- 无标题文档
查看论文信息

中文题名:

 水稻品种IR54751和广西野生稻抗白背飞虱QTL定位及 qWBPH3.2 的精细定位    

姓名:

 杨明    

学号:

 2018101087    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090102    

学科名称:

 农学 - 作物学 - 作物遗传育种    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 南京农业大学    

院系:

 农学院    

专业:

 作物遗传育种    

研究方向:

 水稻分子遗传育种    

第一导师姓名:

 刘裕强    

第一导师单位:

 南京农业大学    

完成日期:

 2021-05-27    

答辩日期:

 2021-06-01    

外文题名:

 Qtl Mapping of Resistance To White-Backed Planthopper in Rice Variety Ir54751 and Guangxi Wild Rice and Fine Mapping of Qwbph3.2    

中文关键词:

 白背飞虱 ; 水稻 ; 数量性状位点 ; 精细定位 ; qWBPH3.2    

外文关键词:

 White-backed planthopper ; Rice ; Quantitative trait locus ; Fine mapping ; qWBPH3.2    

中文摘要:

水稻(Oryza sativa L.)是世界上最主要的粮食作物之一,水稻产量的持续稳定增加对保障世界粮食安全具有十分重要的意义。然而,水稻生产通常受到各类病虫害的严重威胁。白背飞虱(Sogatella furcifera Horvth)广泛分布于南亚和东南亚地区,是威胁水稻生产的主要害虫之一,其危害具有突发性和猖獗性,对水稻的生产造成毁灭性损害。除了直接取食对水稻造成机械损伤之外,白背飞虱在水稻叶鞘部位的产卵行为也会严重影响水稻的正常生长发育。此外,白背飞虱还是水稻主要病毒病南方水稻黑条矮缩病(Southern Rice Black-streaked Dwarf Virus Disease,SRBSDV)的媒介。喷洒化学农药是目前防治白背飞虱及其传播病毒病的主要手段,但长期施用化学药剂不仅污染环境,增加生产成本,而且还会引起害虫抗药性的提高。因此,培育并推广抗性品种被认为是防治白背飞虱最经济有效的方式之一。抗虫资源和基因发掘是抗性品种培育的前提和基础,目前仅有两个抗白背飞虱基因完成了精细定位,尚未有基因被克隆,水稻抗白背飞虱的分子机制知之甚少。因此,发掘和定位抗白背飞虱新基因,抗对水稻抗白背飞虱机制阐明及抗性品种的培育具有重要意义。

为此,本研究在前人研究的基础上,完成了水稻品种IR54751和广西野生稻11-2抗白背飞虱的遗传分析及QTL定位,并完成了抗白背飞虱基因qWBPH3.2的精细定位。主要研究内容如下:

1 水稻抗白背飞虱QTL qWBPH3.2的精细定位

此前,实验室利用抗白背飞虱水稻品种IR54751与感虫品种02428构建的F2:3遗传群体,在水稻第3染色体检测到一个抗白背飞虱主效QTL,qWBPH3.2,其LOD值和贡献率分别为8.2和21.5%。并进一步通过构建BC1F2群体,经交换单株后代表型鉴定及加密标记,最终将qWBPH3.2定位在水稻第3染色体分子标记C3-2220和C3-2233之间。

本研究在前人的基础上,为进一步验证之前的定位结果,并完成该基因的精细定位,利用qWBPH3.2两侧的分子标记InDel3-17和C3-1786,构建了IR54751/02428的BC1F3和BC1F4次级分离群体共4820份家系,从群体中筛选到180个交换单株,经交换单株后代表型鉴定及加密标记,结合之前的交换单株表型,最终将qWBPH3.2精细定位在第3染色体分子标记C3-1651和C3-1672之间约211 kb的区间内。

根据参考基因组序列分析发现该区间内包含16个基因,并完成了抗感亲本IR54751和02428中的16个基因的全基因组测序。结果发现,其中4个候选基因Os03g0403600、Os03g0405100、Os03g0405500Os03g0405900的外显子上在抗感间均存在碱基差异,并导致了氨基酸序列的改变。进一步分析了4个基因接种白背飞虱不同时间段在抗感亲本的表达水平。结果发现,与感虫亲本02428相比,抗虫亲本IR54751中Os03g0405100、Os03g0405500Os03g0405900 在接种白背飞虱3小时后表达水平显著升高,而Os03g0403600在接虫6 h后表达水平显著升高,但在感虫亲本02428中4个基因的表达几乎不受取食诱导。基于基因序列比较和表达分析,将Os03g0403600、Os03g0405100、Os03g0405500Os03g0405900列为qWBPH3.2的候选基因。

