- 无标题文档
查看论文信息

中文题名:

 大粒径吸附-催化炭基铁材料的研制及其中性条件下去 除抗生素的效果    

姓名:

 高鹏    

学号:

 2022803181    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 南京农业大学    

院系:

 资源与环境科学学院    

专业:

 资源与环境(专业学位)    

研究方向:

 废水处理工程    

第一导师姓名:

 王电站    

第一导师单位:

  南京农业大学    

完成日期:

 2024-06-01    

答辩日期:

 2024-06-02    

外文题名:

 Development Of Large Particle Size Adsorption-catalytic Carbon-based Iron Materials And Their Effectiveness In Removing Antibiotics Under Neutral Conditions    

中文关键词:

 生物炭 ; 类 Fenton ; 施氏矿物 ; 抗生素    

外文关键词:

 Biochar ; Fenton-like ; Schwertmannite ; antibiotic    

中文摘要:

由于抗生素的大量使用,造成自然水体受到抗生素污染的现象较为普遍,其中水产养殖业使用抗生素防治疾病是其重要的来源之一。抗生素的组成复杂,去除难度大,寻找一种高效、经济的治理技术是当前亟待解决的重要课题。常规芬顿氧化体系存在“铁泥”、pH范围窄、H2O2利用率低等问题,而类芬顿体系可克服传统芬顿的缺点。将生物炭用于类芬顿体系,可实现对水中残留有机污染物的有效去除。本研究旨在开发一种新型的炭基铁材料(Sch@CSB),探索其在中性条件下对抗生素的吸附-催化性能,以及在实际水产养殖尾水中的应用效果,以期为治理水体中抗生素污染提供新的思路和解决方案。

本文主要研究内容及结果如下:

(1)研制合适的炭基含铁材料。以椰壳炭(CSB)为炭基材料,抗生素环丙沙星(CIP)为目标去除污染物,探索酸碱改性、改性液浓度、粒径等因素对CIP去除效果的影响。结果表明,在2 mol/L盐酸改性30目椰壳生物炭时,反应5 h时对CIP的吸附去除率为94 %。以椰壳炭和竹炭(BB)为炭基材料分别负载施氏矿物(Sch)和针铁矿(Gt),制得四种不同炭基铁材料,探索四种炭基铁材料吸附与催化CIP的差异。结果表明,Sch@CSB、Gt@CSB、Sch@BB、Gt@BB最大吸附量分别为7.40、6.58、4.61、4.00 mg/g,Sch@CSB催化效果最好,反应6 h时CIP的降解率为86 %。

(2)研究炭基铁材料对抗生素的吸附富集规律。以Sch@CSB为炭基铁材料,抗生素为目标去除污染物,探索材料添加量、抗生素初始浓度、时间、溶液pH、温度等因素对CIP去除效果的影响。结果表明,在28 ℃中性条件,CIP初始浓度为2 mg/L,Sch@CSB添加浓度为0.1 g/L下,反应24 h时吸附容量为15 mg/g。当体系中存在环丙沙星(CIP)、四环素(TC)、磺胺嘧啶(SD)和氟苯尼考(FF)多种抗生素时,抗生素之间存在竞争吸附,且在总吸附量一定时,SD和FF具有较强的竞争吸附能力。

(3)研究炭基铁材料催化特性及再生稳定性。以Sch@CSB为炭基铁材料,抗生素CIP为目标去除污染物,探索Fe2+投加量、乳酸浓度、H2O2浓度等因素对CIP去除效果的影响。结果表明,Sch@CSB富集Fe2+后,在中性条件反应5 h时CIP的降解率提高了29 %。经200 mg/L乳酸络合后的Sch@CSB较于未加乳酸催化降解1 mg/L的CIP,降解率提高了26 %。H2O2浓度为20 mM时,Sch@CSB对1 mg/L的CIP降解效果最好,可达55 %。Sch@CSB经5次使用后催化性能仍保持原始的约80 %。

