- 无标题文档
查看论文信息

中文题名:

 植物-线虫跨界生态策略框架构建及其与自然恢复生态系统土壤碳循环的多维联系    

姓名:

 张崇哲    

学号:

 2020203008    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 071300    

学科名称:

 理学 - 生态学    

学生类型:

 博士    

学位:

 理学博士    

学校:

 南京农业大学    

院系:

 资源与环境科学学院    

专业:

 生态学    

研究方向:

 恢复生态学    

第一导师姓名:

 刘满强    

第一导师单位:

 南京农业大学    

完成日期:

 2024-07-31    

答辩日期:

 2025-05-23    

外文题名:

 Plant–Nematode Cross-kingdom Ecological Strategy Framework and Its Multidimensional Linkages to Soil Carbon Cycling During Natural Ecosystem Restoration    

中文关键词:

 生态策略 ; 植物性状 ; 线虫性状 ; 碳循环 ; 权衡关系 ; 多维性 ; 生态恢复    

外文关键词:

 Ecological strategies ; Plant traits ; Nematode traits ; Carbon cycle ; Trade-off ; Multidimensionality ; Ecological restoration    

中文摘要:

陆地生态系统是一个由不同组分相互协调构成的有机整体,理解这些组分之间的协同关系是深入认识生态系统运作的基础。然而,量化生态系统各组分之间的关系一直是生态学所面临的一道难题。基于生态策略和性状的概念为揭示这些关系提供了理论基础和研究框架。相较于已经明确的植物性状权衡的生态策略维度及其与生态系统碳循环的联系,生态系统地下部土壤生物生态策略的研究仍显薄弱。作为地球上数量最丰富的后生动物类群,土壤线虫在全球碳循环过程中同样发挥着不可替代的作用,但其关键的性状-策略维度尚未得到充分解析。植物和线虫同为生态系统碳循环的重要调控者,当研究视角从单一类群扩展至跨界类群时,线虫生态策略的知识空白严重制约了我们对生态系统碳循环的全面理解。那么,二者的性状与生态策略之间究竟存在怎样的协同关系,这种协同关系又如何影响生态系统的碳循环过程?本研究通过构建原创性理论框架并结合大尺度野外采样调查,从生态策略角度系统探索了这一科学问题,旨在全面、系统地理解跨界生态策略与生态系统功能之间的关联。

本研究从两个方面展开,首先,在理论研究方面,系统梳理现有研究中的线虫性状,对其进行归纳分类,并在此基础上量化核心性状之间的权衡关系,解析线虫生态策略的关键维度,同时尝试构建其与植物策略维度之间的联系,从而建立原创性理论框架,为阐明跨界生态策略与土壤碳循环的关系提供新视角。其次,在实证研究方面,依托我国南方典型生态系统样带,开展大尺度野外调查采样工作,系统测定植物性状、线虫性状以及土壤碳循环关键指标,明确植物与线虫生态策略的多维协同规律,并探究跨界生态策略与土壤碳循环之间的联系,最终实证支持本研究提出的理论框架。主要结果如下:

(1)基于理论知识和现有研究,将线虫性状归类为形态、生理、生活史和群落四个类别,解决了当前线虫性状描述不一致、数据碎片化的问题,为线虫性状研究提供了标准化性状分类体系。在此基础上,本研究开创性地提出了“线虫经济系谱”理论框架,聚焦于线虫生长、生存和繁殖策略,涵盖五个关键性状。该系谱描述了一个从“快速投资-收益”到“缓慢投资-收益”的连续系谱:在“快速”端,线虫个体通常体型较小,代谢和繁殖速率较高,寿命较短且产卵较小;而在“缓慢”端,线虫个体则表现为体型和卵较大,寿命较长且代谢和繁殖速率较低。进一步地,本研究建立了植物与线虫经济系谱之间的跨界联系,提出了“整合的植物与线虫经济系谱”框架。在该整合系谱的“快速”端,植物和线虫物种协同促进碳和养分的快速循环,而在碳和养分循环较慢的生态系统中,则以“缓慢”的植物和线虫物种为主导。

(2)采用空间替代时间的方法,在云南大围山自然保护区选取了农田弃耕后自然恢复的草地(先锋期)、15年(前期)、30年(中期)和60年以上(后期)的森林,构建完整的自然恢复时间序列。植物和线虫的生态策略在自然恢复过程中呈现一致的变化轨迹,从先锋期以快速资源获取和高代谢活性的小型生物为主,逐渐演替到后期以大型、缓慢生长的生物为主。这一生态策略的转变伴随着土壤有机碳的显著积累,从先锋期的 39.4 g kg⁻¹ 增至后期的 118.2 g kg⁻¹(p < 0.05)。基于植物和线虫性状的协同变化,研究构建了整合的植物与线虫经济系谱,首次为量化植物与线虫生态策略之间的关系提供了直接证据。在本研究的生态系统自然恢复过程中,随机森林模型表明,整合经济系谱上植物和线虫性状的协同变化是土壤有机碳变化的最佳预测因子(p < 0.001),其解释力优于单独使用其中任何一组性状。方差分解结果进一步表明,76%的土壤有机碳变异可由植物与线虫性状的协同效应解释。此外,结构方程模型揭示了整合的植物与线虫经济系谱通过调控微生物性状,如微生物碳利用效率与微生物生物量,进而影响土壤有机碳的变化。

(3)基于中国南方典型生态系统样带,本研究选取了六个典型样点,涵盖草地、灌丛和森林三种植被类型,共设置87个样地,系统分析了自然恢复序列中植物性状、线虫性状和土壤碳循环关键指标。研究首先确定了植物生态策略、线虫生态策略和土壤碳循环的关键维度。植物根系的主要性状-策略维度包括根系经济系谱和根系协作维度,前者反映了根系快-慢权衡策略,即高代谢活性与组织投资之间的权衡,后者体现了根系在自主获取资源与通过与菌根真菌合作获取资源之间的权衡。这一结果与全球尺度上的多维格局相一致,进一步验证了植物生态策略的多维性。线虫的主要性状-策略维度同样包括两个方面,其一是线虫经济系谱,由体型大小和寿命定义,反映了在体型构建成本与生长潜力之间的快-慢连续体,其二是线虫繁殖维度,体现了雄性比例与后代比例之间的权衡。此外,研究还确定了土壤碳循环的两个主要维度,其中一个维度反映了碳流,涵盖从具有高碳相关酶活性和呼吸作用的快速碳流到缓慢碳流;另一个维度代表了碳库,由土壤有机碳含量的高低定义。线性回归模型揭示了植物根系经济系谱与线虫经济系谱之间存在显著的协同关系(p < 0.001),这一协同的快-慢连续体与土壤碳库的变化密切相关(p < 0.001),而繁殖维度与根系协作维度相契合(p < 0.001),这一协同的协作–繁殖维度主要与土壤碳流密切相关(p < 0.001)。研究结果首次将植物、线虫和土壤碳循环纳入到一个统一的框架中,深化了对全球变化背景下生态系统运作的整体性理解。

综上所述,本研究首次将生态策略框架应用于土壤线虫分析,提供了一种具有理论深度和实践意义的全新思路和方法。更重要的是,本研究以中国南方典型生态系统样带为平台,选取了共22个典型的生态系统作为研究地点,结合野外调查采样和室内实验测定,通过可视化和定量化生态系统不同组分在各自维度上的协调关系,系统阐明了植物与线虫生态策略的跨界协同及其与土壤碳库和碳流的关系,涵盖从一维经济系谱到二维性状空间的全方位分析。具体而言,本研究成功构建了一个涵盖了植物、线虫和土壤碳循环的整合性性状空间的概念框架。这一性状空间不仅为生态恢复提供了基于自然的解决方案,还为改进生态系统功能与全球变化的预测模型奠定了理论基础。此外,这一跨类群、跨学科的概念框架有望整合更多生物类群及生态系统功能,并基于性状-策略维度的连续变化进行扩展。然而,未来仍需在全球尺度更多样的生态系统类型中进行验证、完善和拓展。

外文摘要:

Terrestrial ecosystems comprise diverse and interconnected components, and their properties and functioning depend on the tight coordination among them. However, quantitative evidence of the intricate interactions among key ecosystem components remains a central goal of ecology. The lens of ecological strategy schemes allows us to understand how organisms function within ecosystems and quantify their relationships with other organisms, thereby conceptualizing their linkages to terrestrial ecosystem functions. Plant ecologists have pioneered this effort, identifying the fundamental dimensionality of trait variation and exploring how this variation drives the dimensionality of ecosystem functions. However, as for many aspects of ecology, far less is known about the world belowground than aboveground. For example, the traits and ecological strategies of soil nematodes – the most abundant animals on Earth and a group that plays a key role in ecosystem functioning – remain less explored. The knowledge gap hinders our ability to explicitly consider multidimensional cross-taxon between plants and nematodes – two key drivers in global carbon cycle – towards more nuanced predictions of ecosystem carbon cycles in the face of ongoing global challenges. This gives rise to a key scientific question: to what extent are the traits and strategies of plants and nematodes coordinated, and what are the implications for the ecosystem carbon cycle? This study addresses this challenge by developing a conceptual framework and conducting large-scale field sampling from an ecological strategies perspective, aiming to understanding the linkages between cross-kingdom ecological strategies and ecosystem functions.

This study systematically summarizes and categorizes nematode traits into distinct clusters, identifying trade-offs between key traits to determine the main dimensions of nematode ecological strategies. It further explores the coordinated linkages between plant and nematode ecological strategies and their trait proxies, developing a conceptual framework for fully understanding cross-kingdom ecological strategies and the role in soil carbon cycling. Additionally, a large-scale field sampling is conducted at 7 sites across southern China. Functionally important traits of plants and nematodes, along with key aspects of soil carbon cycling, are analyzed to assess the coordination between plant and nematode ecological strategies and to evaluate the linkages between plant-nematode coordination and soil carbon cycling, providing empirical evidence for the proposed conceptual framework. The main findings are as follows:

(1) Drawing on theoretical knowledge and existing studies, this study categorizes nematode traits into morphological, physiological, life history, and community clusters. The standardized classification system aims to propose a unified language for nematode trait ecology. We then propose the “nematode economics spectrum (NES)”, focusing on five key traits related to nematode growth, survival, and reproduction. The NES runs from species with potential for fast growth and fast returns on investment into resource acquisition and metabolism, to species that have the potential to invest in reproduction with slow returns. At the fast end are species with a small body size, high rates of metabolism and reproduction, and short lifespans that produce small eggs. Species at the slow end have large body and egg sizes, long lifespans, and low rates of metabolism and reproduction. Furthermore, we bridge the NES with the plant economics spectrum (PES), forming a PES–NES framework in which plant and nematode species at the fast end of the continuum contribute to fast carbon and nutrient cycling, while ecosystems with slow carbon and nutrient cycling are dominated by species at the slow end.