2 抗白背飞虱QTL qWBPH1的初定位

本研究在对qWBPH3.2进行精细定位的过程中,发现极少数单株虽然不携带qWBPH3.2位点,但仍然表现较高的白背飞虱抗性,暗示这些家系可能携带其他白背飞虱抗性基因。为发掘抗白背飞虱新基因,我们利用其中一个家系40-4-1-2与感虫亲本02428回交构建了BC1F2:3遗传分离群体,并完成了其中90个BC1F2:3家系的白背飞虱苗期抗性鉴定,结果发现90个家系的抗性水平呈偏分态分布。进一步利用318个均匀分布在水稻12条染色体上的KASP标记,构建了40-4-1-2/02428 BC1F2:3群体的遗传图谱,结合表型数据,利用QTL IciMapping 4.1软件,在水稻第1染色体检测到了1个抗白背飞虱QTL,LOD值为3.4096,贡献率为14.2357%。通过与前人定位的抗性位点比较分析,该QTL可能为一个新的抗白背飞虱位点,并将其命名为qWBPH1

3 广西野生稻11-2抗白背飞虱遗传分析及QTL定位

经苗期集团接种鉴定,发现广西野生稻11-2高抗白背飞虱,而粳稻品种日本晴(Nip)高感白背飞虱。为解析广西野生稻11-2抗白背飞虱的遗传基础,发掘抗性新基因,本研究完成了以Nip为轮回亲本的广西野生稻11-2/Nip BC3F9遗传分离群体中90个家系的白背飞虱抗性鉴定,结果发现90个BC3F9家系对白背飞虱抗性呈偏分态分布,多数家系表现高感白背飞虱。进一步利用筛选出来的在两亲本间呈现较好多态性并均匀分布在水稻12条染色体上109个分子标记,构建了11-2/Nip BC3F9群体的遗传图谱,该图谱遗传距离总共为441.16 cM。利用QTL IciMapping 4.1软件,结果检测到了3个抗白背飞虱QTL,分别命名为qWBPH1qWBPH2qWBPH11。LOD值分别为4.8777,6.9469和3.1567,贡献率分别为1.9831%,2.1515%和1.9789%。加性效应值分别为-0.0139,0.31和-0.0042,表明qWBPH1qWBPH11位点的抗性等位基因来自于广西野生稻11-2,而qWBPH2位点的抗性等位基因来自于日本晴。

上述抗白背飞虱QTL的定位和精细定位,为抗白背飞虱水稻新品种的培育提供了有用的基因资源,为抗白背飞虱基因的克隆以及抗白背飞虱机制的阐明奠定了基础。

外文摘要:

Rice (Oryza sativa L.) is one of the most widely planted food crops in the world. The continuous and steady increase in rice production is an important guarantee for world food security. However, rice production is usually severely threatened by pests and diseases. White-backed planthopper (Sogatella furcifera Horvth) is widely distributed in Southeast Asia and other places. It is one of the main pests that threaten rice production. Its damage is sudden and rampant, causing devastating damage to rice production. In addition to the mechanical damage caused by direct feeding, the egg-laying behavior of the white-backed planthopper in the rice leaf sheath will also seriously affect the normal growth and development of rice. In addition, the white-backed planthopper is also the vector of Southern Rice Black-streaked Dwarf Virus Disease (SRBSDV), the main viral disease of rice. Spraying chemical pesticides is currently the main method to prevent and control the white-backed planthopper and its spread of viral diseases. However, long-term application of chemical agents will not only pollute the environment and increase production costs, but also increase the resistance of pests. Therefore, cultivating and promoting resistant varieties is considered to be one of the most economical and effective ways to control the white-backed planthopper. The discovery of insect-resistant resources and genes is the prerequisite and basis for the breeding of resistant varieties. Currently only two white-backed planthopper genes have been finely mapped, and no genes have been cloned. The molecular mechanism of rice resistance to white-backed planthopper is poorly understood. Therefore, the discovery and location of new white-backed planthopper resistance genes are of great significance for the elucidation of rice planthopper resistance mechanisms and the breeding of resistant varieties.

Therefore, based on previous studies, this study completed the mapping of two white-backed planthopper QTLs in rice variety IR54751, and completed the fine mapping of one of the loci qWBPH3.2. In addition, the genetic analysis and QTL mapping of Guangxi wild rice 11-2 resistance to the white-backed planthopper were completed. The main research contents are as follows:

1. Fine mapping of QTL qWBPH3.2 for resistance to white-backed planthopper in rice

Previously, the laboratory used the F2:3 genetic population constructed by the white-backed planthopper rice variety IR54751 and the susceptible variety 02428, and detected a major white-backed planthopper resistant QTL, qWBPH3.2, on the third chromosome of rice. The LOD value and contribution rate are 8.2 and 21.5%, respectively. We further constructed the BC1F2 population. By identifying white-backed planthopper resistance level of the recombinant progenies of exchanging individual plants and encryption markers, qWBPH3.2 was finally located between molecular markers C3-2220 and C3-2233 on chromosome 3.

