中文题名: | 观赏植物旱金莲的基因组测序及其介导芥酸合成的KCS基因鉴定 |
姓名: | |
学号: | 2022104115 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0902Z1 |
学科名称: | 农学 - 园艺学 - 观赏园艺学 |
学生类型: | 硕士 |
学位: | 农学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 观赏植物遗传育种与分子生物学 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2025-05-01 |
答辩日期: | 2025-05-23 |
外文题名: | Genome Sequencing Of Ornamental Plant Tropaeolum Majus And Identification Of Kcs Genes Mediating Erucic Acid Biosynthesis |
中文关键词: | |
外文关键词: | Tropaeolum majus ; KCS ; erucic acid ; genome ; transcriptome ; functional validation |
中文摘要: |
旱金莲(Tropaeolum majus)是一种具有重要观赏与经济价值的植物,其花朵色彩绚丽,形态独特,从明艳的橙红色到柔和的杏黄色均有分布,加之攀援生长的习性,使其成为庭院装饰与垂直绿化的理想选择。除观赏价值外,旱金莲种子中芥酸(erucic acid, C22:1)含量高达总脂肪酸的66%,是已知芥酸含量最高的植物资源之一。芥酸作为工业润滑剂和医药中间体的重要原料,其生物合成途径在十字花科作物中已有较深入研究,涉及质体内脂肪酸从头合成和内质网KCS酶介导的碳链延长两个关键阶段。然而,旱金莲这一兼具高观赏性与高芥酸含量的特殊物种,其芥酸合成的分子机制却长期未被阐明,尤其缺乏对关键KCS基因的系统鉴定与功能解析,这主要受限于该物种基因组资源的缺失和多组学研究的不足。 针对这一科学问题,本研究通过整合二代Illumina短读长、三代Nanopore长读长测序和Hi-C染色质构象捕获技术,首次完成了旱金莲染色体级别的高质量基因组组装,其contig N50达到12.3 Mb,BUSCO评估完整度为98.50%。基于精确的基因组注释(BUSCO 92.20%),我们系统分析了KCS基因家族的结构特征,并结合多组织及发育时期的转录组数据,通过表达模式分析、共表达网络构建和进化保守性评估,筛选出两个与芥酸合成密切相关的候选基因TM-KCS2和TM-KCS11。进一步的异源功能验证实验显示,在35S组成型启动子驱动下,这两个基因在拟南芥中的过表达均能显著提升种子芥酸含量;而在种子特异性Napin启动子调控下,仅TM-KCS11表现出显著的芥酸合成促进作用,这一结果揭示了KCS基因家族成员在表达调控和功能上的分化现象。通过构建涵盖藻类至被子植物的21个物种KCS系统发育树,我们发现芥酸合成能力在不同进化谱系中独立出现,表明KCS基因家族存在平行演化现象,这一发现为理解植物代谢途径的适应性进化提供了新视角。 本研究的创新性不仅在于揭示了旱金莲高芥酸含量形成的分子基础,更重要的是建立了一套整合多组学数据、进化分析与异源验证的研究范式。该范式特别适用于解析次生代谢产物合成途径中未知功能基因的鉴定与演化溯源问题,为其他高价值植物代谢物的研究与开发利用提供了方法论参考。未来可基于此策略深入探究KCS基因家族的功能分化机制,并利用旱金莲的观赏与代谢双重特性,开展兼具观赏价值与工业应用潜力的分子设计育种。 |
外文摘要: |
Tropaeolum majus (nasturtium) is a plant species of significant ornamental and economic value, renowned for its vibrant flowers ranging from bright orange-red to soft apricot-yellow, and its unique morphology. Its climbing growth habit makes it ideal for garden decoration and vertical landscaping. Beyond its aesthetic appeal, T. majus seeds contain exceptionally high levels of erucic acid (C22:1), reaching up to 66% of total fatty acids, ranking among the highest known plant sources of this industrially important compound. While the biosynthetic pathway of erucic acid—involving plastidial de novo fatty acid synthesis followed by endoplasmic reticulum-based chain elongation catalyzed by β-ketoacyl-CoA synthase (KCS)—has been well characterized in Brassicaceae oil crops, the molecular mechanisms underlying its high erucic acid content remain unexplored in this dual-purpose species. The lack of genomic resources and multi-omics studies has particularly hindered systematic identification and functional characterization of key KCS genes. To address this knowledge gap, we performed the first chromosome-level genome assembly of T. majus by integrating Illumina short-read, Nanopore long-read, and Hi-C chromatin conformation capture technologies. The assembled genome achieved a contig N50 of 12.3 Mb with 98.50% BUSCO completeness. Through comprehensive genome annotation (92.20% BUSCO completeness), we systematically analyzed the KCS gene family and identified two candidate genes (TM-KCS2 and TM-KCS11) strongly associated with erucic acid biosynthesis, using a combination of expression profiling across tissues and developmental stages, co-expression network analysis, and evolutionary conservation assessment. Heterologous functional validation in Arabidopsis demonstrated that both genes significantly increased seed erucic acid content when driven by the 35S constitutive promoter. However, under the seed-specific Napin promoter, only TM-KCS11 exhibited significant erucic acid enhancement, revealing functional divergence within the KCS family. Phylogenetic reconstruction