(2) This study system is a space-for-time chronosequence spanning pioneer (grassland), early (15-year forest), mid (30-year forest), and climax (over 60-year forest) stages of natural restoration on ex-arable lands following agricultural abandonment in the Daweishan National Natural Reserve. Covariation in plant and nematode traits provides compelling evidence for synchronous changes in plants and nematodes during natural restoration, ranging from small-bodied organisms characterized by fast resource acquisition and metabolic activities in the pioneer stage to large and slow-growing organisms in the climax stage. Change in plant and nematode traits correspond to enhanced soil organic carbon (SOC) dynamics, which SOC content significantly increasing across stages from 39.4 to 118.2 g C kg-1 soil (p < 0.05). We identify an integrated fast-slow economics spectrum encompassing plants and nematodes, providing the first empirical evidence for quantifying the relationship between their ecological strategies. The random forest models demonstrate that the integrated economics spectrum is the most important predictors of SOC (p < 0.001), outperforming either the PES or NES alone. Furthermore, variation partitioning analysis reveal that variation in the fast–slow spectra of plants and nematodes (the joint effects) explained 76% of the total variation in SOC. Finally, structural equation modeling reveals that the integrated fast-slow economics spectrum influenced soil organic carbon through its regulation of microbial traits, including microbial carbon use efficiency and microbial biomass.

(3) This study analyse functionally important traits of plants and nematodes, and key aspects of soil carbon cycling from 87 plots spanning different vegetation types ‒ grasslands, shrublands and forests ‒ along a natural restoration chronosequence at 6 sites in China. The study first identified the primary trait-strategy dimensions of plant roots, soil nematodes and soil carbon cycling. First, we identify two key trait-strategy dimensions for plant roots, one being the root economic spectrum (RES), another is the collaboration dimension. The RES represents the “fast–slow” trade-offs between high metabolic activity and high tissue investment, while the collaboration dimension captures the trade-offs between do-it-yourself resource uptake and resource acquisition being primarily delegated to arbuscular mycorrhizal fungal partners. Our results agree well with the previously reported global root economics space, which depicts different trait dimensions of plant ecological strategies for belowground resource acquisition. Next, we identify two key trait-strategy dimensions for nematodes. One, the NES, is defined by body size and lifespan, reflecting a fast‒slow continuum balancing body construction costs against growth potential. The other, the reproduction dimension, captures a trade-off between male proportion and offspring proportion. We then identify two key dimensions to soil carbon cycling. One represents carbon flux, ranging from fast fluxes with high carbon-related enzyme activities and respiration, to slow fluxes. The second represents the carbon pool, defined by the distribution of soil organic carbon. Linear regression models further confirm that variation along the NES is coordinated with the RES (p < 0.001), with their integrated fast–slow continuum is associated with variation in carbon pools (p < 0.001). The reproduction dimension aligns with the root collaboration dimension (p < 0.001), with this collaboration–reproduction dimension is related to carbon fluxes (p < 0.001). Our study goes beyond focusing solely on plants, nematodes, or soil carbon – it integrates these key components of ecosystems into a unified framework for the first time, providing a comprehensive understanding to ecosystem dynamics amid ongoing and future climatic and environmental changes.

Generally, this study is the first attempt to apply ecological strategy schemes to nematodes, providing new perspectives and methods for nematode ecology. Crucially, by visualizing and quantifying the tight coordination between the dimensionality of each of key ecosystem components and ecosystem functions across 22 typical ecosystem in southern China, it expands previous findings by shifting the focus from the linkages between the unidimensional trait spectrum of individual guilds and ecosystem functions to the connections between the bidimensional trait space of cross-kingdom assembly and the primary axes of variation of ecosystem functions. This study successfully integrates key ecosystem components and functions – plants, nematodes and soil carbon cycling – into a unified framework: an integrated trait space that captures the linkages between cross-kingdom ecological strategies and carbon pools and fluxes. The integrated trait space provides nature-based solutions for ecological restoration, and a foundation for improving predictive models of ecosystem function and global change. With its cross-taxon, cross-disciplinary focus, this trait space has the potential to incorporate additional ecosystem components and ecosystem functions, expanding the framework based on continuous variation along trait-strategy dimensions. However, it is still in its infancy and currently offers limited insights. A broader generalization of the presented findings requires further studies with larger sample sizes across multiple sites and diverse climatic conditions.

参考文献:

[1] 陈小云, 刘满强, 胡锋, 毛小芳, 李辉信, 2007. 根际微型土壤动物——原生动物和线虫的生态功能. 生态学报 27: 3132-3143.

[2] 陈小云, 李辉信, 胡锋, 刘满强, 2004. 食细菌线虫对土壤微生物量和微生物群落结构的影响. 生态学报, 24: 2825-2831.

[3] 褚海燕, 刘满强, 韦中, 柯欣, 王玉军, 梁玉婷, 马玉颖, 高贵锋, 施卫明, 孙瑞娟, 2020. 保持土壤生命力,保护土壤生物多样性. 科学 72: 38-42.

[4] 方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 2009. 植物群落清查的主要内容, 方法和技术规范. 生物多样性 17, 533.

[5] 傅声雷, 2019. 土壤生态学: 土壤食物网及其生态功能. 科学出版社, 北京.

[6] 傅声雷, 刘满强, 张卫信, 邵元虎, 2022. 土壤动物多样性的地理分布及其生态功能研究进展. 生物多样性 30, 22435.

[7] 何念鹏, 刘聪聪, 张佳慧, 徐丽, 于贵瑞, 2018. 植物性状研究的机遇与挑战: 从器官到群落. 生态学报 38, 6787-6796.

[8] 何念鹏, 于贵瑞, 刘聪聪, 李颖, 王瑞丽, 2024. 植物功能生态学: 从器官到生态系统. 科学出版社, 北京.

[9] 贺金生, 王政权, 方精云, 2004. 全球变化下的地下生态学: 问题与展望. 科学通报 49, 1226-1234.

[10] 何芸雨, 郭水良, 王喆, 2019. 植物功能性状权衡关系的研究进展. 植物生态学报 43, 1021-1035.

[11] 雷羚洁, 孔德良, 李晓明, 周振兴, 李国勇, 2016. 植物功能性状, 功能多样性与生态系统功能: 进展与展望. 生物多样性 24, 922.

[12] 鲁如坤, 1999. 土壤农业化学分析方法. 中国农业科技出版社, 北京.

[13] 陆雅海, 傅声雷, 褚海燕, 杨云锋, 刘占锋, 2015. 全球变化背景下的土壤生物学研究进展. 中国科学基金 29, 19-24.

[14] 潘权, 郑华, 王志恒, 文志, 杨延征, 2021. 植物功能性状对生态系统服务影响研究进展. 植物生态学报 45, 1140.

[15] 邵元虎, 傅声雷, 2007. 试论土壤线虫多样性在生态系统中的作用. 生物多样性 15, 116.

[16] 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静, 2023. 植物细根功能性状的权衡关系研究进展. 植物生态学报 47, 1055-1070.

[17] 孙新, 谢致敬, 乔志宏, 高梅香, 殷睿, 常亮, 吴东辉, 刘满强, 朱永官, 2024. 基于功能性状的土壤动物群落生态学研究进展. 应用生态学报 35, 1150.

[18] 吴东辉, 傅声雷, 2022. 土壤动物多样性: 物种与群落研究. 生物多样性 30, 22680.

[19] 吴纪华, 宋慈玉, 陈家宽, 2007. 食微线虫对植物生长及土壤养分循环的影响. 生物多样性 15, 124.

[20] 杨延征, 王焓, 朱求安, 温仲明, 彭长辉, 林光辉, 2018. 植物功能性状对动态全球植被模型改进研究进展. 科学通报 63, 2599-2611.

[21] 尹文英, 1998. 中国土壤动物检索图鉴. 中国农业科技出版社, 北京.

[22] Abad, P., Williamson, V.M., 2010. Plant nematode interaction: a sophisticated dialogue, In: Kader, J.-C., Delseny, M. (Eds.), Advances in Botanical Research. Academic Press, pp. 147-192.

[23] Ackerly, David D., Monson, Russell K., 2003. Waking the sleeping giant: the evolutionary foundations of plant function. International Journal of Plant Sciences 164, S1-S6.

[24] Adla, K., Dejan, K., Neira, D., Dragana, Š., 2022. Degradation of ecosystems and loss of ecosystem services, In: Prata, J.C., Ribeiro, A.I., Rocha-Santos, T. (Eds.), One Health. Academic Press, pp. 281-327.

[25] Aerts, R., Chapin, F.S., 1999. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns, In: Fitter, A.H., Raffaelli, D.G. (Eds.), Advances in Ecological Research. Academic Press, pp. 1-67.

[26] Alameda, D., Villar, R., 2012. Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions. Environmental and Experimental Botany 79, 49-57.

[27] Andrassy, I., 1956. Die rauminhalts-und gewichtsbestimmung der fadenwürmer (Nematoden). Acta Zoologica Hungarica 2, 1-5.

[28] Andriuzzi, W.S., Wall, D.H., 2018. Grazing and resource availability control soil nematode body size and abundance–mass relationship in semi-arid grassland. Journal of Animal Ecology 87, 1407-1417.

[29] Ankrom, K.E., Franco, A.L.C., Fonte, S.J., Gherardi, L.A., de Tomasel, C.M., Wepking, C., Guan, P., Cui, S., Sala, O.E., Wall, D.H., 2022. Ecological maturity and stability of nematode communities in response to precipitation manipulations in grasslands. Applied Soil Ecology 170, 104263.

[30] Archidona-Yuste, A., Wiegand, T., Eisenhauer, N., Cantalapiedra-Navarrete, C., Palomares-Rius, J.E., Castillo, P., 2021. Agriculture causes homogenization of plant-feeding nematode communities at the regional scale. Journal of Applied Ecology 58, 2881-2891.

[31] Auclerc, A., Beaumelle, L., Barantal, S., Chauvat, M., Cortet, J., De Almeida, T., Dulaurent, A.-M., Dutoit, T., Joimel, S., Séré, G., Blight, O., 2022. Fostering the use of soil invertebrate traits to restore ecosystem functioning. Geoderma 424, 116019.

[32] Avolio, M.L., Forrestel, E.J., Chang, C.C., La Pierre, K.J., Burghardt, K.T., Smith, M.D., 2019. Demystifying dominant species. New Phytologist 223, 1106-1126.

[33] Bahram, M., Netherway, T., 2022. Fungi as mediators linking organisms and ecosystems. FEMS Microbiology Reviews 46, fuab058.

[34] Balachowski, J.A., Volaire, F.A., 2018. Implications of plant functional traits and drought survival strategies for ecological restoration. Journal of Applied Ecology 55, 631-640.

[35] Bardgett, Denton, Cook, 1999. Below-ground herbivory promotes soil nutrient transfer and root growth in grassland. Ecology Letters 2, 357-360.

[36] Bardgett, R.D., 2018. Linking aboveground–belowground ecology: a short historical perspective, In: Ohgushi, T., Wurst, S., Johnson, S.N. (Eds.), Aboveground–Belowground Community Ecology. Springer Press, pp. 1-17.

[37] Bardgett, R.D., Mommer, L., De Vries, F.T., 2014. Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution 29, 692-699.