Based on the predecessors, in order to further verify the previous mapping results and complete the fine mapping of the loci qWBPH3.2, this research used the molecular markers InDel3-17 and C3-1786 on both sides of qWBPH3.2 to select 180 exchanged individuals from sub-segregated population IR54751/02428 BC1F3 and BC1F4, which has a total of 4820 families, in order to further verify the previous localization results and complete the fine localization of the gene. After the exchanged individual plants were identified and encrypted, combined with the previous exchanged individual phenotypes, Finally, qWBPH3.2 was finely mapped in the 211 kb interval between the molecular markers C3-1651 and C3-1672 on chromosome 3.

After analysis, the interval contained 16 candidate genes, and the 16 candidate genes in the resistant parent IR54751 and susceptible parent 02428 were completed for whole-genome sequencing. The results showed that four of the candidate genes Os03g0403600, Os03g0405100, Os03g0405500 and Os03g0405900 had base differences in the exons of resistant parent and susceptible parent, and resulted in changes in amino acid sequence. The expression levels of the 4 genes in the resistant parent and susceptible parent at different time periods of white-backed planthopper inoculation were further analyzed. The results showed that compared with the susceptible parent 02428, the expression levels of Os03g0405100, Os03g0405500 and Os03g0405900 in the insect-resistant parent IR54751 increased significantly after 3 hours of inoculation, while the expression level of Os03g0403600 increased significantly after 6 hours of inoculation. However, the expression of 4 genes in the susceptible parent 02428 was almost not induced by feeding. Based on gene sequence comparison and expression analysis, Os03g0403600, Os03g0405100, Os03g0405500 and Os03g0405900 were listed as candidate genes for qWBPH3.2.

2. The initial location of QTL qWBPH1 against white-backed planthopper

In the process of fine-mapping qWBPH3.2 in this study, it was found that a very small number of individual plants did not carry the qWBPH3.2 locus, but still had high phenotypic resistance to the white-backed planthopper, suggesting that these families may carry other white-backed planthopper resistance genes. In order to discover new genes for white-backed planthopper resistance, we used one of the families 40-4-1-2 to backcross with the susceptible parent 02428 to construct a BC1F2:3 genetic segregation population,  and completed the seedling resistance identification of 90 BC1F2:3 families of the white-backed planthopper. It was found that the resistance level of 90 families was skewed distribution. Furthermore, using 318 KASP markers evenly distributed on 12 rice chromosomes, a genetic map of 40-4-1-2/02428 BC1F2:3 population was constructed, combined with phenotypic data, using the software QTL IciMapping 4.1, 1 QTL against white-backed planthopper was detected on the chromosome 1, with LOD value of 3.4096 and a contribution rate of 14.2357%. Through comparative analysis with the resistance sites located by previous researchers, this QTL may be a new anti-white-backed planthopper locus, and it was named qWBPH1.

3. Genetic analysis and QTL mapping of guangxi wild rice 11-2 resistance to white-backed planthopper

After the seedling stage group inoculation identification, it was found that Guangxi wild rice 11-2 was highly resistant to white-backed planthopper, while the japonica rice variety Nipponbare (Nip) was highly susceptible to white-backed planthopper. In order to analyze the genetic basis of Guangxi wild rice 11-2 resistance to white-backed planthopper and discover new resistance genes. This study completed the identification of the resistance of 90 families of the wild rice 11-2/Nip BC3F9 genetic segregation population in Guangxi with Nip as the recurrent parent. The identification of white-backed planthopper resistance showed that 90 BC3F9 families showed a skewed distribution of resistance to white-backed planthopper, and most families highly susceptible to white-backed planthoppers. Further using the 109 molecular markers that were screened to show good polymorphism between the two parents and evenly distributed on the 12 chromosomes of rice, a genetic map of the 11-2/Nip BC3F9 population was constructed. The genetic distance of the map was 441.16 cM in total. Using the software QTL IciMapping 4.1, 3 anti-white-backed planthopper QTLs were detected, which named qWBPH1, qWBPH2 and qWBPH11, respectively. The LOD values are 4.8777, 6.9469 and 3.1567, respectively, and the contribution rates are 1.9831%, 2.1515% and 1.9789%, respectively. The additive effect values were -0.0139, 0.31 and -0.0042, respectively, indicating that the resistance alleles of qWBPH1 and qWBPH11 were from Guangxi wild rice 11-2, and the resistance alleles of qWBPH2 were from Nipponbare.

The mapping and fine mapping of the above-mentioned QTLs for white-backed planthopper resistance provides useful genetic resources for the breeding of new rice varieties resistant to white-backed planthopper and lays a foundation for the cloning of white-backed planthopper resistance genes and the elucidation of the mechanism of white-backed planthopper resistance.

参考文献:

[1] Leading innovations-Annual Report. International rice research institute, 2016, Manila.

[2] 虞国平. 水稻在我国粮食安全中的战略地位分析[D]. 北京:中国农业科学院, 2009.

