中文题名: | 元江稻飞虱及其天敌灯下种群动态与上灯行为节律研究 |
姓名: | |
学号: | 2020802166 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 095132 |
学科名称: | 农学 - 农业 - 资源利用与植物保护 |
学生类型: | 硕士 |
学位: | 农业硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 昆虫生态与预测预报 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
完成日期: | 2022-04-10 |
答辩日期: | 2022-06-02 |
外文题名: | Population Dynamics and Light-Trapped Behavioral Rhythem of Migratory Rice Planthoppers and Their Natural Enemie Cyrtorhinus lividipenni in Yuanjiang |
中文关键词: | |
外文关键词: | Rice planthopper ; Cyrtorhinus lividipennis ; searchlight trap ; light-trapped behavioral rhythm ; rhythm to searchlight trap |
中文摘要: |
水稻是我国第一大口粮作物,稻飞虱是水稻上发生最为严重的害虫,具有远距离迁飞能力、突发性、暴发性和落地成灾的特点,严重威胁我国水稻粮食生产安全。元江县地处云南滇中地区,与东南亚邻国缅甸、泰国、老挝、越南相距不远,是境外虫源主要的降落区之一,也能为稻飞虱北迁提供虫源;其气候条件与我国东部地区大不相同,也使人们对元江地区稻飞虱种群变化了解甚少。此外,黑肩绿盲蝽是稻飞虱的重要捕食性天敌,能够有效制约稻飞虱的种群数量,其种群动态变化与稻飞虱种群动态变化息息相关,也可作为稻飞虱种群动态变化的预测要素之一。然而元江县稻飞虱上灯节律上尚不明确。综上,明确该地区稻飞虱及其天敌黑肩绿盲蝽的迁飞规律与上灯节律研究对水稻迁飞害虫稻飞虱的异地预测和源头治理以及天敌保护有重要指导意义。 为此,本研究基于元江县2020、2021年稻飞虱及其天敌黑肩绿盲蝽高空监测灯灯诱数据,分析了该地区稻飞虱及其天敌黑肩绿盲蝽的逐日动态、季节变化、年际差异以及夜晚扑灯节律。本研究的主要结果如下: 1.2021年元江地区稻飞虱及黑肩绿盲蝽灯下虫情逐日动态 2021年元江县白背飞虱相比于褐飞虱为害时间更长,虫量更大,白背飞虱比褐飞虱的上灯始见期早16天。白背飞虱、褐飞虱、黑肩绿盲蝽分别在5月29日、9月24日、9月23日达到全年上灯最高峰。两种飞虱下半年的诱虫量均要大于上半年,在8至9月份出现多个上灯高峰。初步推断元江地区白背飞虱迁入期在4月中旬以及8月中下旬,迁出期为5月中下旬及9月下旬至10月初。褐飞虱迁入期为5月中下旬及9月中下旬。迁出期为6月中下旬及10月初。黑肩绿盲蝽在灯下的种群动态基本同步于白背飞虱和褐飞虱,且黑肩绿盲蝽与两种稻飞虱的特大高峰期非常接近,说明黑肩绿盲蝽的季节性迁飞习性与两种稻飞虱较一致。两种飞虱在黑光灯与高空灯上出现的全年上灯最高峰日期吻合,且调查期间出现的若干个高峰期也非常接近,但黑光灯上两种飞虱的诱虫总量要远大于高空灯诱虫总量。 2.元江地区稻飞虱及黑肩绿盲蝽灯下虫情年际动态 2020-2021年间白背飞虱和黑肩绿盲蝽种群上灯虫量的年际间差异不大,没有明显的上升或下降;褐飞虱种群的上灯虫量有明显的减少。白背飞虱及褐飞虱上灯始见期相比上年分别提前19和5天,黑肩绿盲蝽始见期则推迟21天,但其两年的始见期都晚于白背飞虱和褐飞虱。2020、2021年,白背飞虱在8月和9月均出现了多个上灯高峰,期间诱虫量分别占当年的63.31%及60.41%。而褐飞虱的上灯高峰都主要集中在9月份,该月上灯虫量分别占当年的67.42%及69.05%。黑肩绿盲蝽两年均在9月份达到了全年最高扑灯虫量,期间上灯虫量分别占当年总虫量的60.89%和58.25%,其两年的上灯最高峰与褐飞虱的上灯最高峰出现时间非常接近,表现出伴迁现象。 3.稻飞虱及黑肩绿盲蝽上灯节律研究 白背飞虱、褐飞虱和黑肩绿盲蝽在2020、2021年两年夜晚的逐小时时段均有上灯,表现出整夜扑灯型。三种昆虫晚上一般有1-2个扑灯高峰,都分布于前半夜和日出之前,且三种昆虫全年早晚扑灯虫量明显多于午夜。全年上灯时段主要集中在傍晚19:30-21:30(暮峰)和早晨6:30-7:30(晨峰)时段,表现出“晨暮双峰型”的扑灯节律,三种昆虫大致上在迁入期表现出晨峰数量大于暮峰数量,迁出期暮峰数量大于晨峰数量。 |
外文摘要: |
Rice is one of the most important food crops in China. Rice planthopper is a serious pest on rice. It has the characteristics of long-distance migration, suddenness, outbreak and destruction, which seriously threatens the safety of rice production in China. Yuanjiang County in Yunnan Province has a special geographical location, and Southeast Asian neighbors Myanmar, Thailand, Laos, Vietnam is not far away. And Yuanjiang County is one of the main landing areas for rice planthoppers, and also can provide a source for the rice planthopper to migrate northward. Its climatic conditions are quite different from those in the eastern part of China, so people know little about the population change of rice planthopper in Yuanjiang area. In addition, the