[38] Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature 515, 505-511.

[39] Bardgett, R.D., Wardle, D.A., 2003. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84, 2258-2268.

[40] Bardgett, R.D., Wardle, D.A., 2010. Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press.

[41] Bell, C.W., Fricks, B.E., Rocca, J.D., Steinweg, J.M., McMahon, S.K., Wallenstein, M.D., 2013. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. Journal of Visualized Experiments, e50961.

[42] Bergmann, J., Weigelt, A., van der Plas, F., Laughlin, D.C., Kuyper, T.W., Guerrero-Ramirez, N., Valverde-Barrantes, O.J., Bruelheide, H., Freschet, G.T., Iversen, C.M., Kattge, J., McCormack, M.L., Meier, I.C., Rillig, M.C., Roumet, C., Semchenko, M., Sweeney, C.J., van Ruijven, J., York, L.M., Mommer, L., 2020. The fungal collaboration gradient dominates the root economics space in plants. Science Advances 6, eaba3756.

[43] Bloom, A.J., Chapin III, F.S., Mooney, H.A., 1985. Resource limitation in plants-an economic analogy. Annual Review of Ecology and Systematics 16, 363-392.

[44] Bond-Lamberty, B., Wang, C., Gower, S.T., 2004. A global relationship between the heterotrophic and autotrophic components of soil respiration? Global Change Biology 10, 1756-1766.

[45] Bongers, T., 1988. De Nematoden van Nederland. Utrecht, the Netherlands: Koninklijke Nederlandse Natuurhistorische Vereniging.

[46] Bongers, T., 1990. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83, 14-19.

[47] Bongers, T., Bongers, M., 1998. Functional diversity of nematodes. Applied Soil Ecology 10, 239-251.

[48] Bongers, T., Ferris, H., 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution 14, 224-228.

[49] Borcard, D., Legendre, P., Drapeau, P., 1992. Partialling out the spatial component of ecological variation. Ecology 73, 1045-1055.

[50] Borden, K.A., Mafa-Attoye, T.G., Dunfield, K.E., Thevathasan, N.V., Gordon, A.M., Isaac, M.E., 2021. Root functional trait and soil microbial coordination: Implications for soil respiration in riparian agroecosystems. Frontiers in Plant Science 12, 681113.

[51] Bottinelli, N., Capowiez, Y., 2021. Earthworm ecological categories are not functional groups. Biology and Fertility of Soils 57, 329-331.

[52] Bottinelli, N., Hedde, M., Jouquet, P., Capowiez, Y., 2020. An explicit definition of earthworm ecological categories – Marcel Bouché’s triangle revisited. Geoderma 372, 114361.

[53] Brondani, M., Plassard, C., Ramstein, E., Cousson, A., Hedde, M., Bernard, L., Trap, J., 2022. Morpho-anatomical traits explain the effects of bacterial-feeding nematodes on soil bacterial community composition and plant growth and nutrition. Geoderma 425, 116068.

[54] Camenzind, T., Aguilar-Trigueros, C.A., Hempel, S., Lehmann, A., Bielcik, M., Andrade-Linares, D.R., Bergmann, J., dela Cruz, J., Gawronski, J., Golubeva, P., Haslwimmer, H., Lartey, L., Leifheit, E., Maaß, S., Marhan, S., Pinek, L., Powell, J.R., Roy, J., Veresoglou, S.D., Wang, D., Wulf, A., Zheng, W., Rillig, M.C., 2024. Towards establishing a fungal economics spectrum in soil saprobic fungi. Nature Communications 15, 3321.

[55] Capdevila, P., Beger, M., Blomberg, S.P., Hereu, B., Linares, C., Salguero-Gómez, R., 2020. Longevity, body dimension and reproductive mode drive differences in aquatic versus terrestrial life-history strategies. Functional Ecology 34, 1613-1625.

[56] Capowiez, Y., Marchán, D., Decaëns, T., Hedde, M., Bottinelli, N., 2024. Let earthworms be functional - Definition of new functional groups based on their bioturbation behavior. Soil Biology and Biochemistry 188, 109209.

[57] Carlucci, M.B., Brancalion, P.H.S., Rodrigues, R.R., Loyola, R., Cianciaruso, M.V., 2020. Functional traits and ecosystem services in ecological restoration. Restoration Ecology 28, 1372-1383.

[58] Carmona, C.P., Bueno, C.G., Toussaint, A., Träger, S., Díaz, S., Moora, M., Munson, A.D., Pärtel, M., Zobel, M., Tamme, R., 2021. Fine-root traits in the global spectrum of plant form and function. Nature 597, 683-687.

[59] Carol Adair, E., Hooper, D.U., Paquette, A., Hungate, B.A., 2018. Ecosystem context illuminates conflicting roles of plant diversity in carbon storage. Ecology Letters 21, 1604-1619.

[60] Castagnone-Sereno, P., 2002. Genetic variability of nematodes: a threat to the durability of plant resistance genes? Euphytica 124, 193-199.

[61] Cesarz, S., Reich, P.B., Scheu, S., Ruess, L., Schaefer, M., Eisenhauer, N., 2015. Nematode functional guilds, not trophic groups, reflect shifts in soil food webs and processes in response to interacting global change factors. Pedobiologia 58, 23-32.

[62] Chaudhary, V.B., Holland, E.P., Charman-Anderson, S., Guzman, A., Bell-Dereske, L., Cheeke, T.E., Corrales, A., Duchicela, J., Egan, C., Gupta, M.M., Hannula, S.E., Hestrin, R., Hoosein, S., Kumar, A., Mhretu, G., Neuenkamp, L., Soti, P., Xie, Y., Helgason, T., 2022. What are mycorrhizal traits? Trends in Ecology & Evolution 37, 573-581.

[63] Chazdon, R.L., Falk, D.A., Banin, L.F., Wagner, M., J. Wilson, S., Grabowski, R.C., Suding, K.N., 2024. The intervention continuum in restoration ecology: rethinking the active–passive dichotomy. Restoration Ecology 32, e13535.

[64] Cheng, S., Gong, X., Xue, W., Kardol, P., Delgado-Baquerizo, M., Ling, N., Chen, X., Liu, M., 2024a. Evolutionarily conserved core microbiota as an extended trait in nitrogen acquisition strategy of herbaceous species. New Phytologist 244, 1570-1584.

[65] Cheng, S., Xue, W., Gong, X., Hu, F., Yang, Y., Liu, M., 2024b. Reconciling plant and microbial ecological strategies to elucidate cover crop effects on soil carbon and nitrogen cycling. Journal of Ecology 112, 2901-2916.

[66] Clapham, A., 1935. Review of the life forms of plants and statistical plant geography. Journal of Ecology 23, 247-249.

[67] Clark, L.J., Whalley, W.R., Barraclough, P.B., 2003. How do roots penetrate strong soil? Plant and Soil 255, 93-104.

[68] Cobb, N.A., 1890. A nematode formula. Government Printer.

[69] Comas, L.H., Eissenstat, D.M., 2009. Patterns in root trait variation among 25 co-existing North American forest species. New Phytologist 182, 919-928.

[70] Conti, L., Valencia, E., Galland, T., Götzenberger, L., Lepš, J., E-Vojtkó, A., Carmona, C.P., Májeková, M., Danihelka, J., Dengler, J., 2023. Functional trait trade-offs define plant population stability across different biomes. Proceedings of the Royal Society B: Biological Sciences 290, 20230344.

[71] Copley, J., 2000. Ecology goes underground. Nature 406, 452-455.

[72] Cornelissen, J.H.C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D., Reich, P.B., Ter Steege, H., Morgan, H., Van Der Heijden, M., 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51, 335-380.

[73] Cornelissen, J.H.C., Cornwell, W.K., Freschet, G.T., Weedon, J.T., Berg, M.P., Zanne, A.E., 2023. Coevolutionary legacies for plant decomposition. Trends in Ecology & Evolution 38, 44-54.

[74] Cornelissen, J.H.C., Grootemaat, S., Verheijen, L.M., Cornwell, W.K., van Bodegom, P.M., van der Wal, R., Aerts, R., 2017. Are litter decomposition and fire linked through plant species traits? New Phytologist 216, 653-669.

[75] Cortez, J., Garnier, E., Pérez-Harguindeguy, N., Debussche, M., Gillon, D., 2007. Plant traits, litter quality and decomposition in a Mediterranean old-field succession. Plant and Soil 296, 19-34.

[76] Coutinho, A.G., Carlucci, M.B., Cianciaruso, M.V., 2023. A framework to apply trait-based ecological restoration at large scales. Journal of Applied Ecology 60, 1562-1571.

[77] Craine, J.M., Elmore, A.J., Aidar, M.P.M., Bustamante, M., Dawson, T.E., Hobbie, E.A., Kahmen, A., Mack, M.C., McLauchlan, K.K., Michelsen, A., Nardoto, G.B., Pardo, L.H., Peñuelas, J., Reich, P.B., Schuur, E.A.G., Stock, W.D., Templer, P.H., Virginia, R.A., Welker, J.M., Wright, I.J., 2009. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist 183, 980-992.

[78] Crouzeilles, R., Curran, M., Ferreira, M.S., Lindenmayer, D.B., Grelle, C.E.V., Rey Benayas, J.M., 2016. A global meta-analysis on the ecological drivers of forest restoration success. Nature Communications 7, 11666.

[79] Cusack, D.F., Turner, B.L., 2021. Fine root and soil organic carbon depth distributions are inversely related across fertility and rainfall gradients in lowland tropical forests. Ecosystems 24, 1075-1092.

[80] Da, R., Fan, C., Zhang, C., Zhao, X., von Gadow, K., 2023. Are absorptive root traits good predictors of ecosystem functioning? A test in a natural temperate forest. New Phytologist 239, 75-86.

[81] De Deyn, G.B., Cornelissen, J.H.C., Bardgett, R.D., 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters 11, 516-531.

[82] De Deyn, G.B., Raaijmakers, C.E., Van Ruijven, J., Berendse, F., Van Der Putten, W.H., 2004. Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web. Oikos 106, 576-586.

[83] De Deyn, G.B., van der Putten, W.H., 2005. Linking aboveground and belowground diversity. Trends in Ecology & Evolution 20, 625-633.

[84] de la Riva, E.G., Marañón, T., Pérez-Ramos, I.M., Navarro-Fernández, C.M., Olmo, M., Villar, R., 2018. Root traits across environmental gradients in Mediterranean woody communities: are they aligned along the root economics spectrum? Plant and Soil 424, 35-48.

[85] De Long, J.R., Jackson, B.G., Wilkinson, A., Pritchard, W.J., Oakley, S., Mason, K.E., Stephan, J.G., Ostle, N.J., Johnson, D., Baggs, E.M., Bardgett, R.D., 2019. Relationships between plant traits, soil properties and carbon fluxes differ between monocultures and mixed communities in temperate grassland. Journal of Ecology 107, 1704-1719.

[86] Decraemer, W., Karanastasi, E., Brown, D., Backeljau, T., 2003. Review of the ultrastructure of the nematode body cuticle and its phylogenetic interpretation. Biological Reviews 78, 465-510.