[3] Agricultural research. Reinventing rice to feed the world[J]. Science(New York, N.Y.), 2008, 321(5887):330–333.

[4] Li Y Z, Cao Y, Zhou Q, et al. The efficiency of Southern rice black-streaked dwarf virus transmission by the vector Sogatella furcifera to different host plant species[J]. Journal of integrative agriculture, 2012, 11(4):621-627.

[5] Wu Y, Zhang G, Chen X, et al. The influence of Sogatella furcifera (Hemiptera:Delphacidae) migratory events on the southern rice black-streaked dwarf virus epidemics[J]. Journal of economic entomology, 2017, 10(3):854-864.

[6] 陈建明, 俞晓平, 程家安, 等. 不同水稻品种对褐飞虱为害的耐性和补偿作用评价[J]. 中国水稻科学, 2003, 17(3):265-269.

[7] Heong K L, Hardy B. Planthoppers:New threats to the sustainability of intensive rice production systems in asia[M]. International rice research institute, 2009:191-220.

[8] 陈燕. 3种稻飞虱形态与为害症状的比较[J]. 农技服务, 2010, 27(4):472-476.

[9] 秦厚国, 叶正襄, 舒畅, 等. 白背飞虱种群治理理论与实践[M]. 江西:江西科学技术出版社, 2003:5-8.

[10] 周崇高, 冯娅琳, 陆潮峰, 等. 稻飞虱翅型分化的研究进展[J]. 湖北农业科学, 2014, (17):3985-3990.

[11] 吕万明. 白背飞虱胚胎发育的观察初报[J]. 昆虫知识, 1980, (01):18-19.

[12] 蒋春先. 广西兴安地区稻纵卷叶螟和稻飞虱发生规律及迁飞规律的研究[D]. 中国农业科学院, 2012.

[13] 刘芹轩, 吕万明, 张桂芬. 白背飞虱的生物学和生态学研究[J]. 中国农业科学, 1982, (03):59-66.

[14] 罗肖南, 卓文禧. 福建水稻白背飞虱生活史及在杂草寄主上的特性[J]. 植物保护学报, 1986a, (01):9-16.

[15] 黄次伟, 冯炳灿, 王焕弟, 等. 白背飞虱产卵习性的初步研究[J]. 昆虫知识, 1984, (05):193-196.

[16] 吕亮, 李培涛, 罗举, 等. 稻飞虱在水稻上的产卵特性调查[J]. 湖北农业科学, 2012, (24):5641-5642.

[17] 胡进生. 白背飞虱产卵与水稻生育期关系的观察初报[J]. 昆虫知识, 1987, (05):257-261.

[18] 宋焕增. 白背飞虱发生世代及其迁飞气象[J]. 上海农业科技, 1984, (03):25-26.

[19] 王剑英, 陈德茂, 王德琪, 等.白背飞虱抗寒力测定初报[J]. 贵州农业科学, 1983, (04):46-49.

[20] Hu C X, Fu X W, Wu K M. Seasonal migration of white-backed planthopper Sogatella furcifera Horvath (Hemiptera:Delphacidae) over the bohai sea in northern china[J]. Journal of asia-pacific entomology, 2017, 20(4):1358-1363.

[21] 全国白背飞虱科研协作组. 白背飞虱迁飞规律的初步研究[J]. 中国农业科学, 1981, (05):25-31.

[22] 胡国文, 汪毓才, 谢明霞. 我国西南稻区白背飞虱, 褐稻虱的迁飞和发生特点[J]. 植物保护学报, 1982, (03):179-186.

[23] 李再园, 许博, 王福莲, 等. 不同施氮水平下水稻植株在白背飞虱为害后的生理变化[J]. 中国水稻科学, 2018, (05):501-508.

[24] 翟保平, 周国辉, 陶小荣, 等. 稻飞虱暴发与南方水稻黑条矮缩病流行的宏观规律和微观机制[J]. 应用昆虫学报, 2011, (03):480-487.

[25] Sun Z G, Liu Y Q, Xiao S Z, et al. Identification of quantitative trait loci for resistance to rice black-streaked dwarf virus disease and small brown planthopper in rice[J]. Molecular breeding, 2017, 37(6):1-9.

[26] Wang Q, Li J, Dang C, et al. Rice dwarf virus infection alters green rice leafhopper host preference and feeding behavior[J]. The public library of science, 2018, 13(9):e203364.

[27] 肖英方, 顾正远, 张存政, 等. 白背飞虱爆发规律及防治研究[J]. 西南农业大学学报, 1998, (05):88-92.

[28] 唐启义, 胡国文, 唐健, 等. 白背飞虱猖獗频率增加与杂交稻面积增加的关系分析[J]. 西南农业大学学报, 1998, (05):84-87.

[29] Kogan M, Ortman E F. Antixenosis-a new term proposed to replace painter's “non-preference” modality of resistance[J]. Bulletin of the esa, 1978, 24(2):175-176.