Cyrtorhinus lividipennis(Reuter)is an important predatory natural enemy of the rice planthopper, which can effectively restrict the population of the pest. Its population dynamics is closely related to the population dynamics of rice planthopper, and can also be used as one of the prediction factors of the population dynamics of rice planthopper. However, how is the rhythem of C. lividipennis response to the searchlight trap in Yuanjiang is not clear yet. In summary, the study on the migration pattern and behavior rhythm of the rice planthopper and its natural enemy (C. lividipennis) is reflected by the light trap in this Yuanjiang can be of great guiding significance for the off-site prediction and source control of the rice migratory rice planthopper and the protection of natural enemy. Therefore, based on the searchlight trapping data of rice planthopper and its natural enemy black shoulder green stink bug in Yuanjiang in 2020 and 2021, this study analyzed the daily dynamics, seasonal changes, interannual differences and night rhythm of rice planthopper and its natural enemy C. lividipennis to searchlight trap in Yuanjiang. This study has obtained the following main results: 1.Analysis of the the daily occurrence dynamics of rice planthopper and its natural enemy C. lividipennis in 2021. In 2021, compared with the Nilaparvata lugens, the Sogatella furcifera in Yuanjiang had a longer damage time and a larger amount of insects. The S. furcifera first appeared 16 days earlier than the N. lugens. The S. furcifera, N. lugens and C. lividipennis reached the peak of light on May 29, September 24 and September 23 respectively. The trapping amount of the two kinds of planthopper in the second half of the year was greater than that in the first half of the year, and during August to September, there were several catching peaks. It is preliminarily inferred that the immigratory periods of S. furcifera in Yuanjiang are about mid April and mid to late August, the emigratory periods are about mid to late May and late September to early October. The immigratory period of N. lugens are about mid to late May and mid to late September. The emigratory periods are about mid to late June and early October. The catching dynamics of C. lividipennis under the searchlight is basically synchronized with that of S. furcifera and N. lugens, and the date of super peak day of C. lividipennis and two kinds of rice planthopper is very close, indicating that the seasonal migration of C. lividipennis is consistent with that of the two kinds of planthopper. The annual peak dates of the two kinds of planthoppers on the blacklight lamp and the searchlight light are completely consistent, and several peak periods during the investigation are also very close, but the total amount