[87] Díaz, S., 2025. Plant functional traits and the entangled phenotype. Functional Ecology 39, 1144-1159.

[88] Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P.B., Moles, A.T., Dickie, J., Gillison, A.N., Zanne, A.E., Chave, J., Joseph Wright, S., Sheremet’ev, S.N., Jactel, H., Baraloto, C., Cerabolini, B., Pierce, S., Shipley, B., Kirkup, D., Casanoves, F., Joswig, J.S., Günther, A., Falczuk, V., Rüger, N., Mahecha, M.D., Gorné, L.D., 2016. The global spectrum of plant form and function. Nature 529, 167-171.

[89] Dietrich, P., Roeder, A., Cesarz, S., Eisenhauer, N., Ebeling, A., Schmid, B., Schulze, E.-D., Wagg, C., Weigelt, A., Roscher, C., 2020. Nematode communities, plant nutrient economy and life-cycle characteristics jointly determine plant monoculture performance over 12 years. Oikos 129, 466-479.

[90] Dijkstra, F.A., Zhu, B., Cheng, W., 2021. Root effects on soil organic carbon: a double-edged sword. New Phytologist 230, 60-65.

[91] Ding, W., Cong, W.-F., Lambers, H., 2021. Plant phosphorus-acquisition and -use strategies affect soil carbon cycling. Trends in Ecology & Evolution 36, 899-906.

[92] Du Preez, G., Daneel, M., De Goede, R., Du Toit, M.J., Ferris, H., Fourie, H., Geisen, S., Kakouli-Duarte, T., Korthals, G., Sánchez-Moreno, S., Schmidt, J.H., 2022. Nematode-based indices in soil ecology: Application, utility, and future directions. Soil Biology and Biochemistry 169, 108640.

[93] Duan, P., Fu, R., Nottingham, A.T., Domeignoz-Horta, L.A., Yang, X., Du, H., Wang, K., Li, D., 2023. Tree species diversity increases soil microbial carbon use efficiency in a subtropical forest. Global Change Biology 29, 7131-7144.

[94] Eisenhauer, N., Buscot, F., Heintz-Buschart, A., Jurburg, S.D., Küsel, K., Sikorski, J., Vogel, H.-J., Guerra, C.A., 2021. The multidimensionality of soil macroecology. Global Ecology and Biogeography 30, 4-10.

[95] Eissenstat, D.M., Kucharski, J.M., Zadworny, M., Adams, T.S., Koide, R.T., 2015. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytologist 208, 114-124.

[96] Escalas, A., Hale, L., Voordeckers, J.W., Yang, Y., Firestone, M.K., Alvarez-Cohen, L., Zhou, J., 2019. Microbial functional diversity: From concepts to applications. Ecology and Evolution 9, 12000-12016.

[97] Faucon, M.-P., Houben, D., Lambers, H., 2017. Plant functional traits: soil and ecosystem services. Trends in Plant Science 22, 385-394.

[98] Ferris, H., 2010a. Contribution of nematodes to the structure and function of the soil food web. Journal of Nematology 42, 63-67.

[99] Ferris, H., 2010b. Form and function: Metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology 46, 97-104.

[100] Ferris, H., Bongers, T., de Goede, R.G.M., 2001. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology 18, 13-29.

[101] Ferris, H., Lau, S., Venette, R., 1995. Population energetics of bacterial-feeding nematodes: Respiration and metabolic rates based on CO2 production. Soil Biology and Biochemistry 27, 319-330.

[102] Freckman, D.W., 1982. Nematodes in soil ecosystems. University of Texas Press.

[103] Freschet, G.T., Aerts, R., Cornelissen, J.H.C., 2012. A plant economics spectrum of litter decomposability. Functional Ecology 26, 56-65.

[104] Freschet, G.T., Cornwell, W.K., Wardle, D.A., Elumeeva, T.G., Liu, W., Jackson, B.G., Onipchenko, V.G., Soudzilovskaia, N.A., Tao, J., Cornelissen, J.H.C., 2013. Linking litter decomposition of above- and below-ground organs to plant–soil feedbacks worldwide. Journal of Ecology 101, 943-952.

[105] Freschet, G.T., Pagès, L., Iversen, C.M., Comas, L.H., Rewald, B., Roumet, C., Klimešová, J., Zadworny, M., Poorter, H., Postma, J.A., Adams, T.S., Bagniewska-Zadworna, A., Bengough, A.G., Blancaflor, E.B., Brunner, I., Cornelissen, J.H.C., Garnier, E., Gessler, A., Hobbie, S.E., Meier, I.C., Mommer, L., Picon-Cochard, C., Rose, L., Ryser, P., Scherer-Lorenzen, M., Soudzilovskaia, N.A., Stokes, A., Sun, T., Valverde-Barrantes, O.J., Weemstra, M., Weigelt, A., Wurzburger, N., York, L.M., Batterman, S.A., Gomes de Moraes, M., Janeček, Š., Lambers, H., Salmon, V., Tharayil, N., McCormack, M.L., 2021a. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytologist 232, 973-1122.

[106] Freschet, G.T., Roumet, C., Comas, L.H., Weemstra, M., Bengough, A.G., Rewald, B., Bardgett, R.D., De Deyn, G.B., Johnson, D., Klimešová, J., Lukac, M., McCormack, M.L., Meier, I.C., Pagès, L., Poorter, H., Prieto, I., Wurzburger, N., Zadworny, M., Bagniewska-Zadworna, A., Blancaflor, E.B., Brunner, I., Gessler, A., Hobbie, S.E., Iversen, C.M., Mommer, L., Picon-Cochard, C., Postma, J.A., Rose, L., Ryser, P., Scherer-Lorenzen, M., Soudzilovskaia, N.A., Sun, T., Valverde-Barrantes, O.J., Weigelt, A., York, L.M., Stokes, A., 2021b. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytologist 232, 1123-1158.

[107] Fridley, J.D., Liu, X., Pérez-Harguindeguy, N., Chapin III, F.S., Crawley, M., De Deyn, G., Díaz, S., Grace, J.B., Grubb, P., Harrison, S., Lavorel, S., Liu, Z., Pierce, S., Schmid, B., Stevens, C., Wardle, D.A., Westoby, M., 2023. Perspectives on the scientific legacy of J. Philip Grime. Journal of Ecology 111, 1814-1831.

[108] Fry, E.L., De Long, J.R., Álvarez Garrido, L., Alvarez, N., Carrillo, Y., Castañeda-Gómez, L., Chomel, M., Dondini, M., Drake, J.E., Hasegawa, S., Hortal, S., Jackson, B.G., Jiang, M., Lavallee, J.M., Medlyn, B.E., Rhymes, J., Singh, B.K., Smith, P., Anderson, I.C., Bardgett, R.D., Baggs, E.M., Johnson, D., 2019. Using plant, microbe, and soil fauna traits to improve the predictive power of biogeochemical models. Methods in Ecology and Evolution 10, 146-157.

[109] Fu, B., Liu, Y., Meadows, M.E., 2023. Ecological restoration for sustainable development in China. National Science Review 10, nwad033.

[110] Fujii, S., Berg, M.P., Cornelissen, J.H.C., 2020. Living litter: dynamic trait spectra predict fauna composition. Trends in Ecology & Evolution 35, 886-896.

[111] Funk, J.L., Larson, J.E., Ames, G.M., Butterfield, B.J., Cavender-Bares, J., Firn, J., Laughlin, D.C., Sutton-Grier, A.E., Williams, L., Wright, J., 2017. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biological Reviews 92, 1156-1173.

[112] Gagic, V., Bartomeus, I., Jonsson, T., Taylor, A., Winqvist, C., Fischer, C., Slade, E.M., Steffan-Dewenter, I., Emmerson, M., Potts, S.G., Tscharntke, T., Weisser, W., Bommarco, R., 2015. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proceedings of the Royal Society B: Biological Sciences 282, 20142620.

[113] Garnier, E., Cortez, J., Billès, G., Navas, M.-L., Roumet, C., Debussche, M., Laurent, G., Blanchard, A., Aubry, D., Bellmann, A., Neill, C., Toussaint, J.-P., 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, 2630-2637.

[114] Gebremikael, M.T., Steel, H., Buchan, D., Bert, W., De Neve, S., 2016. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions. Scientific Reports 6, 32862.

[115] Geisen, S., Snoek, L.B., ten Hooven, F.C., Duyts, H., Kostenko, O., Bloem, J., Martens, H., Quist, C.W., Helder, J.A., van der Putten, W.H., 2018. Integrating quantitative morphological and qualitative molecular methods to analyse soil nematode community responses to plant range expansion. Methods in Ecology and Evolution 9, 1366-1378.

[116] Gems, D., Riddle, D.L., 2000. Genetic, behavioral and environmental determinants of male longevity in Caenorhabditis elegans. Genetics 154, 1597-1610.

[117] George, P.B.L., Lindo, Z., 2015. Application of body size spectra to nematode trait-index analyses. Soil Biology and Biochemistry 84, 15-20.

[118] Geyer, K.M., Kyker-Snowman, E., Grandy, A.S., Frey, S.D., 2016. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127, 173-188.

[119] Giachello, S., Cantera, I., Carteron, A., Marta, S., Cipriano, C., Guerrieri, A., Bonin, A., Thuiller, W., Ficetola, G.F., 2023. Toward a common set of functional traits for soil protists. Soil Biology and Biochemistry 187, 109207.

[120] Gibb, H., Bishop, T.R., Leahy, L., Parr, C.L., Lessard, J.-P., Sanders, N.J., Shik, J.Z., Ibarra-Isassi, J., Narendra, A., Dunn, R.R., Wright, I.J., 2023. Ecological strategies of (pl)ants: Towards a world-wide worker economic spectrum for ants. Functional Ecology 37, 13-25.

[121] Green, S.J., Brookson, C.B., Hardy, N.A., Crowder, L.B., 2022. Trait-based approaches to global change ecology: moving from description to prediction. Proceedings of the Royal Society B: Biological Sciences 289, 20220071.

[122] Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M., Clément, J.-C., 2013. Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. Journal of Ecology 101, 47-57.

[123] Grime, J.P., 1974. Vegetation classification by reference to strategies. Nature 250, 26-31.

[124] Grime, J.P., 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist 111, 1169-1194.

[125] Grime, J.P., 2006. Plant strategies, vegetation processes, and ecosystem properties. John Wiley & Sons.

[126] Grime, J.P., Hodgson, J., Hodgson, J.G., Hunt, R., 1988. Comparative plant ecology: a functional approach to common british species. Unwin Hyman.

[127] Guan, P., Zhang, X., Yu, J., Cheng, Y., Li, Q., Andriuzzi, W.S., Liang, W., 2018. Soil microbial food web channels associated with biological soil crusts in desertification restoration: The carbon flow from microbes to nematodes. Soil Biology and Biochemistry 116, 82-90.