[30] 陈建明, 俞晓平, 程家安. 植物耐虫性的研究方法[J]. 植物学通报, 2005, (04):449-455.

[31] He J, Liu Y Q, Liu Y L, et al. High-resolution mapping of brown planthopper (BPH) resistance gene Bph27(t) in rice (Oryza sativa L.)[J]. Moecular breeding, 2013, 31(3):549-557.

[32] 叶海芳. 水稻叶鞘表皮结构对白背飞虱抗性的研究[J]. 西南农业大学学报, 1989, 11(2):150-154.

[33] 胡国文, 梁天锡, 刘光杰, 等. 抗白背飞虱品种挥发性次生物质的提取、组分鉴定与生测[J]. 中国水稻科学, 1994, 8(4):223-230.

[34] 肖英方, 张存政, 顾正远. 水稻品种对白背飞虱的抗性机理[J]. 植物保护学报, 2001, 28(3):198-202.

[35] 刘光杰. 白背飞虱对不同抗虫性稻株糖类物质的利用[J]. 昆虫学报, 1995, 38(4):421-427.

[36] Kim R S, Heinrichs E A. Effect of silicalevelon white-backed planthopper[J]. International rice research news letter, 1982, 7(4):17:41-45.

[37] 吴刚, 吴中孚, 赵士希, 等. 水稻品种抗性对白背稻虱羧酸酯酶和磷酸酯酶活力的影响[J].植物保护学报, 1993, 20(2):139-142.

[38] Suzuki Y, Sogawa K, Seino Y, et al. Ovicidal reaction of rice planta-gainst the white -backed planthopper, Sogatella furcifera Hovath (Homoptera:Delphacidae)[J]. Appl entomol zool, 1996, 31(l):111-118.

[39] Kenji G, Masaru S, Rika O, et al. Role of hydroper oxidelyase in white-backed planthopper (Sogatella furcifera Horvath)-induced resistance to bacterial blight in rice, Oryza sativa L[J]. The plant journal , 2010, 61, 46–57.

[40] Tan G X, Weng Q, Ren X, et al. Two white-backed planthopper resistance genes in rice share the same loci with those for brown plant hopper resistance[J]. Heredity, 2004, 92(3):212-217.

[41] Sidhu G S, Khush G S, Medrano F G. A dominant gene in rice for resistance to white-backed plant hopper and its relationship to other plant characteristics[J]. Euphytica, 1979, 28(2):227-232.

[42] Angeles E R, Henrichs E A. New genes for resistance to white-backed plant hopper in rice[J]. Crop science, 1981, 21(1):47-50.

[43] Hernandez J E, Khush G S. Genetics of resistance to white-backed plant hopper in some rice(Oryza sativa L.)varieties[J]. Oryza, 1981, 18(1):44-50.

[44]Wu C F, Khush G S. A new dominant gene for resistance to white-backed planthopper in rice[J]. Crop science, 1985, 25(3):505-509.

[45] 李西明, 阂绍楷, 熊振民, 等. 水稻品种对白背飞虱的抗源筛选及其抗性遗传分析[J]. 遗传学报, 1987, 14(6):413-418.

[46] McCouch S R, Khush G S, Tanksley S D, et al. Tagging genes for disease and insect resistance via linkage to RFLP markers[M]. Rice GeneticsⅡ, Manila:International rice research institute, 1991:443-449.

[47] 刘志岩, 刘光杰, 寒川一成, 等. 水稻抗白背飞虱基因Wbph2的初步定位[J]. 中国水稻科学, 2002, 16(4):311-314.

[48] Li X, Zhai H, Wan J, et al. Preliminary mapping of Wbph6(t) a new gene resistant to white-backed plant hopper in rice[J]. Rice science, 2004, 11(3):86-90.

[49] Yamasaki M, Tsunematsu H, Yoshimura A, et al. Quantitative trait locus mapping of ovicidal response in rice (Oryza sativa L.) against white-backed planthopper (Sogatella furcifera Horvath)[J]. Crop science, 1999, 39(4):1178-1183.

[50] Yamasaki M, Yoshimura A, Yasui H, et al. Genetic basis of ovicidal response to white-backed planthopper (Sogatella furcifera Horvath) in rice(Oryza sativa L.)[J]. Molecular breeding, 2003, 12(2):133-143.

[51] Brar D S, Virk P S, Jena K K, et al. Breeding for resistance to planthoppers in rice[M]//Heong K L, Hardy B. Planthoppers: new threats to the sustainability of intensive rice production systems in Asia. Los Ba?os:International rice research institute, 2009:401-428.

[52] Kadirvel R, Maheswaran M, Gunathilagaraj K, et al. Molecular mapping of quantitative trait loci(QTL) associated with white-backed plant hopper in rice[J]. International rice research institute, 1999, 24(3):12-13.