(4)研究炭基铁材料吸附实际水产养殖尾水中抗生素的效果。以Sch@CSB为炭基铁材料装填滤柱,用实际养殖尾水配制抗生素CIP为目标去除污染物,探索滤速和填料高度对CIP去除效果的影响。结果求出吸附带长(y)与滤速(x)关系式为:y=7.8475x-0.1533,根据此实验结果,可以给实际过滤坝工程应用提供数据参考。

外文摘要:

Due to the extensive use of antibiotics, it is common for natural water bodies to be contaminated with antibiotics, and the use of antibiotics in aquaculture to prevent and control diseases is one of its important sources. The composition of antibiotics is complex and difficult to remove. Finding an efficient and economical treatment technology is an important issue that urgently needs to be solved. The conventional Fenton oxidation system has problems such as iron sludge, narrow pH range, and low utilization rate of H2O2, while the Fenton like system can overcome the shortcomings of traditional Fenton. The use of biochar in Fenton like systems can achieve effective removal of residual organic pollutants in water. This study aims to develop a novel carbon based iron material(Sch@CSB)explore its adsorption catalytic performance towards antibiotics under neutral conditions, as well as its application effect in actual aquaculture wastewater, in order to provide new ideas and solutions for the treatment of antibiotic pollution in water bodies.

The main research content and results of this article are as follows:

(1) Develop suitable carbon based iron containing materials. Using coconut shell charcoal (CSB) as the carbon based material and the antibiotic ciprofloxacin (CIP) as the target to remove pollutants, this study explores the effects of acid-base modification, modification solution concentration, particle size, and other factors on the removal efficiency of CIP. The results showed that when 30 mesh coconut shell biochar was modified with 2 mol/L hydrochloric acid, the adsorption and removal rate of CIP was 94% after 5 hours of reaction. Four different carbon based iron materials were prepared by loading Sch minerals (Sch) and goethite (Gt) onto coconut shell charcoal and bamboo charcoal (BB) as carbon based materials, respectively. The differences in adsorption and catalytic CIP of the four carbon based iron materials were explored. The results indicate that, Sch@CSB、Gt@CSB、Sch@BB、Gt@BB the maximum adsorption capacities are 7.40, 6.58, 4.61, and 4.00 mg/g, respectively, Sch@CSB the catalytic effect is the best, and the degradation rate of CIP is 86% after 6 hours of reaction.

(2) Study the adsorption and enrichment law of antibiotics on carbon based iron materials. Using Sch@CSB as a carbon based iron material and antibiotics as the target to remove pollutants, this study explores the effects of material addition, initial antibiotic concentration, time, solution pH, temperature, and other factors on the removal efficiency of CIP. The results showed that under neutral conditions at 28 ℃, the initial concentration of CIP was 2 mg/L, Sch@CSB at a concentration of 0.1 g/L, the adsorption capacity was 15 mg/g after 24 hours of reaction. When there are multiple antibiotics in the system, including ciprofloxacin (CIP), tetracycline (TC), sulfamethoxazole (SD), and fluorophenicol (FF), there is competitive adsorption among the antibiotics, and when the total adsorption amount is constant, SD and FF have strong competitive adsorption ability.

(3) Study the catalytic properties and regeneration stability of carbon based iron materials.Exploring the effects of factors such as Fe2+dosage, lactate concentration, and H2O2 concentration on the removal of pollutants using Sch@CSB as a carbon based iron material and antibiotic CIP as the target. The results indicate that, Sch@CSB after enrichment of Fe2+, the degradation rate of CIP increased by 29% after 5 hours of reaction under neutral conditions. After complexation with 200 mg/L lactic acid Sch@CSB compared to the catalytic degradation of 1 mg/L of CIP without lactic acid, the degradation rate increased by 26%. When the H2O2 concentration is 20 mM, Sch@CSB the best degradation effect is achieved at a concentration of 1 mg/L of CIP, up to 55%. Sch@CSB after 5 uses, the catalytic performance still maintains about 80% of its original level.