of the two kinds of planthopper on the blacklight lamp is much greater than that on the searchlight lamp. 2.Analysis of the the interannual dynamic changes of rice planthopper and C. lividipennis, in Yuanjiang area from 2020 to 2021. There was no obvious increase or decrease in the catching number of S. furcifera and C. lividipennis; The catching number of N. lugens in the searchlight trap decreased significantly. Compared with the previous year, the initial appearance period of the two kinds of planthoppers was slightly earlier, while the initial appearance period of C. lividipennis was delayed, but the initial appearance period of two years was later than that of S. furcifera and N. lugens. In both years, S. furcifera appeared several catching peaks in August and September, the number of S. furcifera in these two months accounted for 67.42% and 69.05% of 2020 and 2021 respectively. The catching peaks of N. lugens in both years were mainly concentrated in September, the number of N. lugens in that month accounted for 67.42% and 69.05% of 2020 and 2021 respectively. C. lividipennis reached the highest number of light insects in the whole year in September too, the number of C. lividipennis in September accounted for 60.89% and 58.25% of 2020 and 2021 respectively. The catching peak in searchlight trap in both years of C. lividipennis was very close to that of N. lugens, showing the phenomenon of accompanying migration. 3.Analysis of the the catching rhythm of rice planthopper and its natural enemy C. lividipennis in Yuanjiang. The S. furcifera, N. lugens and C. lividipennis could be catched in each time period of whole night in 2020 and 2021. The three insects generally have 1-2 catching peaks at night, which are distributed in the first three hours (near to sunset, 19:30-21:30, nigth peak) and last one hour (near to sunrise, 6:30-7:30, morning peak), and the catching number of those three insects during this two period in whole year is significantly more than that in the middle of the night (21:30-06:30 (next day)), showing a "morning and night bimodal", means two peaks of catching over the night in searchlight trap. In general, the morning peak is larger than the night peak during the immigratory periods, and the night peak is larger than the morning peak during the emigratory periods. |
参考文献: |
包云轩, 徐希燕, 王建强, 等. 白背飞虱重大北迁过程的大气动力背景[J]. 生态学报, 2007, 27(11): 4527-4535. 巴音达拉. 浅谈R语言在高等学校教学当中的重要性[J]. 教育教学论坛, 2018, (7): 252-253. 边磊, 孙晓玲, 高宇, 等. 昆虫光趋性机理及其应用进展[J]. 应用昆虫学报, 2012, 49(6): 1677-1686. 程遐年, 陈若篪, 习学, 等. 稻褐飞虱迁飞规律的研究[J]. 昆虫学报, 1979, 22(1):1-20. 程遐年, 吴进才, 马飞. 褐飞虱研究与防治[M]. 北京: 中国农业出版社, 2003. 程遐年. 中国迁飞昆虫的研究进展[J]. 昆虫科学, 1992, 29(3): 146-149. 程遐年, 王海扣,胡进生, 等. 迁飞性害虫——褐飞虱中尺度的灾变预测研究[C].中国有害生物综合治理论文集.,1996: 356. 陈法军, 张逸飞, 万贵钧, 等.一种基于昆虫高空测报灯的分时段自动诱虫装置:国,201620123345.0 [P]. 