across 21 species from algae to angiosperms revealed independent emergence of erucic acid biosynthesis capacity in distinct evolutionary lineages, providing evidence for parallel evolution within the KCS gene family and new insights into the adaptive evolution of plant metabolic pathways. This study not only elucidates the molecular basis of high erucic acid accumulation in T. majus, but also establishes an integrative research framework combining multi-omics, evolutionary analysis, and cross-species validation. This paradigm is particularly valuable for characterizing unknown functional genes in secondary metabolite biosynthesis and tracing their evolutionary origins. The strategy paves the way for investigating other high-value plant metabolites and enables molecular breeding approaches that simultaneously enhance ornamental traits and industrial compound production in dual-purpose species like T. majus. |
参考文献: |
[1] 高建芹, 浦惠明, 戚存扣, 等. 应用气相色谱仪分析油菜脂肪酸含量[J]. 江苏农业学报, 2008: 581-585. [2] 韩凤英. 芥酸高合成能力关键基因FAE1的鉴定及其油菜遗传转化[D]. 长江大学, 2023. [3] 淮东欣. 调控超长链脂肪酸合成关键基因对植物种子中脂肪酸组成的影响[D]. 华中农业大学, 2015. [4] 贾琪, 吴名耀, 梁康迳, 等. 基因组学在作物抗逆性研究中的新进展[J]. 中国生态农业学报, 2014. [5] 刘婷, 王强, 程容, 等. 玉米和大豆根边缘细胞特性及胞外蛋白组对比分析[J]. 西南农业学报, 2025: 1-13. [6] 孟继红. 芥酸合成基因表达的量化分析及芥酸种质资源的TRAP分子鉴定[D]. 新疆农业大学, 2007. [7] 彭梦笛, 杨捷, 蒙娟, 等. 百合VAL2基因的克隆与表达分析[J]. 西北植物学报, 2019, 39: 2100-2108. [8] 王菲. 薄壳山核桃果实发育过程中脂肪酸组分鉴定及合成关键基因功能分析[D]. 扬州大学, 2024. [9] 王淑慧, 梁鸿, 张庆英, 等. 川贝母资源与生产技术研究进展[J]. 中国现代中药, 2025: 1-9. [10] 王真珍, 陈国梁, 张亦弛, 等. 狗头枣果皮GH9基因家族鉴定及不同发育期的表达与纤维素含量分析[J]. 西北植物学报, 2023, 43: 539-549. [11] 吴传立, 卢娜. 粮油食品检测中气相色谱技术的应用分析[J]. 现代食品, 2024, 30: 50-52. [12] 吴关庭, 郎春秀, 陈锦清. 芥酸的生产及其衍生产品开发[J]. 中国油脂, 2007, 32: 5. [13] 杨雨婷, 于文凯, 徐颖, 等. 油菜籽脂肪酸组成的遗传结构剖析[J]. 中国油料作物学报, 2023, 45: 240-252. [14] 张力铭, 户奥锋, 陈雅心, 等. 结球甘蓝BolKCS基因家族全基因组鉴定及响应非生物胁迫表达[J]. 东北农业大学学报, 2024, 55: 10-21+92. [15] 邹敏, 唐佳佳, 宋洪元. 油菜种子特异启动子Napin控制外源EGFP基因在芥菜中的表达[J]. 中国蔬菜, 2012: 18-22. [16] Abramova A, Osińska A, Kunche H, et al. CAFE: a software suite for analysis of paired-sample transposon insertion sequencing data[J]. Bioinformatics, 2021; 37(1): 121-122. [17] Altschul S F, Madden T L, Schffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic acids research, 1997; 25(17): 3389. [18] Andrews S. FastQC A Quality Control tool for High Throughput Sequence Data[J]. 2014. [19] Bach L, Faure J D. Role of very-long-chain fatty acids in plant development, when chain length does matter[J]. Comptes Rendus Biologies, 2010; 333(4): 361-370. [20] Bao Z R, Eddy S R. Automated de novo identification of repeat sequence families in sequenced genomes[J]. Genome Research, 2002; 12(8): 1269-1276. [21] Batsale M, Bahammou D, Fouillen L, et al. Biosynthesis and Functions of Very-Long-Chain Fatty Acids in the Responses of Plants to Abiotic and Biotic Stresses[J]. Cells, 2021; 10(6). [22] Belser C, Istace B, Denis E, et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps[J]. Nature Plants, 2018; 4(11): 879-+. [23] Besnard G, Muasya A M, Russier F, et al. Phylogenomics of C4 Photosynthesis in Sedges (Cyperaceae): Multiple Appearances and Genetic Convergence[J]. Molecular Biology and Evolution, 2009; 26(8): 1909-1919. [24] Bodi K. Tools for Next Generation Sequencing Data Analysis[J]. Journal of Biomolecular Techniques Jbt, 2011; 22(Suppl): S18. [25] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014; 30(15): 2114-2120. [26] Bruna T, Hoff K J, Lomsadze A, et al. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database[J]. NAR Genomics and Bioinformatics, 2021; 3(1): lqaa108. [27] Cahoon E B, Marillia E F, Stecca K L, et al. Production of fatty acid components of meadowfoam oil in somatic soybean embryos[J]. Plant physiology, 2000; 124(1): 243-251. [28] Chen C, Chen H, Zhang Y, et al. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data[J]. Molecular Plant, 2020; 13(8). [29] Chen L, Hu W, Mishra N, et al. AKR2A interacts with KCS1 to improve VLCFAs contents and chilling tolerance of Arabidopsis thaliana (vol 103, pg 1575, 2020)[J]. Plant Journal, 2021; 107(6): 1855-1855. [30] Cheng R, Ge Y, Yang B, et al. Cloning and functional analysis of putative malonyl-CoA:acyl-carrier protein transacylase gene from the docosahexaenoic acid-producer Schizochytrium sp. TIO1101[J]. World Journal of Microbiology&Biotechnology, 2013. [31] Clauss K, Von Roepenack-Lahaye E, Bottcher C, et al. Overexpression of Sinapine Esterase BnSCE3 in Oilseed Rape Seeds Triggers Global Changes in Seed Metabolism[J]. Plant physiology, 2011; 155(3): 1127-1145. [32] Costaglioli P, Joubès J m, Garcia C, et al. Profiling candidate genes involved in wax biosynthesis in Arabidopsis thaliana by microarray analysis[J]. Biochimica Et Biophysica Acta, 2005; 1734(3): 247-258. [33] Cui W, Liang Y, Tian W X, et al. Regulating effect of β-ketoacyl synthase domain of fatty acid synthase on fatty acyl chain length in fatty acid synthesis[J]. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 2016; 1861(3): 149-155. [34] De Coster W, D'Hert S, Schultz D T, et al. NanoPack: visualizing and processing long-read sequencing data[J]. Bioinformatics, 2018; 34(15): 2666-2669. [35] Denic V, Weissman J S. A molecular caliper mechanism for determining very long-chain fatty acid length[J]. Cell, 2007; 130(4): 663-677. [36] Durand N C, Robinson J T, Shamim M S, et al. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom[J]. Cell Systems, 2016; 3(1): 99-101. [37] Emms D M, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics[J]. Genome biology, 2019; 20(1). [38] Eriksson D, Merker A. Cloning and functional characterization of genes involved in fatty acid biosynthesis in the novel oilseed crop Lepidium campestre L[J]. Plant breeding, 2011; 130(3): 407-409. [39] Finn R D, Clements J, Eddy S R. HMMER web server: interactive sequence similarity searching[J]. Nucleic acids research, 2011; 39(Web Server issue): 29-37. [40] Ghanevati M, Jaworski J C. Active-site residues of a plant membrane-bound fatty acid elongase β-ketoacyl-CoA synthase, FAE1 KCS[J]. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 2001; 1530(1): 77-85. [41] Ghosh A, Islam T. Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response[J]. Bmc Plant Biology, 2016; 16(1): 87. [42] Gremme G, Brendel V, Sparks M E, et al. Engineering a software tool for gene structure prediction in higher organisms[J]. Information and Software Technology, 2005; 47(15): 965-978. [43] Guo H S, Zhang Y M, Sun X Q, et al. Evolution of the KCS gene family in plants: the history of gene duplication, sub/neofunctionalization and redundancy[J]. Mol Genet Genomics, 2016; 291(2): 739-752. [44] Guo Y, Mietkiewska E, Francis T, et al. Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene[J]. Plant molecular biology, 2009; 69: 565-575. [45] Haas B J, Salzberg S L, Zhu W, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments[J]. Genome biology, 2008; 9(1). [46] Hannoufa A, Mcnevin J, Lemieux B. Epicuticular waxes of Eceriferum mutants of Arabidopsis thaliana[J]. Phytochemistry, 1993; 33(4): 851–855. [47] Harwood J L. Recent advances in the biosynthesis of plant fatty acids[J]. Biochim Biophys Acta, 1996; 1301(1-2): 7-56. [48] Haslam T M, Kunst L. Extending The Story Of Very-Long-Chain Fatty Acid Elongation[J]. Plant science, 2013; 210: 93-107. [49] Hu J, Fan J P, Sun Z Y, et al. NextPolish: a fast and efficient genome polishing tool for long-read assembly[J]. Bioinformatics, 