题名: | 水稻株型调控基因OsFYVE2/OsFYVE10功能研究及矮秆小粒基因GLA-c1的图位克隆 |
作者: | |
学号: | 2022101095 |
保密级别: | 保密两年 |
语种: | chi |
学科代码: | 090102 |
学科: | 农学 - 作物学 - 作物遗传育种 |
学生类型: | 硕士 |
学位: | 农学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 水稻分子育种 |
导师姓名: | |
导师单位: | |
完成日期: | 2025-05-28 |
答辩日期: | 2025-05-29 |
外文题名: | Functional Characterization of Rice Plant Architecture Regulators OsFYVE2/OsFYVE10 and Map-Based Cloning of the Dwarf and Small-Grain Mutant Gene GLA-c1 |
关键词: | |
外文关键词: | Rice ; Dwarf-small-grain ; FYVE-proteins ; Microfilaments ; Auxin |
摘要: |
水稻(Oryza sativa L.)作为全球主要的粮食作物之一,其产量和品质对保障粮食安全至关重要。株型是影响水稻产量的关键因素,包括株高、分蘖角度和叶片形态等性状,直接决定了光能利用效率和群体结构。近年来,水稻株型相关基因研究已经取得了一定的进展,这些基因通过调控细胞分裂、伸长和分化,影响水稻的生长发育过程。然而,尽管已有大量研究揭示了部分基因的功能,水稻形态建成的分子调控网络仍不完全清楚,尤其是基因与环境互作、激素信号通路之间的复杂关系仍需进一步探索。因此,深入研究水稻株型基因的功能及其调控机制,不仅有助于解析水稻发育的生物学基础,也为培育高产水稻新品种提供重要的理论依据。 1. FYVE结构域是一种保守的蛋白质结构域,能够特异性识别并结合磷脂酰肌醇-3-磷酸(phosphatidylinositol-3-phosphate, PI3P),广泛参与内体、液泡膜等细胞器膜动态调控及囊泡运输过程。在动物中被大量研究,但在植物中的研究较少。本实验室前期以宁粳7号为遗传背景,通过CRISPR/Cas9技术对水稻FYVE结构域编码基因OsFYVE2和OsFYVE10进行双基因敲除突变体创制,成功获得株型发育缺陷突变体osfyve2osfyve10(以下简称f2f10)。通过对突变体f2f10株型进行表型考察、细胞学观察及分子功能解析,初步探究了OsFYVE2和OsFYVE10在水稻株型调控中的作用,主要结果如下: (1)利用CRISPR/Cas9技术在粳稻宁粳7号中创制了两种碱基编辑类型的f2f10敲除突变体。突变体在苗期表现出叶鞘弯曲和生长迟滞。随着发育,叶鞘弯曲表型逐渐恢复,但部分叶片呈现区域性高度螺旋卷曲,表现为叶片中部边缘向中脉卷曲形成筒状结构,包裹住叶片正反面。抽穗后,突变体呈现株高矮化、育性降低(花药弯曲但碘-碘化钾染色未显示花粉淀粉填充缺陷)。成熟籽粒表现为粒长显著减小、粒宽略增,且千粒重、结实率、穗粒数和穗长均显著低于野生型。 (2)对开花期螺旋卷曲的叶片和成熟籽粒颖壳进行细胞学观察,结果表明籽粒粒长变短和粒宽增加是由细胞扩张异常引起,而叶片螺旋卷曲表型则是由细胞分化和维管束系统发育异常导致的。 (3)OsFYVE2、OsFYVE10均是组成型表达基因,其表达水平存在组织特异性差异,根部表达量显著高于其他组织。亚细胞定位分析显示,OsFYVE2、OsFYVE10蛋白产物在细胞质中呈现点状分布。细胞器共定位实验显示,OsFYVE2、OsFYVE10均与网格蛋白(clathrin)标记的网格蛋白有被小泡(clathrin-coated vesicles, CCVs)和前液泡区室蛋白(prevacuolar compartment, PVC)共定位。 (4)Western blot与RT-qPCR分析表明,f2f10突变体中肌动蛋白基因OsActin的转录及蛋白水平均显著低于野生型。酵母双杂交检测到OsFYVE10与微丝蛋白存在弱互作。Alexa-488-鬼笔环肽染色显示,突变体微丝束结构完整性受损(断裂增多、空间弥散)。FM4-64标记实验证实其胞吞速率减缓,暗示OsFYVE2/OsFYVE10功能缺失可能影响肌动蛋白依赖的囊泡运输过程。 (5)f2f10突变体呈现与生长素极性运输缺陷型相似的叶鞘/叶片异常弯曲表型。重力反应实验显示其叶鞘向重力性反应增强。LC-MS检测表明突变体地上部IAA含量升高50.86%,RT-qPCR分析进一步揭示色氨酸途径生长素合成关键基因显著上调。 2. 本研究以水稻品种广陆矮为受体亲本,T65为供体亲本构建的高世代回交群体中自发产生的矮秆小粒突变家系GLA-c1为研究对象,系统分析突变家系株高和粒型等表型特征,并通过图位克隆鉴定到候选基因RGA1。 (1)将矮秆小粒家系GLA-c1与受体亲本GLA杂交,构建F2分离群体,对F2群体进行遗传分析,利用BSA-seq技术和基于分子标记的基因定位将候选基因定位到5号染色体长臂端约1.2 Mb的区间内。 (2)候选区间内存在已报导的控制矮秆小粒性状的基因LOC_Os05g26890(RGA1),对该基因进行全序列测序分析发现,其第十个外显子产生了单碱基突变,导致其第272位赖氨酸(K)变成了精氨酸(R)。通过多物种序列比对显示,该赖氨酸残基在不同物种中都较为保守。因此,暂将RGA1作为GLA-c1矮秆家系的候选基因,后续将通过转基因互补实验进一步证实。 综上,本研究初步研究了水稻OsFYVE2和OsFYVE10的功能和在水稻株型调控的作用;通过矮秆小粒突变家系GLA-c1定位,鉴定到RGA1可能的新型变异形式,是GLA-c1矮秆家系的潜在候选基因。 |
外摘要要: |
Rice (Oryza sativa L.) serves as a global staple crop, where yield and grain quality are critical for food security. Plant architecture—comprising traits such as plant height, tiller angle, and leaf morphology—directly determines photosynthetic efficiency and population structure, thereby governing yield potential. Although genes regulating rice architecture via cell division, elongation, and differentiation have been identified, the molecular networks underlying morphogenesis, particularly gene-environment interactions and hormonal signaling integration, remain incompletely elucidated. The FYVE domain is a conserved protein module that specifically binds phosphatidylinositol-3-phosphate (PI3P), orchestrating endosomal/vacuolar membrane dynamics and vesicular trafficking. While extensively studied in animals, its functions in plants are poorly characterized. Using the japonica cultivar Ningjing 7 as the genetic background, we generated dual-gene knockout mutants of OsFYVE2 and OsFYVE10 via CRISPR/Cas9-mediated genome editing, designated osfyve2osfyve10 (f2f10). Phenotypic, cytological, and molecular analyses revealed their roles in rice architecture regulation: Two base-edited f2f10 mutants exhibited seedling-stage phenotypes: leaf sheath curvature and growth retardation. Sheath curvature gradually recovered during development, but leaves displayed regional spiral curling, manifesting as tube-like structures formed by adaxial rolling of mid-lamina margins, enclosing both leaf surfaces. Post-heading mutants showed reduced plant height, impaired fertility (with curved anthers but normal pollen starch filling by I2-KI staining), and mature grains with significantly shortened length, slightly increased width, and reduced 1,000-grain weight, seed-setting rate, spikelet number per panicle, and panicle