物遗传多样性的RAPD分析[J]. 河北农业大学学报, 2010, 33(1):60-695+837. 45. 刘思余, 张飞, 陈素梅, 陈发棣. 四倍体菊花脑与栽培菊种间杂交及F1杂种的遗传表现[J]. 中国农业科学, 2010, 43(12):2500-2507. 46. 刘晓珍, 宋文玲, 张凯, 叶宇成, 戴传超. 内生真菌对菊花幼苗干旱胁迫生理的影响[J]. 园艺学报, 2011, 38(2):335-342. 47. 刘颖鑫, 李沛曈, 迟天华, 王海滨, 管志勇, 房伟民, 陈发棣, 张飞. 菊花脑×甘菊种间F1杂种的鉴定和遗传多样性分析[J]. 园艺学报, 2019, 46(8):1553-1564. 48. 刘月, 刘海楠, 邓宇, 刘禹姗, 殷秀岩, 孙海悦, 李亚东. 越橘正反交后代部分性状的遗传倾向[J]. 吉林农业大学学报, 2019, 41(1):35-41. 49. 刘长命, 赵颖. 干旱胁迫对药用菊花叶片微结构和叶绿色的影响[J]. 科技广场, 2017, (11): 26-29. 50. 刘良淑. 宽阔水自然保护区苔藓植物生物多样性研究[D]. 贵阳: 贵州大学, 2016 51. 吕琳, 秦民坚, 贺丹霞, 顾瑶华. 不同种源药用菊花、野菊和菊花脑的ISSR分子标记及遗传关系分析[J]. 植物资源与环境学报, 2008, 17(1):7-12. 52. 缪恒彬, 陈发棣, 赵宏波, 房伟民, 石丽敏. 应用ISSR对25个小菊品种进行遗传多样性分析及指纹图谱构建[J]. 中国农业科学, 2008, 41(11):3735-3740. 53. 缪恒彬, 陈发棣, 赵宏波. 85个大菊品种遗传关系的ISSR分析[J]. 园艺学报, 2007, 24(5):1243-1248. 54. 秦贺兰, 曹蕾, 卜燕华. 干旱胁迫对3个夏花型小菊新品种生理生化特性的影响[J]. 中国农学通报, 2007, 23(6):446-449. 55. 秦贺兰, 游捷, 高俊平. 菊花18个品种的RAPD分析[J]. 园艺学报, 2002, 29(5):488-490. 56. 任磊, 赵夏陆, 许靖, 张宏毅, 郭彦宏, 郭福龙, 张春来, 吕晋慧. 4种茶菊对干旱胁迫的形态和生理响应[J]. 生态学报, 2015, 35(15):5131-5139. 57. 苏聪聪, 李含晰, 金燕, 徐丰, 白描, 石雪晖, 杨国顺, 钟晓红, 刘昆玉, 陈陈恒. 利用SSR分子标记鉴定刺葡萄F1代杂种[J]. 江苏农业科学, 2018, 46(17):35-38. 58. 孙春青, 陈发棣, 房伟民, 刘兆磊, 马静, 滕年军, 余琳芳. 栽培菊花‘奥运天使’与野路菊杂交生殖障碍的细胞学机理[J]. 中国农业科学, 2009, 42(6):2085-8091. 59. 孙春青, 陈发棣, 房伟民, 刘兆磊, 滕年军. 菊花远缘杂交研究进展[J]. 中国农业科学, 2010, 43(12): 2508-2517. 60. 孙春青. 菊花远缘杂交生殖障碍及种质创新研究[D]. 南京: 南京农业大学, 2009. 61. 孙静. 切花菊抗旱性评价及抗旱机理研究[D]. 南京: 南京农业大学, 2012. 62. 孙娅, 陈素梅, 陈发棣, 刘兆磊, 房伟民. 菊花近缘种属植物抗蚜性机制研究[J]. 南京农业大学学报, 2012, 35(3):25-30. 63. 唐海强. 托桂型菊花花器性状的遗传分析及其QTL定位[D]. 南京: 南京农业大学, 2014. 64. 唐仕云, 王伦旺, 李翔, 黄海荣, 黄家雍, 谭芳, 黎焕光, 方锋学. 甘蔗正反交对光合特性及主要产质量性状的差异研究[J]. 广东农业科学, 2011, (5):39-41. 65. 汪劲武, 杨继, 李懋学. 野菊和甘菊的形态变异及其核型特征[J]. 中国科学院大学学报, 1993, 31(2):140-146. 66. 王靓, 王楚楚, 蒋甲福, 陈素梅, 房伟民, 滕年军, 管志勇, 廖园, 陈发棣. 切花菊‘南农银山’与紫花野菊种间杂交及后代耐涝性鉴定[J]. 中国农业科学, 46 (20):4328-4335. 67. 王荣焕, 王天宇, 黎裕. 关联分析在作物种质资源分子评价中的应用[J]. 植物遗传资源学报, 2007, 8(3):366-372. 68. 王顺才, 邹养军, 马锋旺. 干旱胁迫对3种苹果属植物叶片解剖结构、微形态特征及叶绿体超微结构的影响[J]. 干旱地区农业研究, 2014, 32(3):15-23. 69. 王天宇, 祝云芳, 陈华璋, 陈泽辉. 玉米正反交杂交种F1主要性状的差异性分析[J]. 玉米科学, 2007, 14(4):52-55. 70. 王卫, 杨水平, 崔广林, 张雪, 刘芸. 青蒿花粉活力及柱头可授性研究[J]. 西南大学学报(自然科学版), 2015, 37(2): 1-7. 71. 王文奎, 周春玲, 戴思兰. 毛华菊花朵形态变异[J]. 北京林业大学学报, 1999, 21(3):92-95. 72. 王晓亮, 刘毅, 赖伟华, 申昌优, 刘小平, 李祖莹, 饶文平, 杨庆银. 烤烟品种正反交对F1产质量性状的影响[J]. 湖南农业科学, 2017, (10):9-12. 73. 吴国盛, 陈发棣, 陈素梅, 赵宏波, 房伟民. 基于PCR-RFLP多态的部分菊属与亚菊属植物亲缘关系研究[J]. 江苏农业科学, 2008, 36(2):58-61. 74. 吴洋洋, 仰小东, 杨信程, 徐婷婷, 管志勇, 薛建平, 蒋甲福, 陈素梅, 房伟民, 陈发棣, 张飞. 菊花不完全双列杂交F1代遗传关系的SRAP分析[J]. 园艺学报, 2017, 44(6):1116-1124. 75. 吴洋洋. 切花菊部分园艺性状的配合力、杂种优势和混合遗传分析[D]. 南京: 南京农业大学, 2017. 76. 夏铭. 遗传多样性研究进展[J]. 生态学杂志, 1999, 18(3):3-5. 77. 许莉莉. 菊属-近缘属属间杂种自交特性及育种利用研究[D]. 南京: 南京农业大学, 2012. 78. 许卫猛, 邢永峰, 魏常敏, 李桂芝, 宋万友, 周文伟. 不同糯玉米自交系正反交F1代产量和品质的差异性分析[J]. 种子科技, 2018, (5):104-105. 79. 杨若鹏, 张祖芸. 干旱胁迫对菊花亨利指标的影响[J]. 红河学院学报, 2017, 15(2): 126-128. 80. 杨信程. 切花菊分枝性状的配合力和主基因分析及在不同定植密度下的QTL定位[D]. 