2020; 36(7): 2253-2255. [50] Hu J, Wang Z, Sun Z, et al. NextDenovo: an efficient error correction and accurate assembly tool for noisy long reads[J]. Genome biology, 2024; 25(1): 107. [51] Huang H D, Yang X P, Zheng M L, et al. An ancestral role for 3-KETOACYL-COA SYNTHASE3 as a negative regulator of plant cuticular wax synthesis[J]. Plant Cell, 2023; 35(6): 2251-2270. [52] Jérôme, Joubès, Sylvain, et al. The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling[J]. Plant molecular biology, 2008. [53] Jia S Z, Sun H Y, Wang Q L. Nanopore Technology and Its Applications[J]. Progress in Biochemistry & Biophysics, 2002; 29(2): 202-205. [54] James,Keller,Plooy,et al.Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator[J].Plant Cell, 1995(3) : 309-319. [55] Kim D, Paggi J M, Park C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype[J]. Nature Biotechnology, 2019; 37(8): 907-+. [56] Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers[J]. Bioinformatics, 2011; 27(6): 764. [57] Kumar S, Stecher G, Li M, et al. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms[J]. Molecular Biology and Evolution, 2018; 35(6): 1547-1549. [58] Kunst L, Samuels A L. Biosynthesis and secretion of plant cuticular wax[J]. Prog Lipid Res, 2003; 42(1): 51-80. [59] Kunst L, Taylor D C, Underhill E W. Fatty-Acid Elongation in Developing Seeds of Arabidopsis-Thaliana[J]. Plant Physiology and Biochemistry, 1992; 30(4): 425-434. [60] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis[J]. Bmc Bioinformatics, 2008; 9(1): 559. [61] Lassner M W, Lardizabal K, Metz J G. A jojoba beta-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants[J]. Plant Cell, 1996; 8(2): 281-292. [62] Lee S B, Jung S J, Go Y S, et al. Two Arabidopsis 3‐ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress[J]. Blackwell Publishing Ltd, 2009; (3). [63] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009a; 25(14): 1754-1760. [64] Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools[J]. Bioinformatics, 2009b; 25(16): 2078-2079. [65] Li Z, Ma S, Song H, et al. A 3-ketoacyl-CoA synthase 11 (KCS11) homolog from Malania oleifera synthesizes nervonic acid in plants rich in 11Z-eicosenoic acid[J]. Tree Physiology, 2021; 41(2): 331-342. [66] Liang Q, Liu J N, Fang H C, et al. Genomic and transcriptomic analyses provide insights into valuable fatty acid biosynthesis and environmental adaptation of yellowhorn[J]. Frontiers in Plant Science, 2022; 13. [67] Liao Y, Smyth G K, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features[J]. Bioinformatics, 2014; 30(7): 923-930. [68] Lijavetzky D, Carbonero P, Vicente-Carbajosa J. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families[J]. BMC Evolutionary Biology, 2003; 3(1): 17. [69] Liu B, Shi Y, Yuan J, et al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects[J]. Quantitative Biology, 2013; 35(s 1–3): 62-67. [70] Liu Y, Du Z, Lin S, et al. CRISPR/Cas9-Targeted Mutagenesis of BnaFAE1 Genes Confers Low-Erucic Acid in Brassica napus[J]. Frontiers in Plant Science, 2022; 13. [71] Luzarowska U, Russ A K, Joubès J, et al. Hello darkness, my old friend: 3-KETOACYL-COENZYME A SYNTHASE4 is a branch point in the regulation of triacylglycerol synthesis in Arabidopsis thaliana[J]. Plant Cell, 2023; 35(6): 1984-2005. [72] Meng F, Dong X, Hu T, et al. Analysis of Quasispecies of Avain Leukosis Virus Subgroup J Using Sanger and High-throughput Sequencing[J]. Virology Journal, 2016; 13(1): 1-7. [73] Mietkiewska E, Brost J M, Giblin E M, et al. A Teesdalia nudicaulis FAE1 complements the fae1 mutation in transgenic Arabidopsis thaliana plants and shows a preference for elongating oleic acid to eicosenoic