2016.08.10. 陈若篪, 吴家荣, 祝树德, 等. 褐飞虱的飞翔能力[J]. 昆虫学报. 1984, 27(2): 121-127. 陈若篪, 程遐年. 褐飞虱起飞行为与自身生物学节律、环境因素同步关系的初步研究[J]. 南京农学院学报, 1980, 3(2): 42-49. 陈常铭, 肖铁光, 胡淑恒. 黑肩绿盲蝽的初步研究[J]. 植物保护学报, 1985, 12(1): 69-72. 陈建明, 程家安, 何俊华. 黑肩绿盲蝽的国内外研究概况[J]. 昆虫知识, 1992, (6): 370-373. 陈惠祥, 陈小波, 刘立春. 灯光诱杀在害虫无公害治理中的作用[J]. 昆虫知识, 1999, 36(1): 58-59. 邓望喜,许克进,荣秀兰, 等. 飞机网捕褐稻虱及白背飞虱的研究初报[J]. 昆虫知识, 1980, (3): 97-102. 邓望喜. 褐飞虱及白背飞虱空中迁飞规律的研究[J]. 植物保护学报, 1981, 8(2): 73-81. 刁永刚, 徽州稻区白背飞虱发生规律及迁飞生物学研究[D]. 硕士学位论文, 2011. 南京农业大学. 丁建云, 张永安. 高空捕虫网在稻白背飞虱监测中的应用[J]. 植物保护. 1997, 23(5): 28-30. 封传红, 翟保平, 陈庆华, 等. 利用850hPa气流资料分析稻飞虱迁飞路径[J]. 中国农业气象, 2003, 24(3): 31-35. 傅子碧,卓文禧. 黑肩绿盲蝽的特性及其保护与利用[J]. 福建农业科技, 1980, (3): 8-10+5. 郭荣, 周国辉, 张曙光. 水稻南方黑条矮缩病发生规律及防控对策初探[J]. 中国植保导刊, 2010, 20(8): 17-20. 顾国华, 葛红, 陈小波, 等. 几种夜出性昆虫夜间扑灯节律研究及应用[J]. 湖北农学院学报, 2004, 24(3): 174-177. 广西壮族自治区农业科学院植物保护研究所. 褐飞虱发生规律研究初报[J]. 广西农业科学, 1975, (5): 19-24. 高会会. 高CO2浓度对褐飞虱生长发育及其天敌黑肩绿盲蝽捕食作用的影响[D]. 华中农业大学, 2015. 胡高, 包云轩, 王建强, 等. 褐飞虱的降落机制[J]. 生态学报, 2007, 27(12): 5068-5075. 胡国文, 谢明霞, 汪毓才. 对我国白背飞虱的区划意见[J]. 昆虫学报, 1988, 31(1): 42-49. 胡国文, 刘芹轩. 白背飞虱迁飞规律[J]. 病虫测报参考资料. 1981, (3): 41-48. 胡国文, 唐启义. 中国褐飞虱的分布和为害[J]. 应用昆虫学报, 1997, (1): 50-51. 胡国文, 谢明霞, 汪毓才. 白背飞虱成虫起飞的影响因素[J]. 西南农学院学报, 1982, 1:59-65. 胡国文, 马巨法, 韩娟. 黑肩绿盲蝽成虫迁出习性观察[J]. 昆虫知识, 1995, (6): 357-359. 胡国文,唐启义,马巨法,等. 中国褐飞虱的分布和为害[J]. 昆虫知识, 1997, (1):50-51, 61. 胡梅操, 敖秋春.南昌郊区主要夜出性昆虫扑灯规律的探讨[J]. 江西林业科技, 1984, (1): 24-32. 黄次伟, 冯炳灿, 王焕弟, 等.白背飞虱生物学特性和药剂防治研究[J]. 浙江农业科学, 1982, (3): 138 -141. 霍治国, 陈林, 叶彩铃, 等. 气候条件对中国水稻稻飞虱为害规律的影响[J]. 自然灾害学报,2002, 11(1): 97-102. 侯无危, 马幼飞, 高慰曾, 等. 桃小食心虫的趋光性[J]. 昆虫学报, 1994, 37(2): 165-170. 何晶晶, 郑许松, 徐红星, 等. 温度对黑肩绿盲蝽生长发育和繁殖的持续影响[J]. 浙江农业学报, 2014, 26(1): 117-121. 焦桂华, 曾娟, 尚秀梅, 等. 高空测报灯与自动虫情测报灯监测黏虫的比较试验[J]. 中国植保导刊, 2017, 37(8): 41-44+47. 蒋娜娜, 茆国锋, 李婷, 等. 黑肩绿盲蝽对水稻挥发物单一组分的嗅觉行为反应[J]. 生态环境学报, 2018, 27(2): 262-267. 姜玉英, 刘杰, 曾娟, 等.我国农作物重大迁飞性害虫发生为害及监测预报技术[J]. 应用昆虫学报, 2021, 58(3): 542-551. 李和帅, 张照华, 王富有, 等. 云南省干热河谷地区椰子种质资源及其适应性调查报告——以元江县、河口县为例[J]. 热带农业科学, 2021, (12): 30-37. 李刚, 解福燕, 李成鹏. 元江县60年降水变化特征及成因分析[J]. 云南科技管理, 2014, 27(4): 27-29. 李健琪. 云南元江县发展高原特色现代农业[J]. 农业工程技术, 2021, 41(17): 3-4. 李云瑞. 农业昆虫学(南方本)[M]. 北京: 中国农业出版社, 2002. 李超, 刘洋, 陈恺林等. 灌溉方式对优质晚稻田褐飞虱及黑肩绿盲蝽迁入及迁出的影响——湖南省益阳市个例分析[J]. 中国生态农业学报, 2017, 25(1): 86-94. 李蒙, 谢国清, 吕建平. 云南稻飞虱发生特征及气候因素分析[J]. 云南农业科技, 2009 (S2): 101-103. 刘鹏程, 刁跃珲, 郭嘉雯等. 昆虫迁飞行为及其调控机制[J]. 应用昆虫学报, 2021, 58(3) :520-529. 刘芹轩, 张桂芬. 白背飞虱飞翔活动的研究[J]. 昆虫知识, 1984, 21(6): 241-243. 刘玉彬, 杨家鸾, 林莉, 等. 云南白背飞虱和褐稻虱发生特点的研究[J]. 昆虫知识, 1991, 28(5): 257-261. 刘浩光, 刘振杰, 祝为华. 我国海上网捕褐稻虱的结果[J]. 昆虫学报, 1983, 26(1): 109-113. 刘立春. 昆虫趋光行为的初步观察[J]. 南京农学院学报, 1982, (2): 53-59. 刘立春. 诱虫灯的研究进展及应用概况[J]. 华东昆虫学报, 1994, 3(1): 75-78. 刘立春, 顾国华, 陈建军, 等. 四种蛾类灯下行为特点的初步研究[J]. 昆虫知识, 1997, 34 (2): 96-99. 陆明红, 刘万才, 胡高, 等. 中越水稻迁飞性害虫稻飞虱、稻纵卷叶螟发生关系分析[J]. 植物保护, 2018, 44(3):31-36. 陆明红, 周丽丽, 尹丽, 黄成宇, 邱坤, 万宣伍, 翟保平, 刘万才. 2019年我国稻飞虱发生特点及原因分析[J]. 