南京: 南京农业大学, 2017. 81. 尹佳蕾, 赵惠恩. 花粉生活力影响因素及花粉贮藏概述[J]. 中国农学通报, 2005(04):118-121+201. 82. 袁闯, 朱林, 许兴, 王开元. 玉米成熟期抗旱性综合评价[J]. 河南农业科学, 2019, 48(10):47-53. 83. 袁延超. 陆地棉产量、纤维品质性状与SSR标记的关联分析[D]. 泰安: 山东农业大学, 2015. 84. 翟丽丽, 房伟民, 陈发棣, 陈素梅, 滕年军, 管志勇, 韩勇. 国庆小菊观赏性和耐旱、涝性的综合评价[J]. 中国农业科学, 2012, 45(4):734-742. 85. 詹莜国. 烤烟正反交组合F1性状比较[D]. 长沙: 湖南农业大学, 2009. 86. 张常青, 洪波, 李建科, 高俊平. 地被菊花幼苗耐旱性评价方法研究[J]. 中国农业科学, 2005, 38(4):789-796. 87. 张飞, 陈发棣, 房伟民, 陈素梅, 李风童. 菊花花器性状杂种优势与混合遗传分析[J]. 中国农业科学, 2010, 43(14):2953-2961. 88. 张飞, 陈发棣, 房伟民, 陈素梅, 刘浦生, 尹冬梅. 菊花花期性状的杂种优势与混合遗传分析[J]. 南京农业大学学报, 2011, 34(4):31-36. 89. 张飞. 菊花连锁遗传图谱构建及其重要性状的QTL定位与遗传分析[D]. 南京: 南京农业大学, 2010. 90. 张莉俊, 戴思兰. 菊花种质资源研究进展[J]. 植物学报, 2009, 44(5):526-535. 91. 张雅荣, 宛涛, 蔡萍, 伊卫东. 冷蒿的开花动态与花粉活力及柱头可授性研究[J]. 中国草地学报, 2012, 34(1):108-112. 92. 赵宏波, 陈发棣, 郭维明, 汤访评, 房伟民. 菊属与春黄菊族部分属间杂交亲和性初步研究[J]. 南京农业大学学报, 2008, 31(2):139-143. 93. 赵宏波,陈发棣,房伟民,郭维民,谢伟. 利用亚菊属矶菊获得栽培菊花新种质[J]. 中国农业科学, 2008, 41(7):2077-2084. 94. 周春玲,戴思兰. 菊属部分植物的AFLP分析[J]. 北京林业大学学报, 2002, 24(5/6):72-76. 95. 周茜. 独行菜种子转录组及低温萌发表达谱分析[D]. 乌鲁木齐: 新疆师范大学, 2016. 96. 周蓉, 陈海峰, 王贤智. 大豆幼苗根系性状的QTL分析[J]. 作物学报, 2011, 37(7):1151-1158. 97. Anderson N & Gesick E. MammothTM series garden chrysanthemum 'Lavender Daisy'[J]. HortScience, 2014, 49(12): 1600-1604. 98. Buitendijk J, Pinsonneaux N , Donk A, Ramanna M, Lammeren A. Embryo rescue by half-ovule culture for the production of interspecific hybrids in Alstroemeria[J]. Scientia Horticulturae, 1995, 64(1-2):0-75. 99. Castro Sílvia, Paulo S, Luis N. Effect of pollination on floral lLongevity and costs of delaying fertilization in the out-crossing Polygala vayredae Costa (Polygalaceae)[J]. Annals of Botany, 2008, 102:1043-1048. 100. Chen S, Cui X, Chen Y, Gu C, Miao H, Gao H, Chen F, Liu Z, Guan Z, Fang W. CgDREBa transgenic chrysanthemum confers drought and salinity tolerance[J]. Environmental & Experimental Botany, 2011, 74(12):255-260. 101. Cheng X, Chen S, Chen F, Fang w, Deng Y, She L. Interspecific hybrids between Dendranthema morifolium (Ramat.) Kitamura and D. Nankingense (Nakai) Tzvel. achieved using ovary rescue and their cold tolerance characteristics[J]. Euphytica, 2010, 172(1):101-108. 102. Chong X, Zhang F, Wu Y, Yang X, Zhao N, Wang H, Guan Z, Fang W, Chen F. A SNP-enabled assessment of genetic diversity, evolutionary relationships and the identification of candidate genes in chrysanthemum[J]. Genome Biology and Evolution, 2016, 8(12):3661-3671. 103. Datson P, Murray B, Hammett K. Pollination systems, hybridization barriers and meiotic chromosome behaviour in Nemesia hybrids[J]. Euphytica, 2006, 151(2):173-185. 104. Deng Y, Chen S, Chen F, Cheng X, Zhang F. The embryo rescue derived intergeneric hybrid between chrysanthemum and Ajania przewalskii shows enhanced cold tolerance[J]. Plant Cell Reports, 2011, 30(12), 2177-2186. 