[128] Guerra, C.A., Bardgett, R.D., Caon, L., Crowther, T.W., Delgado-Baquerizo, M., Montanarella, L., Navarro, L.M., Orgiazzi, A., Singh, B.K., Tedersoo, L., Vargas-Rojas, R., Briones, M.J.I., Buscot, F., Cameron, E.K., Cesarz, S., Chatzinotas, A., Cowan, D.A., Djukic, I., van den Hoogen, J., Lehmann, A., Maestre, F.T., Marín, C., Reitz, T., Rillig, M.C., Smith, L.C., de Vries, F.T., Weigelt, A., Wall, D.H., Eisenhauer, N., 2021. Tracking, targeting, and conserving soil biodiversity. Science 371, 239-241.

[129] Guo, C., Yan, E.-R., Cornelissen, J.H.C., 2022. Size matters for linking traits to ecosystem multifunctionality. Trends in Ecology & Evolution 37, 803-813.

[130] Guo, D., Li, H., Mitchell, R.J., Han, W., Hendricks, J.J., Fahey, T.J., Hendrick, R.L., 2008. Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytologist 177, 443-456.

[131] Guo, Z., Zhang, X., Dungait, J.A.J., Green, S.M., Wen, X., Quine, T.A., 2021. Contribution of soil microbial necromass to SOC stocks during vegetation recovery in a subtropical karst ecosystem. Science of The Total Environment 761, 143945.

[132] Guyonnet, J.P., Cantarel, A.A.M., Simon, L., Haichar, F.e.Z., 2018. Root exudation rate as functional trait involved in plant nutrient-use strategy classification. Ecology and Evolution 8, 8573-8581.

[133] Han, M., Chen, Y., Li, R., Yu, M., Fu, L., Li, S., Su, J., Zhu, B., 2022. Root phosphatase activity aligns with the collaboration gradient of the root economics space. New Phytologist 234, 837-849.

[134] Happonen, K., Virkkala, A.-M., Kemppinen, J., Niittynen, P., Luoto, M., 2022. Relationships between above-ground plant traits and carbon cycling in tundra plant communities. Journal of Ecology 110, 700-716.

[135] He, N., Li, Y., Liu, C., Xu, L., Li, M., Zhang, J., He, J., Tang, Z., Han, X., Ye, Q., Xiao, C., Yu, Q., Liu, S., Sun, W., Niu, S., Li, S., Sack, L., Yu, G., 2020. Plant trait networks: improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution 35, 908-918.

[136] Healy, K., Ezard, T.H.G., Jones, O.R., Salguero-Gómez, R., Buckley, Y.M., 2019. Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nature Ecology & Evolution 3, 1217-1224.

[137] Heuck, M.K., Powell, J.R., Kath, J., Birnbaum, C., Frew, A., 2024. Evaluating the usefulness of the C-S-R framework for understanding AM fungal responses to climate change in agroecosystems. Global Change Biology 30, e17566.

[138] Ho, A., Kerckhof, F.M., Luke, C., Reim, A., Krause, S., Boon, N., Bodelier, P.L., 2013. Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environmental Microbiology Reports 5, 335-345.

[139] Hou, J., McCormack, M.L., Reich, P.B., Sun, T., Phillips, R.P., Lambers, H., Chen, H.Y.H., Ding, Y., Comas, L.H., Valverde-Barrantes, O.J., Solly, E.F., Freschet, G.T., 2024. Linking fine root lifespan to root chemical and morphological traits‒A global analysis. Proceedings of the National Academy of Sciences 121, e2320623121.

[140] Hou, W., Kuzyakov, Y., Qi, Y., Liu, X., Zhang, H., Zhou, S., 2023. Functional traits of soil nematodes define their response to nitrogen fertilization. Functional Ecology 37, 1197-1210.

[141] Hu, Z., Delgado-Baquerizo, M., Fanin, N., Chen, X., Zhou, Y., Du, G., Hu, F., Jiang, L., Hu, S., Liu, M., 2024. Nutrient-induced acidification modulates soil biodiversity-function relationships. Nature Communications 15, 2858.

[142] Hua, F., Bruijnzeel, L.A., Meli, P., Martin, P.A., Zhang, J., Nakagawa, S., Miao, X., Wang, W., McEvoy, C., Peña-Arancibia, J.L., Brancalion, P.H.S., Smith, P., Edwards, D.P., Balmford, A., 2022. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 376, 839-844.

[143] Gundale, M.J., Kardol, P., 2021. Multi-dimensionality as a path forward in plant-soil feedback research. Journal of Ecology 109, 3446-3465.

[144] Jiang, Y., Liu, M., Zhang, J., Chen, Y., Chen, X., Chen, L., Li, H., Zhang, X.-X., Sun, B., 2017. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level. The ISME Journal 11, 2705-2717.

[145] Jiang, Y., Wang, Z., Liu, Y., Han, Y., Wang, Y., Wang, Q., Liu, T., 2023. Nematodes and their bacterial prey improve phosphorus acquisition by wheat. New Phytologist 237, 974-986.

[146] Junker, R.R., Albrecht, J., Becker, M., Keuth, R., Farwig, N., Schleuning, M., 2023. Towards an animal economics spectrum for ecosystem research. Functional Ecology 37, 57-72.

[147] Kane, J.L., Hu, J., Tripathi, B., 2025. Toward understanding how cross-kingdom ecological strategies interactively influence soil carbon cycling. New Phytologist 245, 2367-2369.

[148] Kane, J.L., Kotcon, J.B., Freedman, Z.B., Morrissey, E.M., 2023. Fungivorous nematodes drive microbial diversity and carbon cycling in soil. Ecology 104, e3844.

[149] Kardol, P., De Long, J.R., 2018. How anthropogenic shifts in plant community composition alter soil food webs. F1000Research 7, 4.

[150] Kardol, P., Wardle, D.A., 2010. How understanding aboveground–belowground linkages can assist restoration ecology. Trends in Ecology & Evolution 25, 670-679.

[151] Klimešová, J., Herben, T., 2023. The hidden half of the fine root differentiation in herbs: nonacquisitive belowground organs determine fine-root traits. Oikos 2023, e08794.

[152] Klusmann, C., Cesarz, S., Ciobanu, M., Ferlian, O., Jochum, M., Schädler, M., Scheu, S., Sünnemann, M., Wall, D.H., Eisenhauer, N., 2022. Climate-change effects on the sex ratio of free-living soil nematodes – perspective and prospect. Soil Organisms 94, 15-28.

[153] Kong, D., Ma, C., Zhang, Q., Li, L., Chen, X., Zeng, H., Guo, D., 2014. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist 203, 863-872.

[154] Kopittke, P.M., Berhe, A.A., Carrillo, Y., Cavagnaro, T.R., Chen, D., Chen, Q.-L., Román Dobarco, M., Dijkstra, F.A., Field, D.J., Grundy, M.J., He, J.-Z., Hoyle, F.C., Kögel-Knabner, I., Lam, S.K., Marschner, P., Martinez, C., McBratney, A.B., McDonald-Madden, E., Menzies, N.W., Mosley, L.M., Mueller, C.W., Murphy, D.V., Nielsen, U.N., O’Donnell, A.G., Pendall, E., Pett-Ridge, J., Rumpel, C., Young, I.M., Minasny, B., 2022. Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils. Critical Reviews in Environmental Science and Technology 52, 4308-4324.

[155] Kramer-Walter, K.R., Bellingham, P.J., Millar, T.R., Smissen, R.D., Richardson, S.J., Laughlin, D.C., 2016. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. Journal of Ecology 104, 1299-1310.

[156] Lal, R., 2015. Restoring soil quality to mitigate soil degradation. Sustainability 7, 5875-5895.

[157] Laughlin, D.C., 2014. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letters 17, 771-784.

[158] Laughlin, D.C., 2023. Plant strategies: the demographic consequences of functional traits in changing environments. Oxford University Press.

[159] Laurans, M., Munoz, F., Charles-Dominique, T., Heuret, P., Fortunel, C., Isnard, S., Sabatier, S.-A., Caraglio, Y., Violle, C., 2024. Why incorporate plant architecture into trait-based ecology? Trends in Ecology & Evolution 39, 524-536.

[160] Lavorel, S., Díaz, S., Cornelissen, J.H.C., Garnier, E., Harrison, S.P., McIntyre, S., Pausas, J.G., Pérez-Harguindeguy, N., Roumet, C., Urcelay, C., 2007. Plant functional types: are we getting any closer to the Holy Grail? In: J. Canadell, D.E. Pataki, L.F. Pitelka (Eds.), Terrestrial Ecosystems in A Changing World. Springer Press, pp. 171-186.

[161] Lavorel, S., Garnier, E., 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16, 545-556.

[162] Le Provost, G., Gross, N., Börger, L., Deraison, H., Roncoroni, M., Badenhausser, I., 2017. Trait-matching and mass effect determine the functional response of herbivore communities to land-use intensification. Functional Ecology 31, 1600-1611.

[163] Leff, J.W., Bardgett, R.D., Wilkinson, A., Jackson, B.G., Pritchard, W.J., De Long, J.R., Oakley, S., Mason, K.E., Ostle, N.J., Johnson, D., Baggs, E.M., Fierer, N., 2018. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. The ISME Journal 12, 1794-1805.

[164] Li, C., Liao, H., Xu, L., Wang, C., He, N., Wang, J., Li, X., 2022a. The adjustment of life history strategies drives the ecological adaptations of soil microbiota to aridity. Molecular Ecology 31, 2920-2934.

[165] Li, G., Liu, T., Whalen, J.K., Wei, Z., 2024. Nematodes: an overlooked tiny engineer of plant health. Trends in Plant Science 29, 52-63.

[166] Li, G., Wilschut, R.A., Luo, S., Chen, H., Wang, X., Du, G., Geisen, S., 2023. Nematode biomass changes along an elevational gradient are trophic group dependent but independent of body size. Global Change Biology 29, 4898-4909.

[167] Li, X., Liu, T., Li, H., Geisen, S., Hu, F., Liu, M., 2022b. Management effects on soil nematode abundance differ among functional groups and land-use types at a global scale. Journal of Animal Ecology 91, 1770-1780.

[168] Liang, S., Guo, H., McCormack, M.L., Qian, Z., Huang, K., Yang, Y., Xi, M., Qi, X., Ou, X., Liu, Y., Juenger, T.E., Koide, R.T., Chen, W., 2023. Positioning absorptive root respiration in the root economics space across woody and herbaceous species. Journal of Ecology 111, 2710-2720.

[169] Liu, M., Chen, X., Qin, J., Wang, D., Griffiths, B., Hu, F., 2008. A sequential extraction procedure reveals that water management affects soil nematode communities in paddy fields. Applied Soil Ecology 40, 250-259.

[170] Liu, T., Guo, R., Ran, W., Whalen, J.K., Li, H., 2015. Body size is a sensitive trait-based indicator of soil nematode community response to fertilization in rice and wheat agroecosystems. Soil Biology and Biochemistry 88, 275-281.