中国植保导刊, 2019, 40(5): 52-57. 凌炎, 黄芊, 蒋显斌, 等. 连续取食抗吡虫啉褐飞虱对黑肩绿盲蝽生物学特性的影响[J]. 华中农业大学学报, 2015, 34(1):45-48. 赖仲廉. 贵阳地区白背飞虱的越冬及迁飞观察[J]. 昆虫学报, 1982, (4): 397-402. 全国白背飞虱科研协作组. 白背飞虱迁飞规律的初步研究[J]. 中国农业科学, 1981, (5):25-30. 全国褐稻虱科研协作组. 高山捕虫网在研究稻飞虱迁飞规律和预测中的作用[J]. 昆虫知识,1981, (6): 241-247. 齐会会, 张云慧, 蒋春先, 等. 黑肩绿盲蝽与褐飞虱的伴迁行为研究[J]. 中国生物防治学报, 2014, 30(2): 171-177. 齐国君. 褐飞虱发生规律的再研究[D]. 硕士学位论文, 2009. 南京: 南京农业大学. 沈慧梅. 我国褐飞虱与白背飞虱的境外虫源研究[D]. 博士学位论文, 2010. 南京: 南京农业大学. 唐耀华. 黑肩绿盲蝽对不同虫态褐飞虱的捕食量及捕食选择性[C]. 中国植物保护学会.2014 年中国植物保护学会学术年会论文集, 2014:1. 汤金仪, 胡伯海, 王建强. 我国水稻迁飞性害虫猖獗成因及其治理对策建议[J]. 生态学报, 1996, (2): 167-173. 王利, 黄洁, 薛仁风. 云南省元江县水稻传统地方品种的保护与可持续利用[J]. 农学学报, 2019, 9(11): 1-5. 王希仁, 张灿东. 褐稻虱翅型分化因子的探讨[J]. 昆虫知识, 1981, (4): 4-7. 吴秋琳, 胡高, 陆明红, 等. 湖南白背飞虱前期迁入种群中小尺度虫源地及降落机制[J]. 生态学报, 2015, 35(22): 7397-7417. 巫国瑞, 俞晓平, 陶林勇. 褐飞虱和白背飞虱灾害的长期预测[J]. 中国农业科学, 1997, 30(4): 25-29. 武予清, 段云, 蒋月丽. 害虫的灯光防治研究与应用进展[J]. 河南农业科学, 2009, (9): 127-130. 峗庆才, Jervis MA..黑肩绿盲蝽对不均匀分布猎物的捕食行为[J]. 西南农业大学学报, 1988, (2): 245-252. 谢联辉, 林奇英.我国水稻病毒病研究的进展[J]. 中国农业科学, 1984, (6): 58-65. 肖满开, 唐学友, 刘家成, 等. 测报灯下稻飞虱虫情变化原因及改进意见[J]. 植物保护, 1997, 23 (3): 51-52. 姚万福, 李建山, 唐进恒, 等. 元江县实蝇类害虫立体化综合防控技术体系评价[J]. 云南农业科技, 2019, (5): 34-38. 杨菊琼. 浅析元江县红河流域特色农业经济带建设[J]. 种子科技, 2018, 36(8): 13-15. 杨菁菁, 梁朝巍, 沈斌斌等. 昆虫扑灯节律研究[J]. 安徽农业科学, 2012, 40(1):210-212. 叶志长, 何三妹, 陆利全, 等. 褐飞虱起飞迁出习性的观察[J]. 昆虫知识, 1981, 18(3): 97-100. 严文颖. 生物信息专业R语言课程教学的探索和研究[J]. 现代信息科技, 2018, 2(11): 108-109. 殷荐芳, 胡庆红, 何华. 元江县热坝区夏粮冬花种植模式比较分析[J]. 现代农业科技, 2013, (19): 75-76. 俞晓平, 胡萃. 黑肩绿盲蝽在寄生植物、飞虱和叶蝉卵上的生长和发育[J]. 中国水稻科学, 1996, (4): 220-226. 张建新, 张孝羲, 罗卫华. 白背飞虱飞行能力的研究[J]. 昆虫知识, 1992, 29(2): 65-69. 章仕美, 胡梅操. 我国水稻害虫的分布区域系和发生动态研究[J]. 中国农业科学, 1986, 10(6): 59-64. 郑大兵, 杨帆, 赵运, 等. 白背飞虱回迁种群的形成: 2009年安徽潜山的个例分析[J]. 应用昆虫学报, 2011, 48(5): 1242-1252. 周国辉, 温锦君, 蔡德江, 等. 呼肠孤病毒科斐济病毒属一新品种: 南方水稻黑条矮缩病毒[J]. 科学通报, 2008, 53(20): 2500-2508. 周国辉, 张曙光, 邹寿发. 水稻新病害南方水稻黑条矮缩病发生特点及危害趋势分析[J]. 植物保护, 2010, 36(1): 144-146. 周传波, 陈安福. 黑肩绿盲蝽捕食大螟卵[J]. 昆虫天敌, 1981, (4): 25. 周集中, 陈常铭. 黑肩绿盲蝽对褐飞虱卵的捕食作用及其模拟模型的研究[J]. 湖南农业科学, 1986, (6): 59-64. 翟保平. 稻飞虱: 国际视野下的中国问题[J]. 昆虫知识, 2011, 48(5): 1184-1193. 翟保平, 程家安. 2006年水稻两迁害虫研讨会纪要[J]. 昆虫知识, 2006, 43(4): 585-588. 翟保平. 追踪天使-雷达昆虫学30年[J]. 昆虫学报, 1999, 42(3): 315-315. 翟保平, 张孝羲, 程遐年. 昆虫迁飞行为的参数化行为分析[J]. 生态学报, 1997, (17): 7-17. 翟保平. 入侵生物学的行为学考量: 浙江乐清稻水象甲个例分析[C]. 生物入侵与生态安全“第一届全国生物入侵学术研讨会”论文摘要集., 2007: 44. 朱学威, 白背飞虱与褐稻虱的发生特点比较[J]. 昆虫知识, 1985, 22(2): 51-53. 朱明华, 黑肩绿盲蝽的迁飞观察[J]. 昆虫知识, 1989, 26(6): 350-353. 张孝羲, 周立阳. 害虫预测预报的理论基础[J]. 昆虫知识, 1995, 32(1): 55-60. 张孝羲, 昆虫生态及预测预报. 北京: 中国农业出版社, 2000: 199-296. 张建新, 白背飞虱迁飞发生机制[D]. 博士学位论文, 1985. 南京: 南京农业大学. 郑大兵, 我国稻飞虱虫源地的衔接关系[D]. 博士学位论文, 2013. 南京: 南京农业大学. 郑大兵, 崔茂虎, 何洪平等. 云南师宗白背飞虱前期迁入种群的虫源地分布与降落机制[J]. 生态学报, 2014, 34(15): 4262-4271. 赵世福. 稻飞虱自然种群扑灯行为的初步观察[J]. 江西农业学报, 1992, 4(1):74-79. 赵雪晴, 沈慧梅, 尹艳琼,等 .云南白背飞虱的发生与种群消长特点[J]. 