(4) Study on the adsorption effect of carbon based iron materials on antibiotics in actual aquaculture wastewater. Using Sch@CSB as a carbon based iron material to fill a filter column, and using actual aquaculture wastewater to prepare antibiotic CIP as the target for pollutant removal, this study explores the effects of filtration rate and packing height on CIP removal efficiency. The relationship between suction attachment length (y) and filtration rate (x) is calculated as y=7.8475x-0.1533. Based on this experimental result, it can provide data reference for practical application in filtration dam engineering.

参考文献:

[1]蔡名旋, 朱小平, 黑亮, 等. 利用废弃物制备生物炭资源化研究与应用进展[J]. 广东农业科学, 2019, 46(03): 85-92.

[2]陈碧婷, 黄宏霞, 章爱群. 载铁生物活性炭对水中抗生素的Fenton降解[J]. 湖北工程学院学报, 2019, 39(06): 32-36.

[3]储意轩, 汪华, 方程冉, 等. 畜禽粪便中残留抗生素污染特征及其生物降解的研究进展[J]. 科技通报, 2018, 34(11): 16-23.

[4]崔迪, 邓红娜, 庞长泷, 等. 生物法去除水环境中磺胺甲恶唑的研究进展[J]. 中国给水排水, 2019, 35(24): 32-38.

[5]董富欣. 柚皮生物炭复合材料对水中典型污染物的去除研究[D]. 仲恺农业工程学院, 2022.

[6]杜义平. 针铁矿与施氏矿物催化光芬顿反应降解环糊精中氯丹的对比研究[D]. 渤海大学, 2021.

[7]高廷耀, 顾国维, 周琪. 水污染控制工程.下册.第4版[M]. 高等教育出版社, 2015.

[8]顾烨. 多层石墨烯负载施氏矿物催化类芬顿降解磺胺二甲基嘧啶的研究[D]. 南京农业大学, 2019.

[9]侯晓静. 异相Fenton体系铁循环调控及其污染物降解性能增强[D]. 华中师范大学, 2018.

[10]胡冰冰. 有机酸络合二价铁活化氧气产生羟自由基及氧化污染物机理[D]. 中国地质大学, 2023.

[11]胡凤洁. 生物炭对牛蛙池沉积物中抗生素及其抗性基因迁移转化的影响研究[D]. 华南理工大学, 2022.

[12]蒋芬芬, 吴宏海. 针铁矿非均相Fenton法降解抗生素的特征及其动力学研究[J]. 矿物学报, 2012, 32(S1): 144-145.

[13]季晓艳. 环境污水处理中微生物的应用研究[J]. 中国资源综合利用, 2021, 39(11): 189-191.

[14]蒋建新. 战创伤感染的历史沿革[J]. 中华创伤杂志, 2015, 31(9): 777-780.

[15]金紫兰. 生物炭基材料活化过硫酸盐去除水中磺胺二甲基嘧啶的效能与机制研究[D]. 湖南大学, 2022.

[16]李飞飞. 生物质基复合材料的制备及其吸附性能研究[D]. 河南工业大学, 2024.

[17]李萍萍. CS@AGQD/多氧酸盐气凝胶的制备及其在环丙沙星废水中的应用[D]. 齐鲁工业大学, 2024.

[18]李蕊宁, 王兆炜, 郭家磊, 等. 酸碱改性生物炭对水中磺胺噻唑的吸附性能研究[J]. 环境科学学报, 2017, 37(11): 4119-4128.

[19]梁则优, 谭鹤群, 郑祺,等. 3种滤料对池塘圈养尾水处理效果的影响[J]. 华中农业大学学报, 2024, (04): 1-8.

[20]刘建伟, 杨长河. 羟基自由基检测方法的研究进展[J]. 江西化工, 2009(02): 15-19.

[21]刘徐军. 不同Fe/C比的椰壳炭负载施氏矿物吸附与催化降解抗生素的效果研究[D]. 南京农业大学, 2023.