[53] Geethanjali S, Kadirvel P, Gunathilagaraj K, et al. Detection of quantitative trait loci(QTL) associated with resistance to white-backed planthopper (Sogatella furcifera) in rice (Oryza sativa L.)[J]. Plant breeding, 2009, 128(2):130-136.

[54] 寒川一成, 滕胜, 钱前, 等. 水稻籼粳交DH群体中影响白背飞虱抗虫性QTL的检测[J].中国水稻科学, 2003, 17(增刊):77-83.

[55] 寒川一成, 刘光杰, 腾凯, 等. 中国粳稻品种春江06的抗白背飞虱机理[J].中国水稻科学,2003, 17(增刊):56-66.

[56] Sogawa K, Zeng D. Differential expression of white-backed planthopper resistance in the Japonica/Indica doubled haploidrice population under field evaluation and seed boxs creening test[J]. Rice science, 2005, 12(1):63-67.

[57] Kim E G, Yun S, Park J R. Identification of F3H, major secondary metabolite-related gene that confers resistance against white-backed planthopper through QTL mapping in rice[J]. Plants, 2021, 10(1):81.

[58] Chen J, Huang D R, Wang L, et al. Identification of quantitative trait loci for resistance to white-backed planthopper, Sogatella furcifera, from an interspecific cross Oryza sativa × O. rufipogon[J]. Breeding science, 2010, 60(2):153-159.

[59] Sogawa K, Liu G J, Qiang Q. Prevalence of white-backed planthoppers in Chinese hybrid rice and white-backed planthopper resistance in Chinese japonica rice[M]//Heong K L, Hardy B. Planthoppers: New threats to the sustainability of intensive rice production systems in Asia. Los Ba?os:International rice research institute, 2009:257-280.

[60] Yang Y L, Xu J, Leng Y J, et al. Quantitative trait loci identification, fine mapping and gene expression profiling for ovicidal response to white-backed planthopper (Sogatella furcifera Horvath) in rice (Oryza sativa L.)[J]. BMC plant biology, 2014, 14(1):145.

[61] Brévault T, Clouvel P. Pest management: Reconciling farming practices and natural regulations[J]. Crop protection, 2019, 115:1-6.

[62 ]Goodspeed D, Liu J D, Chehab E W, et al. Postharvest circadian entrainment enhances crop pest resistance and phytochemical cycling[J]. Current opinion in cell biology, 2013, 23(13):1235-1241.

[63] 张兆清. 烤田对白背飞虱的控制作用[J]. 昆虫知识, 1991, (06):321-325.

[64] 陈德茂. 科学用水控制大田白背飞虱种群发展研究[J]. 贵州农业科学, 1991, (04):29-33.

[65] 杨长登, 唐克轩, 吴连斌, 等. 农杆菌介导将雪莲凝集素(GNA)基因转入籼稻单倍体微芽的初步研究[J]. 中国水稻科学, 1998, 12(3):129-133.

[66] Nagadhara D, Ramesh S, PasaluI C, et al. Transgenic rice plants expressing the snowdrop lectin gene(gna) exhibit high-level resistance to the white-backed planthopper (Sogatella furcifera)[J]. Theoretical and applied genetics, 2004, 109:1399-1405.

[67] 陈建明, 俞晓平, 吕仲贤, 等. 白背飞虱对水稻抗虫品种N22的适应性研究[J]. 应用生态学报, 2003, 14(11):1939-1942.

[68] 钱汉良, 柯愈祥, 陈其志. 稻飞虱防治指标简化技术研究[J]. 西南农业大学学报, 1998, 20(5):423-426.

[69] 秦厚国, 叶正襄, 黄荣华. 晚稻穗期白背飞虱与褐飞虱复合防治指标的研究[J]. 中国农业科学, 1993, 26(1):51-55.

[70] 陶方玲. 捕食性天敌对白背飞虱种群的控制作用[J]. 华南农业大学学报, 1994, 15(1):54-59.

[71] 王荣富, 张成林, 邹运鼎. 水稻品种抗性对褐飞虱和白背飞虱种群动态的影响[J]. 应用生态学报, 2000, 11(6):861-865.

[72] 诸葛梓, 童彩文, 陈桂华. 选择性杀虫剂优乐得和扑虱灵防治晚稻稻虱的实验[J]. 浙江农业科学, 1991, (5):242-244.

[73] Prasad R, Shivay Y S, Kumar D, et al. Current status,challenges,and opportunities in rice production. In:ChauhanBS, JabranK, MahajanG(eds) Rice production world wide. Springer international publishing, Cham, pp1–32.

[74] Standard evaluation systems for rice (SES). International rice research institute, 2002, Manila.

[75] IRGSP. The map-based sequence of the rice genome[J]. Nature, 2005, 436(7052):793-800.

[76] Okonechnikov K, Golosova O, Fursov M, et al. Unipro UGENE:a unified bioinformatics toolkit[J]. Bioinformatics, 2012, 28(8):1166-1167.