[171] Lockwood J.L., Moulton M.P., Balet K.L., 1999. Introduced avifaunas as natural experiments in community assembly. In: Weiher E., Keddy P. (Eds.), Ecological Assembly: Advances, Perspectives, Retreats. Cambridge University Press, pp. 108-125.

[172] Lovell, R.S.L., Collins, S., Martin, S.H., Pigot, A.L., Phillimore, A.B., 2023. Space-for-time substitutions in climate change ecology and evolution. Biological Reviews 98, 2243-2270.

[173] Lu, F., Hu, H., Sun, W., Zhu, J., Liu, G., Zhou, W., Zhang, Q., Shi, P., Liu, X., Wu, X., Zhang, L., Wei, X., Dai, L., Zhang, K., Sun, Y., Xue, S., Zhang, W., Xiong, D., Deng, L., Liu, B., Zhou, L., Zhang, C., Zheng, X., Cao, J., Huang, Y., He, N., Zhou, G., Bai, Y., Xie, Z., Tang, Z., Wu, B., Fang, J., Liu, G., Yu, G., 2018. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proceedings of the National Academy of Sciences 115, 4039-4044.

[174] Lu, J.-Z., Pfingstl, T., Junker, R.R., Maraun, M., Erktan, A., Scheu, S., 2025. Life history traits in microarthropods: Evidence for a soil animal economics spectrum. Geoderma 455, 117206.

[175] Lu, L., Kang, Z., Sun, S., Li, T., Li, H., 2023a. The life-history traits of soil-dwelling nematode (Acrobeloides sp.) exhibit more resilience to water restriction than Caenorhabditis elegans. Integrative and Comparative Biology 64, 27-37.

[176] Lu, L., Li, G., He, N., Li, H., Liu, T., Li, X., Whalen, J.K., Geisen, S., Liu, M., 2023b. Drought shifts soil nematodes to smaller size across biological scales. Soil Biology and Biochemistry 184, 109099.

[177] Luke McCormack, M., Adams, T.S., Smithwick, E.A.H., Eissenstat, D.M., 2012. Predicting fine root lifespan from plant functional traits in temperate trees. New Phytologist 195, 823-831.

[178] Ma, Z., Guo, D., Xu, X., Lu, M., Bardgett, R.D., Eissenstat, D.M., McCormack, M.L., Hedin, L.O., 2018. Evolutionary history resolves global organization of root functional traits. Nature 555, 94-97.

[179] Macarthur, R.H., Wilson, E.O., 1967. The theory of island biogeography. Princeton University Press, Princeton.

[180] Maharning, A.R., Mills, A.A.S., Adl, S.M., 2009. Soil community changes during secondary succession to naturalized grasslands. Applied Soil Ecology 41, 137-147.

[181] Majdi, N., Traunspurger, W., Fueser, H., Gansfort, B., Laffaille, P., Maire, A., 2019. Effects of a broad range of experimental temperatures on the population growth and body-size of five species of free-living nematodes. Journal of Thermal Biology 80, 21-36.

[182] Malik, A.A., Martiny, J.B.H., Brodie, E.L., Martiny, A.C., Treseder, K.K., Allison, S.D., 2020. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. The ISME Journal 14, 1-9.

[183] Manzoni, S., Taylor, P., Richter, A., Porporato, A., Ågren, G.I., 2012. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist 196, 79-91.

[184] Marichal, R., Praxedes, C., Decaëns, T., Grimaldi, M., Oszwald, J., Brown, G.G., Desjardins, T., da Silva, M.L., Feijoo Martinez, A., Oliveira, M.N.D., Velasquez, E., Lavelle, P., 2017. Earthworm functional traits, landscape degradation and ecosystem services in the Brazilian Amazon deforestation arc. European Journal of Soil Biology 83, 43-51.

[185] Martin, F.M., Öpik, M., Dickie, I.A., 2024. Mycorrhizal research now: from the micro- to the macro-scale. New Phytologist 242, 1399-1403.

[186] Martinez, L., Wu, S., Baur, L., Patton, M.T., Owen-Smith, P., Collins, S.L., Rudgers, J.A., 2023. Soil nematode assemblages respond to interacting environmental changes. Oecologia 202, 481-495.

[187] Matthews, J.W., Spyreas, G., 2010. Convergence and divergence in plant community trajectories as a framework for monitoring wetland restoration progress. Journal of Applied Ecology 47, 1128-1136.

[188] McLauchlan, K.K., Hobbie, S.E., Post, W.M., 2006. Conversion from agriculture to grassland builds soil organic matter on decadal timescales. Ecological Applications 16, 143-153.

[189] Melody, C., Griffiths, B., Dyckmans, J., Schmidt, O., 2016. Stable isotope analysis (δ13C and δ15N) of soil nematodes from four feeding groups. PeerJ 4, e2372.

[190] Migliavacca, M., Musavi, T., Mahecha, M.D., Nelson, J.A., Knauer, J., Baldocchi, D.D., Perez-Priego, O., Christiansen, R., Peters, J., Anderson, K., Bahn, M., Black, T.A., Blanken, P.D., Bonal, D., Buchmann, N., Caldararu, S., Carrara, A., Carvalhais, N., Cescatti, A., Chen, J., Cleverly, J., Cremonese, E., Desai, A.R., El-Madany, T.S., Farella, M.M., Fernández-Martínez, M., Filippa, G., Forkel, M., Galvagno, M., Gomarasca, U., Gough, C.M., Göckede, M., Ibrom, A., Ikawa, H., Janssens, I.A., Jung, M., Kattge, J., Keenan, T.F., Knohl, A., Kobayashi, H., Kraemer, G., Law, B.E., Liddell, M.J., Ma, X., Mammarella, I., Martini, D., Macfarlane, C., Matteucci, G., Montagnani, L., Pabon-Moreno, D.E., Panigada, C., Papale, D., Pendall, E., Penuelas, J., Phillips, R.P., Reich, P.B., Rossini, M., Rotenberg, E., Scott, R.L., Stahl, C., Weber, U., Wohlfahrt, G., Wolf, S., Wright, I.J., Yakir, D., Zaehle, S., Reichstein, M., 2021. The three major axes of terrestrial ecosystem function. Nature 598, 468-472.

[191] Moretti, M., Dias, A.T.C., de Bello, F., Altermatt, F., Chown, S.L., Azcárate, F.M., Bell, J.R., Fournier, B., Hedde, M., Hortal, J., Ibanez, S., Öckinger, E., Sousa, J.P., Ellers, J., Berg, M.P., 2017. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology 31, 558-567.

[192] Morriën, E., Hannula, S.E., Snoek, L.B., Helmsing, N.R., Zweers, H., de Hollander, M., Soto, R.L., Bouffaud, M.-L., Buée, M., Dimmers, W., Duyts, H., Geisen, S., Girlanda, M., Griffiths, R.I., Jørgensen, H.-B., Jensen, J., Plassart, P., Redecker, D., Schmelz, R.M., Schmidt, O., Thomson, B.C., Tisserant, E., Uroz, S., Winding, A., Bailey, M.J., Bonkowski, M., Faber, J.H., Martin, F., Lemanceau, P., de Boer, W., van Veen, J.A., van der Putten, W.H., 2017. Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications 8, 14349.

[193] Neher, D.A., 2001. Role of nematodes in soil health and their use as indicators. Journal of Nematology 33, 161-168.

[194] Neher, D.A., 2010. Ecology of plant and free-living nematodes in natural and agricultural soil. Annual Review of Phytopathology 48, 371-394.

[195] Neyret, M., Le Provost, G., Boesing, A.L., Schneider, F.D., Baulechner, D., Bergmann, J., de Vries, F.T., Fiore-Donno, A.M., Geisen, S., Goldmann, K., Merges, A., Saifutdinov, R.A., Simons, N.K., Tobias, J.A., Zaitsev, A.S., Gossner, M.M., Jung, K., Kandeler, E., Krauss, J., Penone, C., Schloter, M., Schulz, S., Staab, M., Wolters, V., Apostolakis, A., Birkhofer, K., Boch, S., Boeddinghaus, R.S., Bolliger, R., Bonkowski, M., Buscot, F., Dumack, K., Fischer, M., Gan, H.Y., Heinze, J., Hölzel, N., John, K., Klaus, V.H., Kleinebecker, T., Marhan, S., Müller, J., Renner, S.C., Rillig, M.C., Schenk, N.V., Schöning, I., Schrumpf, M., Seibold, S., Socher, S.A., Solly, E.F., Teuscher, M., van Kleunen, M., Wubet, T., Manning, P., 2024. A slow-fast trait continuum at the whole community level in relation to land-use intensification. Nature Communications 15, 1251.

[196] Nielsen, U.N., 2019. Soil fauna assemblages. Cambridge University Press.

[197] Odum, E.P., 1969. The strategy of ecosystem development. Science 164, 262-270.

[198] Orwin, K.H., Mason, N.W.H., Aalders, L., Bell, N.L., Schon, N., Mudge, P.L., 2021. Relationships of plant traits and soil biota to soil functions change as nitrogen fertiliser rates increase in an intensively managed agricultural system. Journal of Applied Ecology 58, 392-405.

[199] Otfinowski, R., Coffey, V., 2020. Can root traits predict communities of soil nematodes in restored northern prairies? Plant and Soil 453, 459-471.

[200] Perino, A., Pereira, H.M., Navarro, L.M., Fernández, N., Bullock, J.M., Ceaușu, S., Cortés-Avizanda, A., van Klink, R., Kuemmerle, T., Lomba, A., Pe’er, G., Plieninger, T., Rey Benayas, J.M., Sandom, C.J., Svenning, J.-C., Wheeler, H.C., 2019. Rewilding complex ecosystems. Science 364, eaav5570.

[201] Perring, M.P., Standish, R.J., Price, J.N., Craig, M.D., Erickson, T.E., Ruthrof, K.X., Whiteley, A.S., Valentine, L.E., Hobbs, R.J., 2015. Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere 6, art131.

[202] Pianka, E.R., Vitt, L.J., Pelegrin, N., Fitzgerald, D.B., Winemiller, K.O., 2017. Toward a periodic table of niches, or exploring the lizard niche hypervolume. The American Naturalist 190, 601-616.

[203] Pothula, S.K., Grewal, P.S., Auge, R.M., Saxton, A.M., Bernard, E.C., 2019. Agricultural intensification and urbanization negatively impact soil nematode richness and abundance: a meta-analysis. Journal of Nematology 51, 1-17.

[204] Prieto, I., Roumet, C., Cardinael, R., Dupraz, C., Jourdan, C., Kim, J.H., Maeght, J.L., Mao, Z., Pierret, A., Portillo, N., Roupsard, O., Thammahacksa, C., Stokes, A., 2015. Root functional parameters along a land-use gradient: evidence of a community-level economics spectrum. Journal of Ecology 103, 361-373.

[205] Prieto, I., Stokes, A., Roumet, C., 2016. Root functional parameters predict fine root decomposability at the community level. Journal of Ecology 104, 725-733.

[206] Raich, J.W., Schlesinger, W.H., 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B, 81-99.

[207] Rao, T.R., 2018. Anhydrobiosis – drying without dying. Resonance 23, 545-553.