[22]陆振飞. 典型抗生素饱和活性炭的Fenton再生研究[D]. 重庆大学, 2019.

[23]罗凯祥. 改性稻壳吸附柱处理亚甲基蓝模拟废水试验[D]. 湖北:武汉工程大学, 2017.

[24]罗天添. 铁基复合Fenton催化剂的制备及反应机制研究[D]. 中国地质大学, 2022.

[25]梅小芬, 龚海燕. 高效液相色谱法测定转化糖注射液果糖和葡萄糖含量[J]. 江苏医药, 2013, 39(13): 1598-1599.

[26]孟蒙蒙, 夏文香, 许如康, 等. 盐酸改性松木屑生物炭吸附海洋溢油的模拟研究[J]. 海洋环境科学, 2022, 41(03): 474-480.

[27]闵露娟. 生物质基功能化铁碳材料的制备及去除水体对硝基苯酚性能研究[D]. 南开大学, 2021.

[28]皮鎏. 生物炭基材料的制备及其氧活化催化应用研究[D]. 武汉大学, 2020.

[29]苏景振, 林冠超, 刘早红,等. MnFe-LDHs生物炭对水中抗生素的吸附特性及影响因素研究[J]. 应用化工, 2023, 52(7): 2072-2079.

[30]孙莉莉. 不同粒径生物炭对水溶液中阿特拉津和铅的吸附行为研究[D]. 东北农业大学, 2019.

[31]锁显. 有序多孔聚离子液体的制备及吸附分离性能研究[D]. 浙江大学, 2018.

[32]王丹. 水铁矿纳米带的制备及去除Cr(Ⅵ)的研究[D]. 湖南大学, 2017.

[33]王英旭. 矿山废水中含砷施氏矿物的环境稳定性试验研究[D]. 重庆大学, 2018.

[34]吴鸿伟. 改性生物炭负载纳米零价铁系材料的制备及其对头孢类抗生素的去除机理研究[D]. 中国矿业大学, 2018.

[35]徐明俊. α-Fe2O3超薄纳米片的制备及其可见光芬顿降解水中双酚S的研究[D]. 哈尔滨工业大学, 2016.

[36]许庆伟. 施氏矿物制备及其对As(Ⅲ)的吸附性能和机理研究[D]. 内蒙古大学, 2023.

[37]严岩, 丁桑岚. 吸附法净化印染废水刚果红与亚甲基蓝研究进展[J]. 四川化工, 2017, 20(02): 22-25.

[38]杨召顺. 生物炭负载生物成因施氏矿物类芬顿降解磺胺甲恶唑的性能探究[D]. 南京农业大学, 2020.

[39]姚书恒. 用于脱除水中重金属离子的生物质基炭材料的制备及改性研究[D]. 东南大学, 2016.

[40]张文文. 碳基材料对典型PPCPs在水环境中的吸附行为研究[D]. 北京建筑大学, 2017.

[41]张泽鑫. 施氏矿物负载竹生物炭吸附水产养殖尾水中典型抗生素及其再生的研究[D]. 南京农业大学, 2022.

[42]周宇, 陈晓娟, 卢开红, 等. 生物质炭的制备、功能改性及去除废水中有机污染物研究进展[J]. 人工晶体学报, 2021, 50(12): 2389-2400.

[43]朱鹏. 竹炭负载施氏矿物异相芬顿降解水中典型抗生素和染料的研究[D]. 南京农业大学, 2022.

[44]朱墨染. 农业废弃物改性生物炭对水中Fe2+和Mn2+去除的应用研究[D]. 东北农业大学, 2017.

[45]Abbass J A, Al-Zurfi M. Response of Freesia (Freesia hybrida) to spraying with an organic acid (Laq- Humus) and chelated iron and their effect on growth and flowering indicators[J]. Euphrates Journal of Agriculture Science, 2020, 12(1): 31-41.

[46]Chen L, Ma J, Li X, et al. Strong Enhancement on Fenton Oxidation by Addition of Hydroxylamine to Accelerate the Ferric and Ferrous Iron Cycles[J]. Environmental Science & Technology, 2011, 45(9): 3925.