[77] Marshall O J. PerlPrimer:cross-platform, graphical primer design for standard,bisulphite and real-time PCR[J]. Bioinformatics, 2004, 20(15):2471-2472.

[78] Sanguinetti C J, Dias N E, Simpson A J, et al. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels[J]. Biotechniques, 1994, 17(5):914-921.

[79] Livak. Schmittgen."Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method." Methods, 2001, 25 (4): 402-408.

[80] Zhai Q Z, Li C Y. The plant mediator complex and its role in jasmonate signaling[J]. Narnia, 2019, 70(13):3415-3424.

[81] Dutta A, Chan H P, Raina R, et al. Hypersensitive response-like lesions 1 codes for AtPPT1 and regulates accumulation of ROS and defense against bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana[J]. Antioxidants & redox signaling, 2015,22(9):785-796.

[82] Meng Y L, Zhang Q, Weixing Shan, et al. The protein disulfide isomerase 1 of phytophthora parasitica (PpPDI1) is associated with the haustoria-like structures and contributes to plant infection[J]. Frontiers in plant science, 2015, 6:632.

[83] Qundan L, Zhong Y G, Wang Y G, et al. SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice[J]. The Plant cell, 2014, 26(4)1586–1597.

[84] Frederikke G, Malinovsky, Peter Brodersen, et al. Lazarus1, a DUF300 protein, contributes to programmed cell death associated with Arabidopsis acd11 and the hypersensitive response[J]. The public library of science, 2017, 5(9):e12586.

[85] Valérie D H, Andreas J.Meyer, et al. Nuclear thiol redox systems in plants[J]. Plant science, 2016, 243:84-95.

[86] Gelhaye E, Rouhier N, Navrot N, et al. The plant thioredoxin system[J]. Cellular and molecular life sciences:Cellular and molecular life sciences, 2005, 62(1):24-35.

[87] Peter G, Ina T, Danilo M, et al. Fernie. The unprecedented versatility of the plant? thioredoxin system[J]. Trends in plant science, 2017, 22(3):249-262.

[88] Bashandy T, Guilleminot J, Vernoux T, et al. Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling[J]. The plant cell, 2010, 22(2):376-391.

[89] Meyer Y, Siala W, Bashandy T, et al. Glutaredoxins and thioredoxins in plants[J]. Biochimica et biophysica acta, 2008, 1783(4):589-600.

[90] Antelmann H, Helmann J D. Thiol-based redox switches and gene regulation Antioxid[J]. Redox signal, 2011, 14:1049–1063.

[91] Graham N. Metabolic signalling in defence and stress:the central roles of soluble redox couples[J]. Plant, Cell & Environment, 2006, 29(3):409-425.

[92] Kortemme T, Darby N J, Creighton T E, et al. Electrostatic interactions in the active site of the N-terminal thioredoxin-like domain of protein disulfide isomerase[J]. Biochemistry, 1996, 35(46):14503-14511.

[93] Jacquot J P, Gelhaye E, Rouhier N, et al. Thioredoxins and related proteins in photosynthetic organisms:molecular basis for thiol dependent regulation[J]. Biochemical pharmacology, 2002, 64(5-6).

[94] Li Y B, Han L B, Wang H Y, et al. The thioredoxin GbNRX1 plays a crucial role in homeostasis of apoplastic reactive oxygen species in response to Verticillium dahliae infection in cotton[J]. Plant physiology, 2016, 170(4):2392-2406.

[95] Hui Z, Ting T Z, Hui L, et al. Thioredoxin-mediated ROS homeostasis explains natural variation in plant regeneration[J]. Plant physiology, 2018, 176(3):2231-2250.

[96] Broin M, Rey P. Potato plants lacking the CDSP32 plastidic thioredoxin exhibit overoxidation of the BAS1 2-cysteine peroxiredoxin and increased lipid Peroxidation in thylakoids under photooxidative stress[J]. Plant physiology, 2003, 132(3):1335-1343.

[97] 刘雷, 尹钧. 硫氧还蛋白的研究[J]. 东北农业大学学报, 2003, 34(2):219-225.

[98] Sylvain R, Fabienne V, Amandine L, et al. A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis[J]. The plant cell, 2008, 20(3):752-767.

[99] Tavares C P, Vernal J, Delena R A, et al. S-nitrosylation influences the structure and DNA binding activity of AtMYB30 transcription factor from Arabidopsis thaliana[J]. Biochimica et biophysica acta, 2014, 1844(4):810-817.

[100] Romero M C, Laxa M, Mattè A, et al. S-nitrosylation of peroxiredoxin IIE promotes peroxynitrite-mediated tyrosine nitration[J]. The plant cell, 2007, 19(12):4120-4130.

[101] Kneeshaw S, Gelineau S, Tada Y, et al. Selective protein denitrosylation activity of Thioredoxin-h5 modulates plant Immunity[J]. Molecular cell, 2014, 56(1):153-162.