length compared to wild-type (WT). Cytological examination of spirally curled leaves and grain husks indicated that shortened grain length and increased width resulted from aberrant cell expansion, while leaf curling arose from defective cell differentiation and vascular bundle development. (3) OsFYVE2 and OsFYVE10 are constitutively expressed with tissue-specific variation (highest in roots). Subcellular localization revealed punctate cytoplasmic distribution. Co-localization assays confirmed their association with clathrin-coated vesicles (CCVs) and prevacuolar compartments (PVCs). (4) Western blot and RT-qPCR demonstrated significantly reduced transcript and protein levels of actin gene OsActin in f2f10. Yeast two-hybrid (Y2H) detected weak interaction between OsFYVE10 and microfilaments. Alexa-488-phalloidin staining showed disrupted microfilament bundling (increased fragmentation and diffuse spatial distribution). FM4-64 endocytosis assays revealed slowed endocytic trafficking, suggesting that loss of OsFYVE2/OsFYVE10 function compromises actin-dependent vesicular transport. (5) f2f10 phenocopied auxin polar transport mutants in leaf/sheath curvature. Gravitropism assays indicated enhanced negative gravitropic response in sheaths. LC-MS quantified a 50.86% increase in aerial tissue indole-3-acetic acid (IAA) content, while RT-qPCR showed upregulated expression of tryptophan-dependent auxin biosynthesis genes. 2. In this study, we focused on the dwarf and small-grain mutant line GLA-c1, which spontaneously arose in an advanced backcross population constructed using the rice cultivar Guangluai as the recurrent parent and T65 as the donor parent. We systematically analyzed phenotypic traits of the mutant, including plant height and grain morphology, and identified the candidate gene RGA1 through map-based cloning. (1) The dwarf and small-grain mutant line GLA-c1 was backcrossed with its recurrent parent GLA to generate an F2 segregating population. Genetic analysis of the F2 population, combined with BSA-seq (Bulked Segregant Analysis sequencing) and molecular marker-based gene mapping, localized the candidate gene to a 1.2 Mb genomic interval on the long arm of chromosome 5. (2) Within the candidate interval, the previously reported gene LOC_Os05g26890 (RGA1), known to regulate dwarf and small-grain traits, was identified. Full-length sequencing of this gene revealed a single nucleotide mutation in its tenth exon, leading to a substitution of lysine (K) to arginine (R) at residue position 272. Multiple species sequence alignment demonstrated that this lysine residue is highly conserved across diverse taxa. Based on these findings, RGA1 is provisionally proposed as the candidate gene underlying the dwarf phenotype in the GLA-c1 mutant line, with further validation planned via transgenic complementation assays. In summary, this study provides a preliminary investigation into the functions of OsFYVE2 and OsFYVE10 in rice and their roles in regulating plant architecture. Additionally, through genetic mapping of the dwarf and small-grain mutant line GLA-c1, we identified a novel allelic variant of RGA1, which is proposed as the potential candidate gene underlying the dwarf phenotype in GLA-c1. |
参考文献: |
[1]蔡晶, 王晓光, 季芝娟, 等. 水稻叶片形态的遗传与分子生物学研究进展[J]. 中国稻米, 2008, 14(6): 5-11. [2]邓秋雨, 肖应辉. 水稻卷叶类型及调控机制研究进展[J]. 作物研究, 2021, 35(4): 376-384. [3]葛倩雯, 金宝花, 傅小进, 等. 水稻卷叶矮化突变体rld的表型鉴定及基因精细定位[J]. 浙江师范大学学报(自然科学版), 2019, 042(4): 434-440. [4]郝小花, 胡爽, 赵丹, 等. OsGA3ox通过合成不同活性GA调控水稻育性及株高[J]. 遗传, 2023, 45(9): 845-855. [5]贾彬, 陈可, 叶婵娟, 等. 水稻叶形态的建成及分子机制研究进展[J]. 中国稻米, 2024, 30(5): 19-29. [6]徐慧芳, 陈栩. 生长素研究现状及其在大豆育种中的应用[J].中国科学:生命科学, 2024, 54(2): 247-259. [7]袁隆平. 杂交水稻超高产育种[J]. 杂交水稻, 2000(S2): 34-36. [8]Andrew-Peter-Leon M T, Selvaraj R, Kumar K K, et al. Loss of function of OsFBX267 and OsGA20ox2 in rice promotes early maturing and Semi-Dwarfism in γ-Irradiated IWP and genome-edited pusa basmati-1[J]. Frontiers in Plant Science, 2021, 12:714066. [9]Ashikari M, Wu J, Yano M, et al. Rice Gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the alpha-subunit of GTP-binding protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(18):10284-10289. [10]Badescu G O, Napier R M. Receptors for auxin: will it all end in TIRs? [J]. Trends in Plant Science, 2006, 11(5): 217-223. [11]Bak G, Lee E-J, Lee Y, et al. Rapid structural changes and acidification of guard cell vacuoles during stomatal closure require Phosphatidylinositol 3,5-Bisphosphate[J]. The Plant Cell, 2013, 25(6): 2202-2216. [12]Balcer H I, Goodman A L, Rodal A A, et al. Coordinated regulation of actin filament turnover by a high-molecular-weight Srv2/CAP complex, cofilin, profilin, and Aip1[J]. Current biology, 2003, 13(24): 2159-2169. [13]Bao C, Wang J, Zhang R, et al. Arabidopsis VILLIN2 and VILLIN3 act redundantly in sclerenchyma development via bundling of actin filaments[J]. The Plant Journal, 2012, 71(6): 962-975. [14]Barbez E, Kubeš M, Rolčík J, et al. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants[J]. Nature, 2012, 485(7396): 119-122. [15]Barrero R A, Umeda M, Yamamura S, et al. Arabidopsis CAP regulates the actin cytoskeleton necessary for plant cell elongation and division[J]. The Plant Cell, 2002, 14(1):149-163. [16]Belda-Palazon B, Rodriguez L, Fernandez M A, et al. FYVE1/FREE1 interacts with the PYL4 ABA receptor and mediates its delivery to the vacuolar degradation pathway[J]. The Plant Cell, 2016, 28(9): 2291-2311. [17]Benkova E, Michniewicz M, Sauer M, et al. Efflux-dependent auxin gradients as a common module for plant organ formation[J]. Cell, 2003, 115(5): 591−602. [18]Bensen R J, Johal G S, Crane V C, et al. Cloning and characterization of the maize An1 gene[J]. The Plant Cell, 1995, 7(1): 75-84. [19]Blancaflor E B, Masson P H. Plant gravitropism. Unraveling the ups and downs of a complex process[J]. Plant Physiology, 2003, 133(4): 1677-1690. [20]Blanchoin L, Boujemaa-Paterski R, Henty J L, et al. Actin dynamics in plant cells: a team effort from multiple proteins orchestrates this very fast-paced game[J]. Current Opinion in Plant Biology, 2010, 13 (6): 714-723. [21]Bretscher A, Weber K. Villin: The major microfilament-associated protein of the intestinal microvillus[J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(5): 2321-2325. [22]Brieher W M, Kueh H Y, Ballif B A, et al. Rapid actin monomer-insensitive depolymerization of Listeria actin comet tails by cofilin, coronin, and Aip1[J]. The Journal of cell biology, 2006, 175(2): 315-324. [23]Bürstenbinder K, Möller B, Plötner R, et al. The IQD family of calmodulin-binding proteins links calcium signaling to microtubules, membrane subdomains, and the nucleus[J]. Plant Physiology, 2017, 173: 1692-1708. [24]Chai L, Xin M, Dong C, et al. A natural variation in Ribonuclease H-like gene underlies Rht8 to confer "Green Revolution" trait in wheat[J]. Molecular plant. 2022, 15(3):377-380. [25]Chen B, Dang X, Bai W, et al. The IPGA1‐ANGUSTIFOLIA module regulates microtubule organisation and pavement cell shape in Arabidopsis[J]. The New Phytologist, 2022, 236(4): 1310-1325. [26]Cheng M L, Lo S F, Hsiao A S, et al. Ectopic expression of WINDING 1 leads to asymmetrical distribution of auxin and a spiral phenotype in rice[J]. Plant & cell physiology. 2017, 58(9): 1494-1506. [27]Cheng X, Huang Y, Tan Y, et al. Potentially useful dwarfing or semi-dwarfing genes in rice breeding in addition to the sd1 gene[J]. Rice, 2022, 15(1): 66. [28]Cheng Y, Dai X, Zhao Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis[J]. Genes & Development, 2006, 20(13): 1790-1799. [29]Cho S H, Lee C H, Gi E, et al. The rice rolled fine striped (RFS) CHD3/Mi-2 chromatin remodeling factor epigenetically regulates genes involved in oxidative stress responses during leaf development[J]. Frontiers in Plant Science, 2018, 9: 364. [30]Cui X, Zhang Z, Wang Y, et al. TWI1 regulates cell-to-cell movement of OSH15 to control leaf cell fate[J]. The New Phytologist, 2019, 221(1): 326-340. [31]Dai L, Wang B, Wang T, et al. The TOR complex controls ATP levels to regulate actin cytoskeleton dynamics in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(38): e2122969119. [32]Dai Z, Wang J, Yang X, et al. Modulation of plant architecture by the miR156f-OsSPL7-OsGH3.8 pathway in rice[J]. Journal of Experimental Botany, 2018, 69(21), 5117–5130. [33]Das S, Maiti S. Probing the ligand binding specificity of FNBP4 WW domains and interaction with FH1 domain of FMN1[J]. Current Research in Structural Biology, 2024, 7: 100119. [34]Dindas J, Scherzer S, Roelfsema M R G, et al. AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+signaling[J]. Nature Communications, 2018, 9(1):1174 [35]Doherty G J, Mcmahon H T Mechanisms of endocytosis[J]. Annu Rev Biochem, 2009, 78: 857-902. [36]Dos Remedios C G, Chhabra D, Kekic M, et al. Actin binding proteins: regulation of cytoskeletal microfilaments[J]. Physiological Reviews, 2003, 83(2): 433-473. [37]Evenson R E, Gollin D. Assessing the impact of the green revolution, 1960 to 2000[J]. Science, 2003, 300(5620): 758-762. [38]Fang J, Guo T, Xie Z, et al. The URL1-ROC5-TPL2 transcriptional repressor complex represses the ACL1 gene to modulate leaf rolling in rice[J]. Plant Physiology, 2021, 185(4): 1722-1744. [39]Ferrero-Serrano Á, Assmann S M. The α-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1[J]. Journal of Experimental Botany, 2016, 67(11): 3433-3443. [40]Fujino K, Matsuda Y, Ozawa K, et al. NARROW LEAF 7 controls leaf shape mediated by auxin in rice[J]. Molecular Genetics and Genomics, 2008, 279(5): 499-507. [41]Galletta B J, Cooper J A. Actin and endocytosis: mechanisms and phylogeny[J]. Current Opinion in Cell Biology, 2009, 21(1): 20-27. [42]Gallon M, Cullen P J. Retromer and sorting nexins in endosomal sorting[J]. Biochemical Society transactions. 2015;43(1):33-47. [43]Gao C, Liu X, De Storme N, et al. Directionality of plasmodesmata-mediated transport in Arabidopsis leaves supports auxin channeling[J]. Current Biology, 2020, 30(10): 1970-1977. [44]Gao C, Zhuang X, Cui Y, et al. Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(6): 1886-1891. [45]Gao Y, Zhang Y, Zhang D, et al. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 2275-2280. [46]Goldsmith M H, Cataldo D A, Karn J, et al. The rapid non-polar transport of auxin in the phloem of intact Coleus plants[J]. Planta, 1974, 116(4): 301-317. [47]Goldsmith M H M. The polar transport of auxin[J]. Annual Review of Plant Biology, 1977, 28: 439-478. [48]Gong X, Chen J, Chen Y, et al. Advancements in rice leaf development research[J]. Plants, 2024, 13(6), 904. [49]Gonzalez N, Vanhaeren H, Inze D. Leaf size control: complex coordination of cell division and expansion[J]. Trends in Plant Science, 2012, 17(6): 332-340. [50]Goodson H V, Jonasson E M. Microtubules and microtubule-associated proteins[J]. Cold Spring Harbor Perspectives in Biology, 2018, 10(6): a022608. [51]Guo T, Wang D, Fang J, et al. Mutations in the rice OsCHR4 gene, encoding a CHD3 family chromatin remodeler, induce narrow and rolled leaves with increased cuticular wax[J]. International Journal of Molecular Sciences, 2019, 20(10): 2567. [52]Hammes U Z, Murphy A S, Schwechheimer C. Auxin transporters-a biochemical view[J]. Cold Spring Harbor Perspectives in Biology, 2022, 14(2): a039875. [53]Hanson J, Lowy J. The structure of actin filaments and the origin of the axial periodicity in the I-substance of vertebrate striated muscle[J]. Proceedings of the Royal Society of London. Series B, 1964, 160: 449-460. [54]Hedden P. Constructing dwarf rice[J]. Nature Biotechnology, 2003, 21(8): 873-874. [55]Helliwell C A, Sheldon C C, Olive M R, et al. Cloning of the Arabidopsis ent-kaurene oxidase gene GA3[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(15): 9019-9024. [56]Heuser J E, Kirschner M W. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons[J]. The Journal of Cell Biology, 1980, 86(1): 212-234. [57]Hirano T, Konno H, Takeda S, et al. PtdIns(3,5)P2 mediates root hair shank hardening in Arabidopsis[J]. Nature plants, 2018, 4(11): 888-897. [58]Horvath D P, Anderson J V, Chao W S, et al. Knowing when to grow: signals regulating bud dormancy[J]. Trends in Plant Science, 2003, 8(11): 534-540. [59]Huang C H, Peng F L, Lee Y-R J, et al. The microtubular preprophase band recruits Myosin XI to the cortical division site to guide phragmoplast expansion during plant cytokinesis[J]. Developmental Cell, 2024, 59(17): 2333-2346. [60]Huang G, Hu H, Van De Meene A, et al. AUXIN RESPONSE FACTORS 6 and 17 control the flag leaf angle in rice by regulating secondary cell wall biosynthesis of lamina joints[J]. The Plant Cell, 2021, 33(9): 3120-3133. [61]Husbands, A.Y, Chitwood, D.H, Plavskin, Y, et al. Signals and prepatterns: New insights into organ polarity in plants[J]. Genes & development, 2009, 23(17), 1986–1997. [62]Ingouff M, Fitz Gerald J N, Guerin C, et al. Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis[J]. Nature Cell Biology, 2005, 7(4): 374-380. [63]Itoh J, Nonomura K, Ikeda K, et al. Rice plant development: from zygote to spikelet[J]. Plant & Cell Physiology, 2005, 46(1): 23-47. [64]Itoh T, Takenawa T. Phosphoinositide-binding domains: Functional units for temporal and spatial regulation of intracellular signalling[J]. Cellular Signalling, 2002, 14(9): 733-743. [65]Jiajia W, Jing X, Qian Q, et al. Development of rice leaves: how histocytes modulate leaf polarity establishment[J]. Rice Science, 2020, 27(6): 468-479. [66]Jiang K, Sorefan K, Deeks M J, et al. The ARP2/3 complex mediates guard cell actin reorganization and stomatal movement in Arabidopsis[J]. The Plant Cell, 2012, 24(5): 2031-2040. [67]Kim J H, Jung H, Song K, et al. The phosphatidylinositol 3-phosphate effector FYVE3 regulates FYVE2-dependent autophagy in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2023, 14: 1160162. [68]Kim J H, Lee H N, Huang X, et al. FYVE2, a phosphatidylinositol 3-phosphate effector, interacts with the COPII machinery to control autophagosome formation in Arabidopsis[J]. The Plant Cell, 2022, 34(1): 351-373. [69]Kollarova E, Baquero Forero A, Cvrckova F. The Arabidopsis thaliana class II formin FH13 modulates pollen tube growth[J]. Frontiers in Plant Science, 2021, 12: 599961. [70]Kubeš M, Yang H, Richter G L, et al. The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis[J]. The Plant Journal, 2012, 69(4): 640-654. [71]Kutateladze T G, Overduin M. Structural mechanism of endosome docking by the FYVE domain[J]. Science, 2001, 291(5509): 1793-1796. [72]Lan D, Cao L, Liu M, et al. The identification and characterization of a plant height and grain length related gene hfr131 in rice[J]. Frontiers in Plant Science, 2023, 14: 1152196. [73]Levi V, Serpinskaya A S, Gratton E, et al. Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors[J]. Biophysical journal, 2006, 90(1): 318-327. [74]Li H, Feng B, Li J, et al. RGA1 alleviates low‐light‐repressed pollen tube elongation by improving the metabolism and allocation of sugars and energy[J]. Plant, Cell & Environment, 2023, 46(4): 1363-1383. [75]Li W Q, Zhang M J, Gan P F, et al. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice[J]. The Plant Journal, 2017, 92(5): 904-923. [76]Li Y, He Y, Liu Z, et al. OsSPL14 acts upstream of OsPIN1b and PILS6b to modulate axillary bud outgrowth by fine‐tuning auxin transport in rice[J]. The Plant Journal, 2022, 111(4): 1167-1182. [77]Li Y Y, Shen A, Xiong W, et al. Overexpression of OsHox32 results in pleiotropic effects on plant type architecture and leaf development in rice[J]. Rice, 2016, 9(1): 46. [78]Lichtenthaler H K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes[C]. Methods in Enzymology,1987, 148: 350-382. [79]Lindahl E, Larsen A H, Tata L, et al. Membrane-binding mechanism of the EEA1 FYVE domain revealed by multi-scale molecular dynamics simulations[J]. PLOS Computational Biology, 2021, 17(9): e1008807. [80]Lin L, Zhao Y, Liu F, et al. Narrow leaf 1 (NAL1) regulates leaf shape by affecting cell expansion in rice (Oryza sativa L.) [J]. Biochemical and Biophysical Research Communications, 2019, 516(3): 957-962. [81]Liu C, Zeng Y, Li H, et al. A plant-unique ESCRT component, FYVE4, regulates multivesicular endosome biogenesis and plant growth[J]. The New Phytologist, 2021a, 231(1): 193-209. [82]Liu C, Zhang Y, Ren H. Profilin promotes formin-mediated actin filament assembly and vesicle transport during polarity formation in pollen[J]. The Plant Cell, 2021b, 33(4): 1252-1267. [83]Liu H, Huang J, Zhang X, et al. The RAC/ROP GTPase activator OsRopGEF10 functions in crown root development by regulating cytokinin signaling in rice[J]. The Plant Cell, 2023, 35(1): 453-468. [84]Liu X, Gao Y, Guo Z, et al. MoIug4 is a novel secreted effector promoting rice blast by counteracting host OsAHL1-regulated ethylene gene transcription[J]. The New Phytologist, 2022, 235(3): 1163-1178. [85]Liu Z, Haider M S, Khan N, et al. Comprehensive sequence analysis of IQD gene family and their expression profiling in grapevine (Vitis vinifera) [J]. Genes, 2020, 11(2): 235. [86]Ljung K, Bhalerao R P, Sandberg G. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth[J]. The Plant Journal, 2001, 28(4): 465-474. [87]Ma Z, Sun Y, Zhu X, et al. Membrane nanodomains modulate formin condensation for actin remodeling in Arabidopsis innate immune responses[J]. The Plant Cell, 2022, 34(1): 374-394. [88]Martin S G, Chang F. Dynamics of the formin for3P in actin cable assembly[J]. Current Biology, 2006, 16(12): 1161-1170. [89]Matsuoka M A a M. Application of rice genomics to plant biology and breeding[J]. Botanical Bulletin of Academia Sinica, 2002, 43: 1-11. [90]Matthes M S, Best N B, Robil J M, et al. Auxin evodevo: conservation and diversification of genes regulating auxin biosynthesis, transport, and signaling [J]. Molecular Plant, 2019, 12: 298-320. [91]Michelot A, Guerin C, Huang S, et al. The formin homology 1 domain modulates the actin nucleation and bundling activity of Arabidopsis FORMIN1[J]. The Plant Cell, 2005, 17(8): 2296-2313. [92]Miura K, Agetsuma M, Kitano H, et al. A metastable DWARF1 epigenetic mutant affecting plant stature in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 11218-11223. [93]Miya M, Yoshikawa T, Sato Y, et al. Genome-wide analysis of spatiotemporal expression patterns during rice leaf development[J]. BMC Genomics, 2021, 22(1): 169. [94]Monna L, Kitazawa N, Yoshino R, et al. Positional cloning of rice semidwarfing gene, sd-1: rice “Green Revolution Gene” encodes a mutant enzyme involved in Gibberellin synthesis[J]. DNA Research, 2002, 9(1): 11-17. [95]Niemeyer M, Moreno Castillo E, Ihling C H, et al. Flexibility of intrinsically disordered degrons in AUX/IAA proteins reinforces auxin co-receptor assemblies[J]. Nature Communications, 2020, 11(1): 2277. [96]Noack, L. C., & Jaillais, Y. Precision targeting by phosphoinositides: how PIs direct endomembrane trafficking in plants[J]. Current opinion in plant biology, 2017, 40, 22–33. [97]Okadala K, Uedal J, Komaki M K, et al. Requirement of the auxin polar transport system in early stages of Arabídopsis floral bud formation[J]. The Plant Cell, 1991, 3(7): 677−684. [98]Olsvik H L, Lamark T, Takagi K, et al. FYCO1 contains a c-terminally extended, LC3A/B-preferring LC3-interacting Region (LIR) motif required for efficient maturation of autophagosomes during basal autophagy[J]. Journal of Biological Chemistry, 2015, 290(49): 29361-29374. [99]Oulehlova D, Kollarova E, Cifrova P, et al. Arabidopsis Class I Formin FH1 relocates between membrane compartments during root cell ontogeny and associates with plasmodesmata[J]. Plant & Cell Physiology, 2019, 60(8): 1855-1870. [100]Pekker I, Alvarez JP, Eshed Y. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity[J]. The Plant Cell, 2005, 17(11): 2899−2910. [101]Peng L, He J, Yao H, et al. CARK3-mediated ADF4 regulates hypocotyl elongation and soil drought stress in Arabidopsis[J]. Frontiers in Plant Science, 2022, 13: 1065677. [102]Péret B, Swarup K, Ferguson A, et al. AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development[J]. The Plant Cell, 2012, 24(7): 2874-2885. [103]Perico C, Tan S, Langdale J A. Developmental regulation of leaf venation patterns: monocot versus eudicots and the role of auxin[J]. The New Phytologist, 2022, 234(3): 783-803. [104]Plitsi P K, Samakovli D, Roka L, et al. GA-Mediated disruption of RGA/BZR1 complex requires HSP90 to promote hypocotyl elongation[J]. International Journal of Molecular Sciences, 2023, 24(1): 88. [105]Pollard T D. Rgulation of actin filament assembly by Arp2/3 complex and formins[J]. Annual Review of Biophysics and Biomolecular Structure, 2007, 36(1): 451-477. [106]Pollard T D, Cooper J A. Actin, a central player in cell shape and movement[J]. Science, 2009, 326(5957): 1208-1212. [107]Posor Y, Eichhorn-Grünig M, Haucke V. Phosphoinositides in endocytosis[J]. Biochim Biophys Acta. 2015, 1851(6):794-804. [108]Pruyne D, Legesse-Miller A, GAO L, et al. Mechanisms of polarized growth and organelle segregation in yeast[J]. Annual Review of Cell And Developmental Biology, 2004, 20: 559-591. [109]Reinhardt D, Mandel T, Kuhlemeier C. Auxin regulates the initiation and radial position of plant lateral organs[J]. The Plant Cell, 2000, 12(4): 507–518. [110]Rojo E, Gillmor CS, Kovaleva V, et al. VACUOLELESS1 is an essential gene required for vacuole formation and morphogenesis in Arabidopsis[J]. Developmental Cell, 2001, 1(2): 303-310. [111]Roosjen M, Kuhn A, Mutte S K, et al. An ultra-fast, proteome-wide response to the plant hormone auxin[J]. bioRxiv, 2022, 11(25): 517949. [112]Sasaki A, Itoh H, Gomi K, et al. Accumulation of phosphorylated repressor for