[47]Dun G, Min W, Jingying Z, et al. Simultaneous removal of macromolecular microbial metabolites and nitrogen in a receiving river of wastewater treatment plants lacking ecological base flow via the combination of anaerobic and aerobic biofilters[J]. Journal of Cleaner Production, 2023, 42(7): 139242.

[48]Guo X, Yin Y, Yang C, et al. Remove mechanisms of sulfamethazine by goethite: the contri butions of pH and ionic strength[J]. Research On Chemical Intermediates, 2016, 42(7): 6423-6435.

[49]Hao Y, Peng Z, Jiayu L, et al. Effects of low-molecular-weight organic acids/thiols on hydroxyl radical production from natural siderite oxidation[J]. Chemical Geology, 2021, 58(4): 120537.

[50]Im J, Lee J, Löffler E F. Interference of ferric ions with ferrous iron quantification using the ferrozine assay[J]. Journal of Microbiological Methods, 2013, 95(3): 366-367.

[51]Kappler A, Wuestner L M, Ruecker A. Biochar as an Electron Shuttle between Bacteria and Fe(III) Minerals[J]. Environmental Science Technology Letters, 2014, 1(8): 339-344.

[52]Khan H A, Aziz A H, Palaniandy P, et al. Ciprofloxacin adsorption onto CNT loaded Pumice: Adsorption Modelling, kinetics, equilibriums and reusability studies[J]. Journal of Molecular Liquids, 2024, 39(9): 124388.

[53]Li Y L, Gong X, Abida O. Waste-to-resources: Exploratory surface modification of sludge-based activated carbon by nitric acid for heavy metal adsorption[J]. Waste Management, 2019, 87(02): 375-386.

[54]Lin K, Zhu Y, Zhang Y, et al. Determination of ammonia nitrogen in natural waters:Recent advance and applications[J]. Trends in Environmental Analytical Chemistry, 2019, 24(1): 73.

[55]Lin Z, Zhao L, Dong Y. Effects of low molecular weight organic acids and fulvic acid on 2,4,4′-trichlorobiphenyl degradation and hydroxyl radical formation in a goethite-catalyzed Fenton-like reaction[J]. Chemical Engineering Journal, 2017, 32(6): 201-209.

[56]Manasai A, Samson A N, Freeda E C C, et al. Improved photocatalytic efficiency of MAl2O4 @ activated carbon based nanocomposites in removing malachite green dye under visible light[J]. Nanotechnology for Environmental Engineering, 2022, 8 (3): 643-654.

[57]Monika A, Surinder S, Mamta B, et al. Column optimization of adsorption and evaluation of bed parameters-based on removal of arsenite ion using rice husk[J]. Environmental science and pollution research international, 2022, 29(48): 72279-72293.

[58]Mrinal S, Matthews K R, Tejpal D, et al. Antimicrobial Resistance in the Food Chain: Trends, Mechanisms, Pathways, and Possible Regulation Strategies[J]. Foods, 2022, 11(19): 2966-2966.

[59]Naumova L B, Batalova V N, Alekseenko K V. Peat- and Natural Zeolite-Based Solid Composite Modified by Metal Ions for Photodegradation of Dyes in Waters [J]. Key Engineering Materials, 2015, 670(6): 218-223.

[60]Pradhan S, Pokhrel R M. Spectrophotometric Determination of Phosphate in Sugarcane Juice, Fertilizer, Detergent and Water Samples by Molybdenum Blue Method[J]. Scientific World, 2013, 11(11): 58-62.

[61]Qian G, Wenjie Z, Daoli Y, et al. A green solar photo-Fenton process for the degradation of carbamazepine using natural pyrite and organic acid with in-situ generated H2O2[J]. Science of the Total Environment, 2021, 78(4): 147187-147187.

[62]Singer A C, Helen S, Vicki R, et al. Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators[J]. Frontiers in Microbiology, 2016, 7: 1728.

