中文题名: | 鼠尾草酸减轻 LPS 导致的肉鸡肝脏和肠道损伤机制研究 |
姓名: | |
学号: | 2021807169 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 095200 |
学科名称: | 农学 - 兽医 |
学生类型: | 硕士 |
学位: | 兽医硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 兽药创制 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
完成日期: | 2023-05-30 |
答辩日期: | 2023-06-27 |
外文题名: | Study On The Mechanism Of LPS-Induced Liver And Intestine Damage In Chickens Mitigated By Carnosic Acid |
中文关键词: | |
外文关键词: | carnosic acid ; broiler ; liver ; intestine ; oxidative stress ; inflammatory response |
中文摘要: |
在现代集约化家禽养殖中,病原微生物感染、热或冷应激、以及各类应激原均会导致家禽肝脏和肠道氧化应激损伤和炎症反应。当肠道发生氧化应激和炎症损伤后,肠道屏障功能受损且通透性增加,肠道内细菌及其产生的内毒素(LPS)释放入血,引起更加严重的全身性损伤,甚至导致家禽的猝死。因此以往养殖过程中通常在饲料里添加抗生素来降低家禽发病率和死亡率,随着我国法律规定禁止滥用抗生素,养殖业迫切需求安全、高效的饲用抗生素替代品。因此探究纯天然植物提取物作为家禽养殖的饲料添加剂以此提高肉鸡的免疫保护作用具有重要的意义和实际应用价值。鼠尾草酸(Carnosic acid,CA)是普遍存在于迷迭香和鼠尾草科植物中的一种天然苯二酚松香二萜,具有很强的抗氧化、抗炎症、抗菌及抗肿瘤等功能。CA作为一种脂溶性天然抗氧化剂因其具有良好的药理活性被广泛应用于生物医药、食品、化妆和保健品等行业中。各种研究也表明了CA在体外和体内实验模型中能够发挥一定药用价值,添加鼠尾草酸作为家禽养殖的饲料添加剂使用也符合目前国家减抗限抗的方针政策。本试验选用爱拔益加(Arbor Acres,AA)肉鸡、鸡肝细胞(LMH)为试验对象,以LPS构建氧化应激和炎症模型,来探究鼠尾草酸减轻家禽脏器(尤其肝脏、肠道)的氧化应激和炎症损伤的效果及其抗损伤机制。本试验包括以下三个实验部分: 实验一:鼠尾草酸对LPS诱导鸡肝脏损伤的保护作用 将120只18日龄AA肉鸡按平均体重分为8组,每个试验组10只鸡。鸡舍内各组保持一致的温度和湿度,鸡笼卫生环境按时清洁,且各组均为自由采食和饮水。试验期一共14天,前期一周让鸡群适应环境避免额外应激,后一周开始饲喂鼠尾草酸。对照组(CON)与LPS组不做鼠尾草酸处理,其余组分别按照低剂量(20 mg/kg)、中剂量(40 mg/kg)、高剂量(80 mg/kg)灌胃CA,灌胃维持一周后,腹腔注射LPS,注射剂量为200 mL/kg,12 h后采样。试验结果表明:(1)在灌胃鼠尾草酸一周后,CA对肉鸡的体重无显著性影响。(2)在肉鸡血清生化指标中,与单独接受LPS刺激的肉鸡相比,鼠尾草酸能够降低肉鸡血清中IL-6、MDA、IL-1β、CK-MB、AST、iNOS、TNF-α、LDH、CK-MB的含量(P < 0.05)并且增加SOD和T-AOC的含量(P < 0.05)。(3)与对照组相比LPS组肉鸡肝脏有较重的炎症反应,炎性细胞浸润、肝细胞索排列结构紊乱、细胞核固缩,CA干预后病变症状有明显的改善。(4)肝脏的免疫组化实验表明试验组与对照组中均有Hsp60、Hsp70和Nrf2的表达,LPS刺激下主要分布在胞质里的Hsp60、Hsp70阳性信号明显增多,肝细胞核中的表达量较少,CA中剂量组的阳性信号较LPS组有一定的下调。正常情况下Nrf2位于胞质中,LPS作用后的Nrf2大量转移至胞核中,表达量也明显升高,而LPS + CA组则极显著升高。(5)在Western blot水平上与CON组比,CA组Hsp70蛋白的表达水平有少量增加,而LPS能显著上调Hsp70、p38、ERK的表达(P < 0.05),在LPS + CA组中Hsp60、Hsp70、p38、ERK蛋白表达量显著下降(P < 0.05)。其中 JNK蛋白经灰度值统计分析发现各组个体数据差异较大,数据差异不明显。 实验二:鼠尾草酸对LPS诱导鸡肠道损伤的保护作用 试验设计同试验一。(1)与CON组比,CA组能提高肠道绒毛的高度和隐窝深度。