[208] Reich, P.B., 2014. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. Journal of Ecology 102, 275-301.

[209] Reich, P.B., Tjoelker, M.G., Pregitzer, K.S., Wright, I.J., Oleksyn, J., Machado, J.-L., 2008. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters 11, 793-801.

[210] Reich, P.B., Wright, I.J., Cavender-Bares, J., Craine, J.M., Oleksyn, J., Westoby, M., Walters, M.B., 2003. The evolution of plant functional variation: Traits, spectra, and strategies. International Journal of Plant Sciences 164, S143-S164.

[211] Ridgeway, J.R., Morrissey, E.M., Brzostek, E.R., 2022. Plant litter traits control microbial decomposition and drive soil carbon stabilization. Soil Biology and Biochemistry 175, 108857.

[212] Ritz, K., Trudgill, D.L., 1999. Utility of nematode community analysis as an integrated measure of the functional state of soils: perspectives and challenges. Plant and Soil 212, 1-11.

[213] Rosseel, Y., 2012. lavaan: An R package for structural equation modeling. Journal of Statistical Software 48, 1-36.

[214] Roumet, C., Birouste, M., Picon-Cochard, C., Ghestem, M., Osman, N., Vrignon-Brenas, S., Cao, K.-f., Stokes, A., 2016. Root structure–function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytologist 210, 815-826.

[215] Ruess, L., Chamberlain, P.M., 2010. The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biology and Biochemistry 42, 1898-1910.

[216] Ruess, L., Häggblom, M.M., Langel, R., Scheu, S., 2004. Nitrogen isotope ratios and fatty acid composition as indicators of animal diets in belowground systems. Oecologia 139, 336-346.

[217] Salguero-Gómez, R., Jones, O.R., Jongejans, E., Blomberg, S.P., Hodgson, D.J., Mbeau-Ache, C., Zuidema, P.A., de Kroon, H., Buckley, Y.M., 2016. Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide. Proceedings of the National Academy of Sciences 113, 230-235.

[218] Sánchez-Moreno, S., Ferris, H., 2018. Nematode ecology and soil health, In: R. Sikora, D. Coyne, J. Hallmann, P. Timper (Eds.), Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. Cambridge University Press, pp. 62-86.

[219] Schleuning, M., García, D., Tobias, J.A., 2023. Animal functional traits: Towards a trait-based ecology for whole ecosystems. Functional Ecology 37, 4-12.

[220] Schmitz, O.J., Buchkowski, R.W., Burghardt, K.T., Donihue, C.M., 2015. Functional traits and trait-mediated interactions: connecting community-level interactions with ecosystem functioning, In: Pawar, S., Woodward, G., Dell, A.I. (Eds.), Advances in Ecological Research. Academic Press, pp. 319-343.

[221] Schmitz, O.J., Leroux, S.J., 2020. Food webs and ecosystems: linking species interactions to the carbon cycle. Annual Review of Ecology, Evolution and Systematics 51, 271-295.

[222] Scholes, R., Pickett, G., Ellery, W., Blackmore, A., 1997. Plant functional types in African savannas and grasslands, In: Smith, T.M., Shugart, H.H., and Woodward, F.I. (Eds.), Plant Functional Types: their Relevance to Ecosystem Properties and Global Change. Cambridge University Press, pp. 255-268.

[223] Schratzberger, M., Holterman, M., van Oevelen, D., Helder, J., 2019. A worm's world: ecological flexibility pays off for free-living nematodes in sediments and soils. BioScience 69, 867-876.

[224] Seastedt, T.R., Hobbs, R.J., Suding, K.N., 2008. Management of novel ecosystems: are novel approaches required? Frontiers in Ecology and the Environment 6, 547-553.

[225] Shipley, B., De Bello, F., Cornelissen, J.H.C., Laliberté, E., Laughlin, D.C., Reich, P.B., 2016. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180, 923-931.

[226] Silver, W.L., Kueppers, L.M., Lugo, A.E., Ostertag, R., Matzek, V., 2004. Carbon sequestration and plant community dynamics following reforestation of tropical pasture. Ecological Applications 14, 1115-1127.

[227] Singh, B., 2018. Soil carbon storage: modulators, mechanisms and modeling. Academic Press.

[228] Sinsabaugh, R.L., Manzoni, S., Moorhead, D.L., Richter, A., 2013. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecology Letters 16, 930-939.

[229] Sobral, M., Schleuning, M., Martínez Cortizas, A., 2023. Trait diversity shapes the carbon cycle. Trends in Ecology & Evolution 38, 602-604.

[230] Song, J., Wan, S., Zhang, K., Hong, S., Xia, J., Piao, S., Wang, Y.-P., Chen, J., Hui, D., Luo, Y., Niu, S., Ru, J., Xu, H., Zheng, M., Liu, W., Wang, H., Tan, M., Zhou, Z., Feng, J., Qiu, X., 2024. Ecological restoration enhances dryland carbon stock by reducing surface soil carbon loss due to wind erosion. Proceedings of the National Academy of Sciences 121, e2416281121.

[231] Southwood, T.R.E., 1977. Habitat, the templet for ecological strategies? Journal of Animal Ecology 46, 337-365.

[232] Spitzer, C.M., Lindahl, B., Wardle, D.A., Sundqvist, M.K., Gundale, M.J., Fanin, N., Kardol, P., 2021. Root trait–microbial relationships across tundra plant species. New Phytologist 229, 1508-1520.

[233] Spohn, M., Klaus, K., Wanek, W., Richter, A., 2016. Microbial carbon use efficiency and biomass turnover times depending on soil depth – Implications for carbon cycling. Soil Biology and Biochemistry 96, 74-81.

[234] Sterck, F., Markesteijn, L., Schieving, F., Poorter, L., 2011. Functional traits determine trade-offs and niches in a tropical forest community. Proceedings of the National Academy of Sciences 108, 20627-20632.

[235] Stott, I., Salguero-Gómez, R., Jones, O.R., Ezard, T.H.G., Gamelon, M., Lachish, S., Lebreton, J.-D., Simmonds, E.G., Gaillard, J.-M., Hodgson, D.J., 2024. Life histories are not just fast or slow. Trends in Ecology & Evolution 39, 830-840.

[236] Sun, J., Zhang, C., Yu, D., Yin, X., Cheng, Y., Chen, X., Liu, M., 2024. Responses of invertebrate traits to litter chemistry accelerate decomposition under nitrogen enrichment. Soil Biology and Biochemistry 198, 109572.

[237] Sun, L., Ataka, M., Han, M., Han, Y., Gan, D., Xu, T., Guo, Y., Zhu, B., 2021. Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest. New Phytologist 229, 259-271.

[238] Tao, F., Huang, Y., Hungate, B.A., Manzoni, S., Frey, S.D., Schmidt, M.W.I., Reichstein, M., Carvalhais, N., Ciais, P., Jiang, L., Lehmann, J., Wang, Y.-P., Houlton, B.Z., Ahrens, B., Mishra, U., Hugelius, G., Hocking, T.D., Lu, X., Shi, Z., Viatkin, K., Vargas, R., Yigini, Y., Omuto, C., Malik, A.A., Peralta, G., Cuevas-Corona, R., Di Paolo, L.E., Luotto, I., Liao, C., Liang, Y.-S., Saynes, V.S., Huang, X., Luo, Y., 2023. Microbial carbon use efficiency promotes global soil carbon storage. Nature 618, 981-985.

[239] Thakur, M.P., Geisen, S., 2019. Trophic regulations of the soil microbiome. Trends in Microbiology 27, 771-780.

[240] Trap, J., Bonkowski, M., Plassard, C., Villenave, C., Blanchart, E., 2016. Ecological importance of soil bacterivores for ecosystem functions. Plant and Soil 398, 1-24.

[241] Trivedi, P., Batista, B.D., Bazany, K.E., Singh, B.K., 2022. Plant–microbiome interactions under a changing world: responses, consequences and perspectives. New Phytologist 234, 1951-1959.

[242] Tsunoda, T., van Dam, N.M., 2017. Root chemical traits and their roles in belowground biotic interactions. Pedobiologia 65, 58-67.

[243] Valverde-Barrantes, O.J., Smemo, K.A., Blackwood, C.B., 2015. Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Functional Ecology 29, 796-807.

[244] van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D.A., de Goede, R.G.M., Adams, B.J., Ahmad, W., Andriuzzi, W.S., Bardgett, R.D., Bonkowski, M., Campos-Herrera, R., Cares, J.E., Caruso, T., de Brito Caixeta, L., Chen, X., Costa, S.R., Creamer, R., Mauro da Cunha Castro, J., Dam, M., Djigal, D., Escuer, M., Griffiths, B.S., Gutiérrez, C., Hohberg, K., Kalinkina, D., Kardol, P., Kergunteuil, A., Korthals, G., Krashevska, V., Kudrin, A.A., Li, Q., Liang, W., Magilton, M., Marais, M., Martín, J.A.R., Matveeva, E., Mayad, E.H., Mulder, C., Mullin, P., Neilson, R., Nguyen, T.A.D., Nielsen, U.N., Okada, H., Rius, J.E.P., Pan, K., Peneva, V., Pellissier, L., Carlos Pereira da Silva, J., Pitteloud, C., Powers, T.O., Powers, K., Quist, C.W., Rasmann, S., Moreno, S.S., Scheu, S., Setälä, H., Sushchuk, A., Tiunov, A.V., Trap, J., van der Putten, W., Vestergård, M., Villenave, C., Waeyenberge, L., Wall, D.H., Wilschut, R., Wright, D.G., Yang, J.-i., Crowther, T.W., 2019. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194-198.

[245] van der Plas, F., Schröder-Georgi, T., Weigelt, A., Barry, K., Meyer, S., Alzate, A., Barnard, R.L., Buchmann, N., de Kroon, H., Ebeling, A., Eisenhauer, N., Engels, C., Fischer, M., Gleixner, G., Hildebrandt, A., Koller-France, E., Leimer, S., Milcu, A., Mommer, L., Niklaus, P.A., Oelmann, Y., Roscher, C., Scherber, C., Scherer-Lorenzen, M., Scheu, S., Schmid, B., Schulze, E.-D., Temperton, V., Tscharntke, T., Voigt, W., Weisser, W., Wilcke, W., Wirth, C., 2020. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nature Ecology & Evolution 4, 1602-1611.

[246] van der Putten, W.H., Bradford, M.A., Pernilla Brinkman, E., van de Voorde, T.F.J., Veen, G.F., 2016. Where, when and how plant–soil feedback matters in a changing world. Functional Ecology 30, 1109-1121.

[247] Vincent, T.L., Brown, J.S., 2005. Evolutionary game theory, natural selection, and Darwinian dynamics. Cambridge University Press.

[248] Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., 2007. Let the concept of trait be functional! Oikos 116, 882-892.

[249] Vitousek, P.M., Mooney, H.A., Lubchenco, J., Melillo, J.M., 1997. Human domination of Earth's ecosystems. Science 277, 494-499.