应用昆虫学报, 2014, 51(2): 516-524. Åkesson S, Hedenström A. How migrants get there: migratory performance and orientation[J]. Bioscience, 2007, 57(2): 123-133. Chapman JW, Reynolds DR. and Wilson K. Long-range seasonal migration in insects:mechanisms, evolutionary drivers and ecological consequences[J]. Ecology Letters, 2015, (18): 287-302. Cheng XN,Chen RC,Xi X,et al. Studies on the migrations of brown planthopper Nilapavata lugens[J]. Acta Entomologica Sinica, 1979, 22(1): 1-21. Cook AG., Perfect TJ. The influence of immigration on population development of Nilaparvata lugens and Sogatella furcifera and its interaction with immigration by predators[J]. Crop Protection, 1985, 4(4): 423-433. Crummay FA, Atkinson BW. Atmospheric influences on light-trap catches of the brown planthopper rice pest[J]. Agricultural and Forest Meteorology, 1997, 88(1): 181-197. Drake VA. Collective orientation by nocturnally migrating Australian plague locusts, Chortoicetes terminifera (Walker) (Orthoptera Acrididae): a radar study[J]. Bulletin of Entomological Research, 1983, 73: 679-692. Drake VA, Farrow RA. A radar and aerial trapping study of an early spring migration of moths (Lepidoptera) in inland New South Wales[J]. Australian journal of ecology, 1985, 10 (3): 223-223. Drake VA, Farrow RA. The influence of atmospheric structure and motions on insect migration[J]. Annual Review of Entomology, 1988, 33(1): 183-210. Feng HQ, Wu KM, Cheng DF, et al.Radar observations of the autumn migration of the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) and other moths in northern China[J].Bulletin of Entomological Research, 2003, 93(2): 115-124. Hu G, Lu F, Zhai BP, et al. Outbreaks of the brown planthopper Nilaparvata lugens (Stål) in the Yangtze River Delta: Immigration or local reproduction?[J]. Plos One, 2014, 9(2): e88973. Hu G, Lim KS, Horvitz N, et al. Mass seasonal bioflows of high-flying insect migrants[J]. Science, 2016a, 354(6319): 1584-1587. Hu G, Lim KS, Reynolds DR, et al. Wind-related orientation patterns in diurnal, crepuscular and nocturnal high-altitude insect migrants[J]. Frontiers in Behavioral Neuroscience, 2016b, (10): 32. Hu G, Lu MH, Tuan HA, et al. Population dynamics of rice planthoppers, Nilaparvata lugens and Sogatella furcifera (Hemiptera: Delphacidae) in Central Vietnam and its effects on their spring migration to China[J]. Bulletin of Entomological Research, 2017, 107(3). Hu G, Lu MH, Reynolds DR, et al. Long-term seasonal forecasting of a major migrant insect pest: the brown planthopper in the Lower Yangtze River Valley[J]. Journal of Pest Science, 2019, 92: 417–428. Hu QL, Zhuo JC, Ye YX, et al. Whole genome sequencing of 358 brown planthoppers uncovers the landscape of their migration and dispersal worldwide[J]. BioRxiv, 2019, 32: 679-692. Kisimoto R. Synoptic