acid[J]. Plant science, 2007; 173(2): 198-205. [74] Mietkiewska E, Giblin E M, Wang S, et al. Seed-specific heterologous expression of a nasturtium FAE gene in Arabidopsis results in a dramatic increase in the proportion of erucic acid[J]. Plant physiology, 2004; 136(1): 2665-2675. [75] Millar A A, Kunst L. Very‐long‐chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme[J]. The Plant Journal, 1997; 12(1). [76] Moore R C, Purugganan M D. The early stages of duplicate gene evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003; 100(26): 15682-15687. [77] Moreno-Santillán D D, Machain-Williams C, Hernández-Montes G, et al. De Novo Transcriptome Assembly and Functional Annotation in Five Species of Bats[J]. Scientific Reports, 2019; 9. [78] Nguyen L T, Schmidt H A, von Haeseler A, et al. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies[J]. Molecular Biology and Evolution, 2015; 32(1): 268-274. [79] Nurk S, Koren S, Rhie A, et al. The complete sequence of a human genome[J]. Cold Spring Harbor Laboratory, 2021. [80] Pang H, Li Y, Li M-M, et al. Cloning and functional characterization of FAE1 gene in some species of Brassicaceae (in Chinese)[J]. Journal of Plant Resources and Environmental Sciences, 2013; 22(01): 8-13. [81] Pertea M, Pertea G M, Antonescu C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nature Biotechnology, 2015; 33(3): 290-295. [82] Pollard M R, Stumpf P K. Long chain (C20 and C22) fatty acid biosynthesis in developing seeds of Tropaeolum majus: An in vivo study[J]. Plant physiology, 1980; 66(4): 641-648. [83] Pruitt R E, Vielle-Calzada J P, Ploense S E, et al. FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme[J]. Proceedings of the National Academy of Sciences, 2000; 97(3): 1311-1316. [84] Puyaubert J, Garbay B, Costaglioli P, et al. Acyl-CoA elongase expression during seed development in Brassica napus[J]. BBA - Molecular and Cell Biology of Lipids, 2001; 1533(2): 141-152. [85] Roberts R J, Carneiro M O, Schatz M C. The advantages of SMRT sequencing[J]. Genome biology, 2013; 14(6): 405. [86] Rossak M, Smith M, Kunst L. Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of[J]. Plant molecular biology, 2001; 46(6): 717-725. [87] Samuels L, Kunst L, Jetter R. Sealing Plant Surfaces: Cuticular Wax Formation by Epidermal Cells[J]. Annual Review of Plant Biology, 2008; 59(1): 683. [88] Satterlee J W, Alonso D, Gramazio P, et al. Convergent evolution of plant prickles by repeated gene co-option over deep time[J]. Science, 2024; 385(6708): eado1663. [89] Sensalari C, Maere S, Lohaus R. ksrates: positioning whole-genome duplications relative to speciation events in KS distributions[J]. Bioinformatics, 2022; 38(2): 530-532. [90] Shi J, Lang C, Wu X, et al. RNAi knockdown of fatty acid elongase1 alters fatty acid composition in Brassica napus[J]. Biochemical and Biophysical Research Communications, 2015; 466(3): 518-522. [91] Shyamli P S, Pradhan S, Panda M, et al. Whole-Genome Assembly of Helps Identify Genes Regulating Drought Stress Tolerance[J]. Frontiers in Plant Science, 2021; 12. [92] Simon S, Oelke D, Landstorfer R, et al. Visual analysis of next-generation sequencing data to detect overlapping genes in bacterial genomes[C]. Biological Data Visualization.2011 [93] Song J M, Guan Z L, Hu J L, et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of[J]. Nature Plants, 2020; 6(1): 34-+. [94] Sturtevant D, Lu S, Zhou Z-W, et al. The genome of jojoba (Simmondsia chinensis): A taxonomically isolated species that directs wax ester accumulation in its seeds[J]. Science Advances, 2020; 6(11): eaay3240. [95] Sun P C, Jiao B B, Yang Y Z, et al. WGDI: A user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes[J]. Molecular Plant, 2022; 15(12): 1841-1851. [96] Sun X, Pang H, Li M, et al. Evolutionary pattern of the FAE1 gene in Brassicaceae and its correlation with the erucic acid trait[J]. PLoS One, 2013; 8(12): e83535. [97] Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments[J]. Systematic Biology, 2007; 56(4): 564-577. [98] Tan H, Yang X, Zhang F, et al. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds[J]. Plant physiology, 2011; 156(3): 1577-1588. [99] Tang Q, Zhou G-C, Liu S-J, et al. Selection and Validation of Reference Genes for qRT-PCR Analysis of Gene Expression in Tropaeolum majus (Nasturtium)[J]. Horticulturae, 2023; 9(11): 1176. [100] Tarailo‐Graovac M, Chen N. Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences[J]. Current Protocols in Bioinformatics, 2009; 25(1). [101] Taylor D C, Francis T, Lozinsky S, et al. Cloning and characterization of a Constitutive lysophosphatidic acid acyltransferase 2 (LPAT2) gene from Tropaeolum majus L[J]. The Open Plant Science Journal, 2010; 4: 7-17. [102] Trenkamp S, Martin W, Tietjen K. Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides[J]. Proceedings of the National Academy of Sciences, 2004; 101(32): 11903-11908. [103] Walker K A, Harwood J L. Localization of chloroplastic fatty acid synthesis de novo in the stroma[J]. Biochemical Journal, 1985; 226(2): 551-556. [104] Wang P, Wang L R. Genome-wide identification, evolution, and expression analysis of gene family in brassica napus L.[J]. Genetic Resources and Crop Evolution, 2025. [105] Wang Y, Zhang W Z, Song L F, et al. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis[J]. Plant Physiol, 2008; 148(3): 1201-1211. [106] Wouter D C, Rosa R. NanoPack2: population-scale evaluation of long-read sequencing data[J]. Bioinformatics, 2023; (5): 5. [107] Xu C-Q, Liu H, Zhou S-S, et al. Genome sequence of Malania oleifera, a tree with great value for nervonic acid production[J]. GigaScience, 2019; 8(2). [108] Xu S, He Z, Guo Z, et al. Genome-Wide Convergence during Evolution of Mangroves from Woody Plants[J]. Mol Biol Evol, 2017; 34(4): 1008-1015. [109] Xu W, Huang J, Wang P, et al. Using widely targeted metabolomics profiling to explore differences in constituents of three Bletilla species[J]. Scientific Reports, 2024; 14(1). [110] Yang Z H. PAML: a program package for phylogenetic analysis by maximum likelihood[J]. Computer Applications in the Biosciences, 1997; 13(5): 555-556. [111] Yue J J, VanBuren R, Liu J, et al. SunUp and Sunset genomes revealed impact of particle bombardment mediated transformation and domestication history in papaya[J]. Nature Genetics, 2022; 54(5): 715-+. [112] Zeng F, Cheng B. Transposable element insertion and epigenetic modification cause the multiallelic variation in the expression of FAE1 in Sinapis alba[J]. The Plant Cell, 2014; 26(6): 2648-2659. [113] Zhang H, Du X, Dong C C, et al. Genomes and demographic histories of the endangered Bretschneidera sinensis (Akaniaceae)[J]. GigaScience, 2022; 11. [114] Zhang X T, Zhang S C, Zhao Q, et al. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data[J]. Nature Plants, 2019; 5(8): 833-845. [115] Zhao Y Y, Zhang R, Jiang K W, et al. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae[J]. Molecular Plant, 2021; 14(5): 748-773. [116] Zhou P, Florova G, Reynolds K A. Polyketide synthase acyl carrier protein (ACP) as a substrate and a catalyst for malonyl ACP biosynthesis[J]. Chemistry & Biology, 1999; 6(8): 577-584. [117] Zwaenepoel A, Van de Peer Y. wgd-simple command line tools for the analysis of ancient whole-genome duplications[J]. Bioinformatics, 2019; 35(12): 2153-2155. |
中图分类号: | S68 |
开放日期: | 2025-06-14 |