[102] Steven H S, Gary J L. Redox-based protein modifications:the missing link in plant immune signalling[J]. Current opinion in plant biology, 2011, 14(4):358-364.

[103] Yun B W, Feechan A, Yin M H, et al. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity[J]. Nature, 2011, 478 (7368):264-268.

[104] Kneeshaw S, Gelineau S, Tada Y, et al. Selective protein denitrosylation activity of Thioredoxin-h5 modulates plant Immunity[J]. Molecular cell, 2014, 56(1):153-162.

[105] Kneeshaw S, Keyani R, Delorme H V, et al. Nucleoredoxin guards against oxidative stress by protecting antioxidant enzymes[J]. Proceedings of the national academy of sciences of the United States of America, 2017, 114(31):8414-8419.

[106] Li Y B, Han B, Wang H Y, et al. The thioredoxin GbNRX1 plays a crucial role in homeostasis of apoplastic reactive oxygen species in response to Verticillium dahliae infection in cotton[J]. Plant physiology, 2016, 170(4):2392-2406.

[107] Lucas F, Michael J, Loake G, et al. S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway[J]. Nature communications, 2014, 5(1):5401.

[108] Yun B W, Feechan A. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity[J]. Nature, 2011, 478(7368):264-268.

[109] Wang Y Q, Feechan A, Yun B W, et al. S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity[J]. The journal of biological chemistry, 2009, 284(4):2131-2137.

[110] Ron Mittler, Sandy Vanderauwera, Martin Gollery, et al. Reactive oxygen gene network of plants[J]. Trends in plant science, 2004, 9(10)490-498.

[111] Tada Y. Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins, Science, 321(2008) 952–956.

[112] Kneeshaw S, Keyani R, Delorme H V, et al. Nucleoredoxin guards against oxidative stress by protecting antioxidant enzymes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(31):8414-8419.

[113] Ishiga Y, Ishiga T, Ikeda Y, et al. NADPH-dependent thioredoxin reductase C plays a role in nonhost disease resistance against pseudomonas syringae pathogens by regulating chloroplast-generated reactive oxygen species[J]. PeerJ, 2016, 4:e1938.

[114] Takafumi M, Tadashi H, Masahito N, et al. Ralstonia solanacearum?type III effector RipAY is a glutathione-degrading enzyme that is activated by plant cytosolic thioredoxins and suppresses plant immunity[J]. Microbiology, 2016, 7:00359-00316.

[115] Steven H S, Xinnian D. Making sense of hormone crosstalk during plant immune responses[J]. Cell Host & Microbe, 2008, 3(6):348-351.

[116] Mata P C, Spoel S H. Thioredoxin-mediated redox signalling in plant immunity[J]. Plant science:an international journal of experimental plant biology, 2019, 279:27-33.

[117] 张政荣. 拟南芥蛋白质二硫键异构酶(AtPDIL1)酶活性及其抗逆功能的研究[D]. 山东农业大学, 2017.

[118] Meng L, Li H H, Zhang L Y, et al. QTL IciMapping:Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations[J]. Crop journal, 2015, 3(3):269-283.

[119] Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping[J]. Genetics, 2007, 175(1):361-374.

[120] McCouch S R. Gene nomenclature system for rice[J]. Rice, 2008, 1(1):72-84.

[121] Fujita D, Kohli A, Horgan F G. Rice resistance to planthoppers and leafhoppers[J]. Critical reviews in plant sciences, 2013, 32(3):162-191.

[122] Ramesh K, Padmavathi G, Deen R, et al. White-backed planthopper Sogatella furcifera (Horvath) (Homoptera:Delphacidae) resistance in rice variety Sinna Sivappu[J]. Euphytica, 2014, 200(1):139-148.

[123] Liu Y Q, Wu H, Chen H, et al. A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice[J]. Nature biotechnol, 2015, 33(3):301-305.

[124] Guo J, Xu C, Wu D, et al. Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice[J]. Nature genet, 2018, 50(2):297-306.

[125] Geethanjali S, Kadirvel P, Gunathilagaraj K. Detection of quantitative trait loci (QTL) associated with resistance to white-backed planthopper (Sogatella furcifera) in rice (Oryza sativa L.)[J]. Plant breeding, 2009, 128(2):130-136.

[126] Fan D J, Liu Y Q, Zhang H L, et al. Identification and fine mapping of qWBPH11 conferring resistance to white-backed planthopper (Sogatella furcifera Horvath) in rice (Oryza sativa L.)[J]. Molecular breeding, 2018, 38:96.

[127] 黄得润. 水稻抗褐飞虱和白背飞虱QTL验证与育种应用[D]. 中国农业科学院, 2014.

[128] 刘国庆, 颜辉煌, 傅强, 等. 栽培稻的紧穗野生稻抗褐飞虱主效基因的遗传定位[D]. 科学通报, 2001, 46(9):738-742.

中图分类号:

 S51    

开放日期:

 2021-06-09    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式