weather conditions inducing long-distance immigration of planthoppers, Sogatella furcifera (Horváth) and Nilaparvata lugens (Stål)[J]. Ecological Entomology, 1976, 1(2): 95-109. Kisimoto R, Sogawa K. Planthopper Sogatella furcifera in East Asia: the role of weather and climate. In: Drake VA, Gatehouse AG. Insect Migration: Tracking Resources through Space and Time[J]. Cambridge University Press, UK, 1995, pp67-92. Kisimoto R. Long-distance migration of rice insects. in: Heinrichs E.A., Miller T.A. eds. Rice Insects: Management Strategies[J]. New York: Springer-V erlag, 1991, 167-195. Lin X, Xu Y, Yao Y, et al. JNK signaling mediates wing form polymorphism in brown planthoppers (Nilaparvata lugens)[J]. Insect Biochemistry & Molecular Biology, 2016a, 73: 55–61. Lin X, Yao Y, Wang B, et al. Ecological trade-offs between migration and reproduction are mediated by the nutrition-sensitive insulin-signaling pathway[J]. International Journal of Biological Sciences, 2016b, 12(5): 607–616. Lin X, Xu Y, Jiang J, et al. Host quality induces phenotypic plasticity in a wing polyphenic insect [J] Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(29): 7563–7568. Matsumura M, Takeuchi H, Satoh M, et al. Species-specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Sogatella furcifera and Nilaparvata lugens in East and South-east Asia[J]. Pest Management Science, 2008, 64(11): 1115-1121. Menz MHM, Reynolds DR, Gao B, et al. Mechanisms and consequences of partial migration in insects[J]. Frontiers in Ecology and Evolution, 2019, 7: 403. Nowinszky L, Kiss O, et al. Influence of illumination and polarized moonlight on light-trap catch of caddisflies (Trichoptera)[J].Research Journal of Biology, 2012, 2(3): 79-90 Nowinszky L, Meszaros Z, Puskas J. The hourly distribution of moth species caught by a light-trap[J]. Applied Ecology and Environmental Research, 2007, 5(1): 103-107. Ohkubo N. Experimental studies on the flight of planthoppers by the tethered flight technique. I. Characteristics of flight of the brown planthopper Nilaparvata lugens (Stål) and effects of some physical factors[J]. Japanese Journal of Applied Entomology and Zoology, 1973, 17(1): 10-18. Otuka A, Watanabe T, Suzuki Y, et al. A migration analysis of Sogatella furcifera (Homoptera: Delphacidae) using hourly catches and a three-dimensional simulation model[J]. Agricultural and Forest Entomology, 2006, 8(1): 35-47. Otuka A, Matsunura M, Watanabe T, et al. A migration analysis for rice planthoppers, Sogatella furcifera (Horváth) and Nilaparvata lugens (Stål) (Homoptera: Delphacidae), emigrating from northen Vienam from April to May[J]. Applied Entomology and Zoology, 2008, 43(4): 527-534. Otuka A, Waranabe T, Matsumura M, et al. A migration analysis of the rice planthopper Nilaparvata lugensfrom the Philippines to East Asia with three-dimensional computer simulations[J]. Population Ecology, 2005, 47: 143-150. Otuka A. Migration of rice planthoppers and their vectored re-emerging and novel rice viruses in East Asia[J]. Front. Microbiol. 