[63]Sun H, Xie G, He D, et al. Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling[J]. Applied Catalysis B: Environmental, 2020, 267: 118383.

[64]Tan X, Liu S, Liu Y, et al. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage[J]. Bioresource Technology, 2016, 227: 359-372.

[65]Thomas N, Dionysiou D D, Pillai S C. Heterogeneous Fenton catalysts: A review of recent advances[J]. Journal of Hazardous Materials, 2021, 404: 124082.

[66]Ting L, Peng Z, Dianzhan W, et al. Efficient utilization of the electron energy of antibiotics to accelerate Fe (III)/Fe(II) cycle in heterogeneous Fenton reaction induced by bamboo biochar/schwertmannite[J]. Environmental Research. Section A, 2022, 209, 112830.

[67]Tu C, Dai Y, Xu K, et al. Determination of Tetracycline in Water and Honey by Iron(II, III)/Aptamer-Based Magnetic Solid-Phase Extraction with High-Performance Liquid Chromatography Analysis[J]. Analytical Letters, 2019, 52(10): 1653-1669.

[68]Tzeng T W, Liu Y T, Deng Y, et al. Removal of sulfamethazine antibiotics using cow manure-based carbon adsorbents[J]. International Journal of Environmental Science & Technology, 2016, 182: 284-291.

[69]Wang Y, Gao Y, Chen L, et al. Goethite as an efficient heterogeneous Fenton catalyst for the degradation of methyl orange[J]. Catalysis Today, 2015, 252: 107-112.

[70]Xiaojing H, Xiaopeng H, Falong J, et al. Hydroxylamine Promoted Goethite Surface Fenton Degradation of Organic Pollutants[J]. Environmental science technology, 2017, 51(9): 5118-5126.

[71]Yanping Z, Qingru X, Fangxin D, et al. The differences in heterogeneous Fenton catalytic performance and mechanism of various iron minerals and their influencing factors: A review[J]. Separation and Purification Technology, 2023, 325.

[72]Yao X, Wang Z, Yu S, et al. Acid pretreatment effect on the physicochemical property and catalytic performance of CeO2 for NH3-SCR[J]. Applied Catalysis A: General, 2017, 542: 282-288.

[73]Yaxin Q, Lizhi Z, Taicheng A. Hydrothermal carbon-mediated Fenton-like reaction mechanism in the degradation of alachlor: direct electron transfer from hydrothermal carbon to Fe(III)[J]. ACS applied materials interfaces, 2017, 9(20): 17115-17124.

[74]Yi G, Qingqing P. Analysis of Organophosphorus Pesticides by HPLC Using Magnetic SPE with Nitrogen-Doped Reduced Graphene Oxide/Fe3O4 Nanocomposite as the Adsorbent[J]. LC GC EUROPE, 2020, 33(9): 438-447.

[75]Yin Y, Xu Y, Luan N Y, et al. Enhanced oxidation and adsorption of arsenite by porous Fe-Mn binary chitosan beads and its application in fixed-bed column[J]. Journal of Molecular Structure, 2024, 1306: 137923.

[76]Yusop M F M, Abdullah Z A, Ahmad A M. Amoxicillin adsorption from aqueous solution by Cu(II) modified lemon peel based activated carbon: Mass transfer simulation, surface area prediction and F-test on isotherm and kinetic models[J]. Powder Technology, 2024, 438: 119589.

[77]Zhaoshun Y, Peng Z, Chongmiao Y, et al. Biosynthesized Schwertmannite@Biochar composite as a heterogeneous Fenton-like catalyst for the degradation of sulfanilamide antibiotics[J]. Chemosphere, 2021, 266.

[78]Zhu A, Guo Y, Liu G, et al. Hydroxyl radical formation upon dark oxidation of reduced iron minerals: Effects of iron species and environmental factors[J]. Chinese Chemical Letters, 2019, 30(12): 2241-2244.

中图分类号:

 X70    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式