[250] Walker, L.R., Wardle, D.A., Bardgett, R.D., Clarkson, B.D., 2010. The use of chronosequences in studies of ecological succession and soil development. Journal of Ecology 98, 725-736.

[251] Wan, B., Liu, T., Gong, X., Zhang, Y., Li, C., Chen, X., Hu, F., Griffiths, B.S., Liu, M., 2022a. Energy flux across multitrophic levels drives ecosystem multifunctionality: Evidence from nematode food webs. Soil Biology and Biochemistry 169, 108656.

[252] Wan, X., Chen, X., Huang, Z., Chen, H.Y.H., 2021. Contribution of root traits to variations in soil microbial biomass and community composition. Plant and Soil 460, 483-495.

[253] Wan, X., Yu, Z., Wang, M., Zhang, Y., Lucas-Borja, M.E., Huang, Z., 2022b. Functional trait variation and community-weighted means of tree traits can alter soil microbial biomass and community composition. Soil Biology and Biochemistry 170, 108715.

[254] Wang, C., Qu, L., Yang, L., Liu, D., Morrissey, E., Miao, R., Liu, Z., Wang, Q., Fang, Y., Bai, E., 2021a. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology 27, 2039-2048.

[255] Wang, J., Zheng, Y., Shi, X., Lam, S.K., Lucas-Borja, M.E., Huang, Z., 2022. Nature restoration shifts the abundance and structure of soil nematode communities in subtropical forests. Plant and Soil 471, 315-327.

[256] Wang, M., Kong, D., Mo, X., Wang, Y., Yang, Q., Kardol, P., Valverde-Barrantes, O.J., Simpson, M.J., Zeng, H., Reich, P.B., Bergmann, J., Tharayil, N., Wang, J., 2024. Molecular-level carbon traits underlie the multidimensional fine root economics space. Nature Plants 10, 901-909.

[257] Wang, R., Wang, Q., Zhao, N., Xu, Z., Zhu, X., Jiao, C., Yu, G., He, N., 2018. Different phylogenetic and environmental controls of first-order root morphological and nutrient traits: Evidence of multidimensional root traits. Functional Ecology 32, 29-39.

[258] Wang, S., Chen, X., Li, D., Wu, J., 2021b. Effects of soil organism interactions and temperature on carbon use efficiency in three different forest soils. Soil Ecology Letters 3, 156-166.

[259] Ward, E.B., Duguid, M.C., Kuebbing, S.E., Lendemer, J.C., Bradford, M.A., 2022. The functional role of ericoid mycorrhizal plants and fungi on carbon and nitrogen dynamics in forests. New Phytologist 235, 1701-1718.

[260] Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setälä, H., van der Putten, W.H., Wall, D.H., 2004. Ecological linkages between aboveground and belowground biota. Science 304, 1629-1633.

[261] Weemstra, M., Mommer, L., Visser, E.J.W., van Ruijven, J., Kuyper, T.W., Mohren, G.M.J., Sterck, F.J., 2016. Towards a multidimensional root trait framework: a tree root review. New Phytologist 211, 1159-1169.

[262] Weigelt, A., Mommer, L., Andraczek, K., Iversen, C.M., Bergmann, J., Bruelheide, H., Fan, Y., Freschet, G.T., Guerrero-Ramírez, N.R., Kattge, J., Kuyper, T.W., Laughlin, D.C., Meier, I.C., van der Plas, F., Poorter, H., Roumet, C., van Ruijven, J., Sabatini, F.M., Semchenko, M., Sweeney, C.J., Valverde-Barrantes, O.J., York, L.M., McCormack, M.L., 2021. An integrated framework of plant form and function: the belowground perspective. New Phytologist 232, 42-59.

[263] Wen, Z., White, P.J., Shen, J., Lambers, H., 2022. Linking root exudation to belowground economic traits for resource acquisition. New Phytologist 233, 1620-1635.

[264] Westoby, M., 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil 199, 213-227.

[265] Westoby, M., 2025. Trait-based ecology, trait-free ecology, and in between. New Phytologist 245, 33-39.

[266] Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A., Wright, I.J., 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33, 125-159.

[267] Westoby, M., Gillings, M.R., Madin, J.S., Nielsen, D.A., Paulsen, I.T., Tetu, S.G., 2021. Trait dimensions in bacteria and archaea compared to vascular plants. Ecology Letters 24, 1487-1504.

[268] Westoby, M., Leishman, M., 1997. Categorizing plant species into functional types, In: Smith, T.M., Shugart, H.H., and Woodward, F.I. (Eds.) Plant Functional Types: their Relevance to Ecosystem Properties and Global Change. Cambridge University Press, pp. 104-121.

[269] Westoby, M., Wright, I.J., 2006. Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution 21, 261-268.

[270] Wong, M.Y., Wurzburger, N., Hall, J.S., Wright, S.J., Tang, W., Hedin, L.O., Saltonstall, K., van Breugel, M., Batterman, S.A., 2024. Trees adjust nutrient acquisition strategies across tropical forest secondary succession. New Phytologist 243, 132-144.

[271] Woodcock, B.A., McDonald, A.W., Pywell, R.F., 2011. Can long-term floodplain meadow recreation replicate species composition and functional characteristics of target grasslands? Journal of Applied Ecology 48, 1070-1078.

[272] Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.-L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R., 2004. The worldwide leaf economics spectrum. Nature 428, 821-827.

[273] Wu, D., Du, E., Eisenhauer, N., Mathieu, J., Chu, C., 2025. Global engineering effects of soil invertebrates on ecosystem functions. Nature 640, 120-129.

[274] Wu, W., Kuang, L., Li, Y., He, L., Mou, Z., Wang, F., Zhang, J., Wang, J., Li, Z.a., Lambers, H., Sardans, J., Peñuelas, J., Geisen, S., Liu, Z., 2021. Faster recovery of soil biodiversity in native species mixture than in Eucalyptus monoculture after 60 years afforestation in tropical degraded coastal terraces. Global Change Biology 27, 5329-5340.

[275] Xiao, K.-Q., Liang, C., Wang, Z., Peng, J., Zhao, Y., Zhang, M., Zhao, M., Chen, S., Zhu, Y.-G., Peacock, C.L., 2024. Beyond microbial carbon use efficiency. National Science Review 11, nwae059.

[276] Xu, H., Zhu, B., Wei, X., Yu, M., Cheng, X., 2021. Root functional traits mediate rhizosphere soil carbon stability in a subtropical forest. Soil Biology and Biochemistry 162, 108431.

[277] Xue, X., Adhikari, B.N., Ball, B.A., Barrett, J.E., Miao, J., Perkes, A., Martin, M., Simmons, B.L., Wall, D.H., Adams, B.J., 2023. Ecological stoichiometry drives the evolution of soil nematode life history traits. Soil Biology and Biochemistry 177, 108891.

[278] Yang, Y., 2021. Emerging patterns of microbial functional traits. Trends in Microbiology 29, 874-882.

[279] Yang, Y., Tilman, D., Furey, G., Lehman, C., 2019. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nature Communications 10, 718.

[280] Yeates, G.W., 1986. Stylet and body lengths as niche dimensions in plant-parasitic nematode. Zoologischer Anzeiger 216, 327-337.

[281] Yeates, G.W., 1994. Modification and qualification of the nematode maturity index. Pedobiologia 38, 97-101.

[282] Yeates, G.W., 2003. Nematodes as soil indicators: functional and biodiversity aspects. Biology and Fertility of Soils 37, 199-210.

[283] Yeates, G.W., Bongers, T., De Goede, R.G., Freckman, D.W., Georgieva, S.S., 1993. Feeding habits in soil nematode families and genera-an outline for soil ecologists. Journal of Nematology 25, 315-331.

[284] Yu, D., Yao, J., Chen, X., Sun, J., Wei, Y., Cheng, Y., Hu, F., Liu, M., 2022. Ecological intensification alters the trait-based responses of soil microarthropods to extreme precipitation in agroecosystem. Geoderma 422, 115956.

[285] Yvon-Durocher, G., Allen, A.P., 2012. Linking community size structure and ecosystem functioning using metabolic theory. Philosophical Transactions of the Royal Society B: Biological Sciences 367, 2998-3007.

[286] Zhang, C., Wang, J., Ren, Z., Hu, Z., Tian, S., Fan, W., Chen, X., Griffiths, B.S., Hu, F., Liu, M., 2020. Root traits mediate functional guilds of soil nematodes in an ex-arable field. Soil Biology and Biochemistry 151, 108038.

[287] Zhang, C., Wright, I.J., Nielsen, U.N., Geisen, S., Liu, M., 2024a. Linking nematodes and ecosystem function: a trait-based framework. Trends in Ecology & Evolution 39, 644-653.

[288] Zhang, C., Xue, J., Li, N., Xue, W., Chen, X., Hu, F., Liu, M., 2022a. Afterlife effect of cover crops on soil nematode food web: Implications from the plant ecological strategy. Biology and Fertility of Soils 58, 937-947.

[289] Zhang, C., Xue, W., Xue, J., Zhang, J., Qiu, L., Chen, X., Hu, F., Kardol, P., Liu, M., 2022b. Leveraging functional traits of cover crops to coordinate crop productivity and soil health. Journal of Applied Ecology 59, 2627-2641.

[290] Zhang, C., Zhu, T., Nielsen, U.N., Wright, I.J., Li, N., Chen, X., Liu, M., 2025. An integrated fast–slow plant and nematode economics spectrum predicts soil organic carbon dynamics during natural restoration. New Phytologist 245, 2467-2479.

[291] Zhang, J., Hu, Z., Zhang, C., Tao, Y., Chen, X., Griffiths, B.S., Liu, M., 2022c. Roots with larger specific root length and C: N ratio sustain more complex rhizosphere nematode community. Plant and Soil 477, 693-706.

[292] Zhang, Y., Cao, J., Lu, M., Kardol, P., Wang, J., Fan, G., Kong, D., 2024b. The origin of bi-dimensionality in plant root traits. Trends in Ecology & Evolution 39, 78-88.

[293] Zhao, J., Guo, B., Hou, Y., Yang, Q., Feng, Z., Zhao, Y., Yang, X., Fan, G., Kong, D., 2024. Multi-dimensionality in plant root traits: progress and challenges. Journal of Plant Ecology 17, rtae043.

[294] Zhao, J., Xun, R., He, X., Zhang, W., Fu, W., Wang, K., 2015. Size spectra of soil nematode assemblages under different land use types. Soil Biology and Biochemistry 85, 130-136.

[295] Zheng, L., Wu, S., Lu, L., Li, T., Liu, Z., Li, X., Li, H., 2023. Unraveling the interaction effects of soil temperature and moisture on soil nematode community: A laboratory study. European Journal of Soil Biology 118, 103537.

[296] Zhu, T., Yang, C., Wang, J., Zeng, S., Liu, M., Yang, J., Bai, B., Cao, J., Chen, X., Müller, C., 2018. Bacterivore nematodes stimulate soil gross N transformation rates depending on their species. Biology and Fertility of Soils 54, 107-118.

中图分类号:

 S15    

开放日期:

 2025-07-03    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式