105. Deng Y, Chen S, Lu A, Chen F, Tang F, Guan Z, Teng N. Production and characterisation of the intergeneric hybrids between Dendranthema morifolium and Artemisia vulgaris exhibiting enhanced resistance to chrysanthemum aphid (Macrosiphoniella sanbourni)[J]. Planta, 2010a, 231(3):693-703. 106. Deng Y, Teng N, Chen S, Chen F, Guan Z, Song A, Chang Q. Reproductive barriers in the intergeneric hybridization between Chrysanthemum grandiflorum (Ramat.) Kitam. and Ajania przewalskii Poljak. (Asteraceae)[J]. Euphytica, 2010b, 174(1): 41-50 107. Dridi J, Fendri M, Breton C, Msallem M. Characterization of olive progenies derived from a Tunisian breeding program by morphological traits and SSR markers[J]. Scientia Horticulturae, 2018, 236:127-136. 108. Fleury D, Jefferies S, Kuchel H, Langridge P. Genetic and genomic tools to improve drought tolerance in wheat[J]. Journal of Experimental Botany, 2010, 61(12):3211-3222. 109. Flint-Garcia S, Thornsberry J, Buckler E. Structure of linkage disequilibrium in plants [J]. Annual Review of Plant Biology, 2003, 54(4):357-374. 110. Flint-Garcia S, Thuillet A, Yu J, Pressoir G, Romero S, Mitchell S, Doebley J, Kresovich S, Goodman M, Buckler E. Maize association population: a high-resolution platform for quantitative trait locus dissection[J]. Plant Journal, 2005, 44(6):1054-1064. 111. Gao W, He M, Liu J, et al. Overexpression of Chrysanthemum lavandulifolium ClCBF1 in Chrysanthemum morifolium ‘White Snow’ improves the level of salinity and drought tolerance[J]. Plant Physiology and Biochemistry, 2018, 124:50-58. 112. Ghotbi In avandi A, Shahbazi M, Shariati M, Mulo P. Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley (Hordeum vulgare L.) genotypes[J]. Journal of Agronomy and Crop Science, 2015, 200(6): 403-415. 113. Harb A, Awad D, Samarah N. Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought[J]. Journal of Plant Interactions, 2015, 10(1):109-116. 114. Henry A, Gowda V, Torres R, McNally K, Serraj R. Variation in root system architecture and drought response in rice (Oryza sativa): Phenotyping of the Oryza SNP panel in rainfed lowland fields[J]. Field Crops Research, 2011, 120(2):205-214. 115. Hermans C, Hammond J, White P, Verbruggen N. How do plants respond to nutrient shortage by biomass allocation?[J]. Trends in Plant Science, 2006, 11(12):610-617. 116. Hughes J, Hepworth C, Dutton C, Dunn J, Hunt L, Stephens J, Waugh R, Cameron D, Gray J. Reducing stomatal density in barley improves drought tolerance without impacting on yield[J]. Plant Physiology, 2017, 174:776-787. 117. Kim J Y, Hong Y. Studies on the native Chrysanthemum spp. in Korea, 1; studies on the characteristics, geographical distribution and line selections of wild grown Chrysanthemum zawadskii in Korea[J]. The Research Reports of the Rural Development Administration (Korea R.), 1989. 