Gibberellin signaling in an F-box mutant[J]. Science, 2003, 299(5614): 1896-1898. [113]Scanlon MJ. Developmental complexities of simple leaves[J]. Current Opinion in Plant Biology, 2000, 3(1): 31−36. [114]Seo H-S, Kim H-Y, Jeong J-Y, et al. Molecular cloning and characterization of RGA1 encoding a G protein α subunit from rice (Oryza sativa L. IR-36) [J]. Plant Molecular Biology, 1995, 27(6): 1119-1131. [115]Serrazina S, Dias F V, Malhó R. Characterization of FAB1 phosphatidylinositol kinases in Arabidopsis pollen tube growth and fertilization[J]. The New Phytologist, 2014, 203(3): 784-793. [116]Serre N B C, Kralík D, Yun P, et al. AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root[J]. Nature Plants, 2021, 7(9):1229–1238. [117]Shi L, Jian Y, Li M, et al. Filamin FLN-2 promotes MVB biogenesis by mediating vesicle docking on the actin cytoskeleton[J]. The Journal of Cell Biology, 2022, 221(7), e202201020. [118]Stahelin R V, Long F, Diraviyam K, et al. Phosphatidylinositol 3-phosphate induces the membrane penetration of the FYVE domains of Vps27p and Hrs[J]. Journal of Biological Chemistry, 2002, 277(29): 26379-26388. [119]Su N, Zhu A, Tao X, et al. Structures and mechanisms of the Arabidopsis auxin transporter PIN3[J]. Nature, 2022, 609(7927): 616-621. [120]Sugiyama Y, Wakazaki M, Toyooka K, et al. A novel plasma membrane-anchored protein regulates xylem cell-wall deposition through microtubule-dependent lateral inhibition of Rho GTPase domains[J]. Current Biology, 2017, 27(16): 2522-2528. [121]Sun T P. The molecular mechanism and evolution of the GA–GID1–DELLA signaling module in plants[J]. Current Biology, 2011, 21(9): R338-R345. [122]Sun T, Li S, Ren H. OsFH15, a class I formin, interacts with microfilaments and microtubules to regulate grain size via affecting cell expansion in rice[J]. Scientific Reports, 2017, 7(1): 6538. [123]Thimann K V, Skoog F, G. W, et al. On the inhibition of bud development and other functions of growth substance in vicia faba[J]. Proceedings of the Royal Society of London. Series B, 1934, 114(789): 317-339. [124]Tomita M. Introgression of Green Revolution sd1 gene into isogenic genome of rice super cultivar Koshihikari to create novel semidwarf cultivar ‘Hikarishinseiki’ (Koshihikari-sd1) [J]. Field Crops Research, 2009, 114(2): 173-181. [125]Utut Suharsono, Fujisawa Y, Kawasaki T, et al. The heterotrimeric G protein subunit acts upstreamof the small GTPase Rac in disease resistance of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 13307-13312. [126]Vidali, Van Gisbergen P A, Guérin C, et al. Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(32): 13341-13346. [127]Waites, R.; Hudson, A. Phantastica—A gene required for dorsoventrality of leaves in Antirrhinum-Majus[J]. Development, 1995, 121(7): 2143–2154. [128]Wang D, Du M, Lyu P, et al. Functional characterization of the soybean glycine max actin depolymerization factor GmADF13 for plant resistance to drought stress[J]. Plants, 2024, 13(12): 1651. [129]Wang J, Shen J, Xu Y, et al. Differential sensitivity of ADF isovariants to a pH gradient promotes pollen tube growth[J]. The Journal of Cell Biology, 2023a, 222(11): e2022106074. [130]Wang Q, Xu Y, Zhao S, et al. Activation of actin-depolymerizing factor by CDPK16-mediated phosphorylation promotes actin turnover in Arabidopsis pollen tubes[J]. PLoS Biology, 2023b, 21(4): e3002073. [131]Weijers D, Wagner D. Transcriptional responses to the auxin hormone[J]. Annual Review of Plant Biology, 2016, 67: 539-574. [132]Whitley P, Hinz S, Doughty J. Arabidopsis FAB1/PIKfyve proteins are essential for development of viable pollen[J]. Plant Physiology, 2009, 151(4): 1812-1822. [133]Winkler R G, Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in Gibberellin biosynthesis[J]. The Plant Cell, 1995, 7(8): 1307-1317. [134]Wu J, Zhu C, Pang J, et al. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of Gibberellin biosynthesis in Oryza sativa[J]. The Plant Journal, 2014, 80(6): 1118-1130. [135]Wu S, Xie Y, Zhang J, et al. VLN2 regulates plant architecture by affecting microfilament dynamics and polar auxin transport in rice[J]. The Plant Cell, 2015, 27(10): 2829- 2845. [136]Wu Y, Yan J, Zhang R, et al. Arabidopsis FIMBRIN5, an actin bundling factor, is required for pollen germination and pollen tube growth[J]. The Plant Cell, 2010, 22(11): 3745-3763. [137]Xia, Y.; Nikolau, B.J.; Schnable, P.S. Cloning and characterization of CER2, an Arabidopsis gene that affects cuticular wax accumulation[J]. The Plant Cell, 1996, 8(8): 1291–1304. [138]Xie Y H, Ling Y H, Ma X H, et al. Phenotype characterization and gene mapping of the semi-outcurved leaf mutant sol1 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2019a, 46(2): 204-213. [139]Xie Y, Sun J, Han X, et al. Polarisome scaffolder Spa2-mediated macromolecular condensation of Aip5 for actin polymerization[J]. Nature Communications, 2019b, 10(1): 5078. [140]Xu K, Zhao Y, Zhao S, et al. Genome-wide identification and low temperature responsive pattern of Actin Depolymerizing Factor (ADF) Gene family in wheat (Triticum aestivum L.) [J]. Frontiers in Plant Science, 2021, 12: 618984. [141]Xu T, Dai N, Chen J, et al. Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling[J]. Science, 2014, 343: 1025-1028. [142]Yang C, Li D, Liu X, et al. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.) [J]. BMC Plant Biology. 2014, 14: 158. [143]Yang W, Ren S, Zhang X, et al. BENT UPPERMOST INTERNODE1 encodes the class II formin FH5 crucial for actin organization and rice development[J]. The Plant Cell, 2011, 23(2): 661-680. [144]Yang X, Lu J, Shi W-J, et al. RGA1 regulates grain size, rice quality and seed germination in the small and round grain mutant srg5[J]. BMC Plant Biology, 2024, 24(1): 167. [145]Ye H, Gao J, Liang Z, et al. Arabidopsis ORP2A mediates ER-autophagosomal membrane contact sites and regulates PI3P in plant autophagy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(43): e2205314119. [146]Yoshikawa T, Ito M, Sumikura T, et al. The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin‐related processes[J]. The Plant Journal, 2014, 78(6): 927-936. [147]Yu Y, Tang W, Lin W, et al. ABLs and TMKs are co-receptors for extracellular auxin[J]. Cell, 2023, 186(25): 5457-5471. [148]Yu X Q, Xie W, Liu H, et al. Characterization and fine mapping of a semi-rolled leaf mutant srl3 in rice[J]. Journal of Integrative Agriculture, 2022, 21(11): 3103-3113. [149]Yao Y T, Ma J Q, Feng, X L, et al. A role of Arabidopsis phosphoinositide kinase, FAB1, in Root Hair Growth[J]. Chinese Bulletin of Botany, 2020, 55(2): 126-136. [150]Zang J, Klemm S, Pain C, et al. A novel plant actin-microtubule bridging complex regulates cytoskeletal and ER structure at ER-PM contact sites[J]. Current Biology, 2021, 31(6): 1251-1260. [151]Zhang G H, Xu Q, Zhu X D, et al. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development[J]. The Plant Cell. 2009, 21(3): 719-735. [152]Zhang J J, Wu S Y, Jiang L, et al. A detailed analysis of the leaf rolling mutant sll2 reveals complex nature in regulation of bulliform cell development in rice (Oryza sativa L.)[J]. Plant Biology, 2015, 17(2): 437-448. [153]Zhang, S., Wang, S., Xu, Y., et al. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1[J]. Plant, Cell & Environment. 2015, 38(4): 638-654. [154]Zhang Z, Zhang Y, Tan H, et al. Rice MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis[J]. The Plant Cell, 2011, 23(2): 681-700. [155]Zhao Y, Christensen S K, Fankhauser C, et al. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science, 2001, 291(5502), 306–309. [156]Zheng Y, Xin H, Lin J, et al. An Arabidopsis class II formin, AtFH19, nucleates actin assembly, binds to the barbed end of actin filaments, and antagonizes the effect of AtFH1 on actin dynamics[J]. Journal of Integrative Plant Biology, 2012, 54(10): 800-813. [157]Zhou F, Lin Q, Zhu L, et al. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling[J]. Nature, 2013a, 504(7480): 406-410. [158]Zhou S R, Yin L L, Xue H W. Functional genomics based understanding of rice endosperm development[J]. Current Opinion in Plant Biology, 2013b, 16(2): 236-246. [159]Zhu Y, Nomura T, Xu Y, et al. ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes Gibberellins in a novel deactivation reaction in rice[J]. The Plant Cell, 2006, 18(2): 442-456. [160]Zhu Y, Zeng Y, Jiang L. FREE1 regulates phagophore closure in plants[J]. Autophagy, 2024, 20(6): 1452-1454. [161]Rigal A, Doyle S M, Robert S. Live cell imaging of FM4-64, a tool for tracing the endocytic pathways in Arabidopsis root cells[C] Methods in Molecular Biology. 2015, 1242: 93-103. |
中图分类号: | S51 |
开放日期: | 2027-06-13 |