2013, 4, 309. Riley JR, Reynolds DR, Farrow RA. The migration of Nilaparvata lugens (stål) (Delphacidae) and other Hemiptera associated with rice during the dry season in the Philippines: a study using radar, visual observations, aerial netting and ground trapping[J]. Bulletin of Entomological Research, 1987, 77(1): 145-169. Riley JR, Reynolds DR, Smith AD, et al. Observations on the autumn migration of Nilaparvata lugens (Homoptera: Delphacidae) and other pests in east central China[J]. Bulletin of Entomological Research, 1994, 84(3): 389-402. Steinbauer MJ, Haslem A, Edwards ED. Using meteorological and lunar information to explain catch variability of Orthoptera and Lepidoptera from 250 W Farrow light traps[J]. Insect Conservation and Diversity, 2012, 5(5): 367-380. Stapley JH. The brown planthopper and Cyrtorhinus spp. predators in the Solomon Islands[J]. Rice Entomology News Letter, 1976, 4: 15-16. Wada T, Seino H, Ogawa Y, et al. Evidence of autumn overseas migration in the rice planthoppers, Sogatella furcifera and Nilaparvata lugens analysis of light trap catches and associated weather patterns[J]. Ecological Entomology, 1987, 12(3): 321-330. Watanabe T, Selno H. Correlation between the immigration area of rice planthoppers and the low-level jet stream in Japan[J]. Applied Entomology & Zoology, 2008, 26(4): 457-462. Williams CB. The influence of moonlight on the activity of certain nocturnal insects, particularly of the family Noctuidae, as indicated by a light trap, Philosophical Transactions of the Royal Society of London[J].Series B, Biological Sciences, 1936, 226(537): 357-389. Wu QL, Westbrook JK, Hu G, et al. Multiscale analyses on a massive immigration process of Sogatella furcifera (Horváth) in south-central China: influences of synoptic-scale meteorological conditions and topography[J]. International Journal of Biometeorology, 2018, 62: 1389–1406. Wu QL, Hu G, Tuan HA, et al. Migration patterns and winter population dynamics of rice planthoppers in Indochina: New perspectives from field surveys and atmospheric trajectories[J]. Agricultural and Forest Meteorology, 2019, 265:99-109. Xu HJ, Xue J, Lu B, et al. Two insulin receptors determine alternative wing morphs in planthoppers[J]. Nature, 2015, 519(7544): 464. Ye X, Xu L, Li X, et al. MiR-34 modulates wing polyphenism in planthopper[J]. PLoS Genetics, 2019, 15(6): e1008235. Zhang CX, Brisson JA, Xu HJ. Molecular mechanisms of wing polymorphism in insects[J]. Annual Review of Entomology, 2019, 64: 297–310. |
中图分类号: | S43 |
开放日期: | 2022-06-16 |