118. Kishimoto S, Aida R, Shibata M. Identification of chloroplast DNA variations by PCR-RFLP analysis in Dendranthema [ J]. Journal of the Japan Society for Horticultural Science, 2003, 72(3):197-204. 119. Klie M, Menz I, Marcus L, Debener T. Strigolactone pathway genes and plant architecture:association analysis and QTL detection for horticultural traits in chrysanthemum [J]. Molecular Genetics & Genomics, 2016, 291:957-969. 120. Lee C, Page L, McClure B, Holtsford T. Post-pollination hybridization barriers in Nicotiana section Alatae[J]. Sexual Plant Reproduction, 2008, 21(3):183-195. 121. Lee D, Jung H, Jang G, Jeong J, Kim Y, Ha S, Choi Y, Kim J. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance[J]. Plant Physiology, 2016, 172: 575 -588. 122. Li B, Wu R. Heterosis and genotype × environment interactions of juvenile aspens in two contrasting sites[J]. Canadian Journal of Forestry Research, 1997, 27(10): 1525-1537. 123. Li P, Su J, Guan Z, et al. Association analysis of drought tolerance in cut chrysanthemum (Chrysanthemum morifolium Ramat.) at seedling stages[J]. 3 Biotech, 2018, 8:226. 124. Li P, Zhang F, Chen S, Jiang J, Wang H, Su J, Fang W, Guan Z, Chen F. Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.)[J]. Molecular Genetics and Genomics, 2016, 291(3):1117-1125. 125. Liu S, Li Y, Wu J, Min J, Chang S, Liu L, Lu X, Deng Q. Comprehensive evaluation on drought tolerance of widely-used rice varieties with subordinate function method[J]. Agricultural Science & Technology, 2015, 16(08):1643-1647. 126. Liu S, Qin Q, Xiao J, Lu W, Liu Y. The formation of the polyploid hybrids from different subfamily fish crossings and its evolutionary significance[J]. Genetics, 2007, 176(2):1023-1034. 127. Magurran, Anne E. Ecological Diversity and Its Measurement [M]. Princeton: Princeton University Press, 1988. 128. Malamy J. Intrinsic and environmental response pathways that regulate root system architecture[J]. Plant Cell & Environment, 2010, 28(1):67-77. 129. Mir R, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney R. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops[J]. Theoretical and Applied Genetics, 2012, 125:625-645 130. Nie J, Wen C, Xi L, et al. The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance[J]. Plant Cell Reports, 2018, 37(7):1049-1060. 131. Osmont K, Sibout R, Hardtke C. Hidden Branches: Developments in Root System Architecture[J]. Annual Review of Plant Biology, 2007, 58(58):93-113. 132. Peng H, Zhang F, Jiang J, Chen S, Fang W, Guan Z, Chen F. Identification of quantitative trait loci for branching traits of spray cut chrysanthemum [J]. Euphytica, 2015, 202(3):385-392. 133. Porebski S, Bailey L, Baum B. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components[J]. Plant Molecular Biology Reporter, 1997, 15(1):8-15. 134. Ripley V, Beversdorf W. Development of self-incompatible Brassica napus: (I) introgression of S-alleles from Brassica oleracea through interspecific hybridization[J]. Plant Breeding, 2010, 122(1):1-5. 135. Sarmah B K, Sarla N. Overcoming prefertilization barriers in the cross Diplotaxis siettiana × Brassica juncea using irradiated mentor pollen[J]. Biologia Plantarum, 1995, 37(2):329-334. 136. Schoeder J, Kwak J, Allen G. Guard cell abscisic acid signaling and engineering drought hardiness in plants[J]. Nature, 2001, 410:327-330. 137. Sengupta D, Kannan M, Reddy A. A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Wilczek[J]. Planta, 2011, 233(6):1111-1127. 138. Sharma D R, Kaur R, Kumar K. Embryo rescue in plants—a review[J]. Euphytica, 1996, 89(3):325-337. 139. Silva E, Ribeiro R, Ferreira-Silva S, Viégas R, Silveira J. Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants[J]. Journal of Arid Environments, 2010, 74(10):1130-1137. 140. Silva J, Shinoyama H, Aida R, Matsushita Yosuke, Raj S, Chen F. Chrysanthemum biotechnology: Quo vadis?[J]. Critical Reviews in Plant Sciences, 2013, 32(1):21-52. 141. Spielman M, Scott R. Polyspermy barriers in plants: from preventing to promoting fertilization[J]. Sexual Plant Reproduction, 2008, 21(1):53-65. 142. Sprenger H, Kurowsky C, Horn R, Erban A, Seddig S, Rudack K, Fisher A, Walther D, Zuther E, Kohl K, Hinhca D, Kopka J. The drought response of potato reference cultivars with contrasting tolerance[J]. Plant Cell & Environment, 2016, 39:2370-2380. 143. Su J, Jiang J, Zhang F, Liu Y, Ding L, Chen S, Chen F. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review[J]. Horticulture Research, 2019, 6:109. 144. Su J, Zhang F, Yang X, Feng Y, Yang X, Wu Y, Guan Z, Fang W, Chen F. Combining ability, heterosis, genetic distance and their intercorrelations for waterlogging tolerance traits in chrysanthemum[J]. Euphytica, 2017, 213:42. 145. Sun J, Gu J, Zeng J, Han S, Song A, Chen F, Fang W, Jiang J, Chen S. Changes in leaf morphology, antioxidant activity and photosynthesis capacity in two different drought-tolerant cultivars of chrysanthemum during and after water stress[J]. Scientia Horticulturae, 2013, 161:249-258. 146. Tanaka, Ryuso. On the Speciation and Karyotypes in Diploid and Tetraploid Species of Chrysanthemum[J]. Cytologia, 1960, 25(1):43-58. 147. Tang F, Wang H, Chen S, Chen F, Teng N, Liu Z. First intergeneric hybrids within the tribe Anthemideae Cass. III. Chrysanthemum indicum L. Des Moul. × Opisthopappus taihangensis (Ling) Shih[J]. Biochemical Systematics and Ecology, 2012, 43:87-92. 148. Tuyl J, Van Di?n M, Van Creij M, Van Kleinwee T, Franken J, Bino J. Application of in vitro pollination, ovary culture, ovule culture and embryo rescue for overcoming incongruity barriers in interspecific lilium crosses[J]. Plant Science, 1991, 74(1), 115-126. 149. Van Geest G, Bourke P, Voorrips R, Marasek-Ciolakowska A, Liao Y, Post A, Van Meeteren U, Visser R, Maliepaard C, Arens P. An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis[J]. Theoretical and Applied Genetics, 2017, 130(12):2527-2541. 150. Wang C, Zhang F, Guan Z, Chen S, Jiang J, Fang W, Chen F. Inheritance and molecular markers for aphid (Macrosiphoniella sanbourni) resistance in chrysanthemum (Chrysanthemum morifolium Ramat.) [J]. Scientia Horticuluturae, 2014, 180:220-226. 151. Wilson E. The biological diversity crisis[J]. Bioscience, 1985, 35(11):700-706. 152. Zhang F, Chen S, Chen F, Fang W, Chen Y, Li F. SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium)[J]. Molecular Breeding, 2011a, 27(1): 11-23. 153. Zhang F, Chen S, Chen F, Fang W, Deng Y, Chang Q, Liu P. Genetic analysis and associated SRAP markers for flowering traits of chrysanthemum (Chrysanthemum morifolium)[J]. Euphytica, 2011b, 177(1): 15-24. 154. Zhang F, Chen S, Chen F, Fang W, Li F. A preliminary genetic linkage map of chrysanthemum (Chrysanthemum morifolium) cultivars using RAPD, ISSR and AFLP markers[J]. Scientia Horticulturae, 2010, 125(3):422-428. 155. Zhang F, Chen S, Jiang J, Guan Z, Fang W, Chen F, Yin T. Genetic mapping of quantitative trait loci underlying flowering time in Chrysanthemum (Chrysanthemum morifolium)[J]. PLoS ONE, 2013, 8(12): e83023. 156. Zhang F, Jiang J, Chen S, Chen F, Fang W. Detection of quantitative trait loci for leaf traits in chrysanthemum[J]. Journal of Pomology & Horticultural Science, 2012a, 87(6):613-618. 157. Zhang F, Jiang J, Chen S, Chen F, Fang W. Mapping single-locus and epistatic quantitative trait loci for plant architectural traits in chrysanthemum[J]. Molecular Breeding, 2012b, 30(2):1027-1036. 158. Zhang H, Liu W, Wan L, Li F, Dai L, Li D, Zhang Z, Huang R. Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice[J]. Transgenic Research, 2010, 19(5):809-818. 159. Zhao H, Liu Z, Hu X, Yin J, Li W, Rao G, Zhang X, Huang C, Anderson N, Zhang Q, Chen J. Chrysanthemum genetic resources and related genera of Chrysanthemum collected in China[J]. Genetic Resources and Crop Evolution, 2009, 56(7):937-946. 160. Zhao Q, Zhong M, He L, et al. Overexpression of a chrysanthemum transcription factor gene DgNAC1 improves drought tolerance in chrysanthemum[J]. Plant Cell, Tissue and Organ Culture, 2018, 135(1):119-132. 161. Zhao X, Zhang J, Zhang Z, Wang Y, Xie W. Hybrid identification and genetic variation of Elymus sibiricus hybrid populations using EST-SSR markers[J]. Hereditas, 2017, 154(1):15. |
中图分类号: | S68 |
开放日期: | 2020-12-10 |