LPS组肠道组织炎性损伤较为明显,肠绒毛长度降低、脱落断裂,并且炎性细胞浸润明显,CA干预后能够缓解LPS造成的损伤,绒毛高度和隐窝深度都有显著提高。(2)在肉鸡肠道的免疫组化里Hsp60、Hsp70在试验组与对照组中均有表达,CA高剂量组中Hsp60、Hsp70的表达量有所上调,LPS组中Hsp70表达上升趋势较为显著(P < 0.05),而LPS+CA组中Hsp70有明显下降趋势(P < 0.05)。在对照组和LPS组中Connexin表达量较少,而低剂量组与中剂量鼠尾草酸均可在一定程度上引起Connexin表达量上调(P < 0.05)。CD45在正常情况下的CON组中无阳性信号表达,LPS组中CD45作为炎症细胞标记有显著提高,LPS+CA组表达量略微下调。(3)在Western blot水平中与CON组比,CA可以提高Hsp70、Hsp60蛋白的表达,降低p38、ERK蛋白的表达,LPS能显著上调Hsp70、Hsp60、p38、ERK的表达,而添加了鼠尾草酸干预后Hsp70、Hsp60、p38、ERK蛋白表达量均有所下降(P < 0.01)。 实验三:鼠尾草酸对LPS诱导鸡肝细胞系损伤的保护作用 本试验选用鸡肝细胞系(LMH),分组为CON组、CA组、LPS组、CA+ LPS组,每组设3个重复。根据前期实验结果CA溶解在二甲基亚砜(DMSO)中最佳浓度为3.5 μg/mL,LPS 用PBS溶解浓度为1 μg/mL。待细胞贴壁后去上清,加CA和DMSO给药反应24 h,再用LPS刺激1 h收样。 试验结果:(1)对照CON组LMH细胞形态为上皮细胞样,LPS刺激下部分LMH细胞出现肿胀、胞核溶解固缩,染色加深。(2)根据RNA-Seq结果得知,在CA干预LPS刺激细胞中,差异基因表达有404个,这些差异基因主要参与了蛋白质合成代谢、生物调节、细胞信号转导等重要生物学过程。(3)CON组与LPS组的CryAB蛋白均无明显表达,而添加鼠尾草酸的组别均有显著表达(P < 0.05)。与对照组相比CA组能够使Hsp60、p38、ERK的表达部分下调,而当细胞受到LPS刺激时Hsp60、p38、ERK、Hsp70表达量都有所升高,在鼠尾草酸干预下各蛋白表达都有所下降但无统计学差异。(4)LMH细胞IF结果与Western blot结果一致,CryAB蛋白在CON组与LPS组中仅有少量信号,CA组与CA+ LPS组均有显著表达。Hsp60在正常情况下有少量信号位于胞质中,CA能上调Hsp60的表达量,而LPS组信号显著增多,CA+ LPS组又有下降趋势。CON组中的Nrf2荧光信号主要位于细胞质中,胞核中也有微弱表达;CA组细胞内Nrf2定位于胞质的荧光强度表达稍有提高;在LPS刺激下,Nrf2进入细胞核中的荧光信号表达显著提高,与LPS组相比CA干预后Nrf2入核信号表达有一定下调。(5)鼠尾草酸分组为低(2.5 μg/mL)、中(3.5 μg/mL)、高(4.5 μg/mL)剂量组,测量细胞上清中MDA、SOD、T-AOC、AST/GOT的表达水平,中剂量组鼠尾草酸(3.5 μg/mL)可以显著抑制由LPS引起的MDA及AST/GOT水平上调,且显著上调SOD的表达量。(6)DCHF-DA荧光探针法检测细胞内ROS相对含量,与CON组相比LPS组中的ROS水平升高;与LPS组相比,CA干预后的细胞内ROS水平降低,表明CA对LPS诱导LMH细胞ROS水平上调具有抑制作用。以上体外体内实验结果均表明了鼠尾草酸可以减轻由LPS所导致的家禽脏器(尤其肝脏、肠道)的氧化应激和炎症损伤,鼠尾草酸有望开发为家禽养殖的饲料添加剂使用。 |
外文摘要: |
Intensive poultry farming often leads to oxidative stress damage and inflammatory response in poultry organs due to pathogenic microbial infection, heat or cold stress, and various stressors. This can impair intestinal barrier function, increase permeability, and release endotoxins into the bloodstream, resulting in systemic damage and even sudden death of poultry. The use of antibiotics in feed has been a common practice to reduce morbidity and mortality in the past, but due to the ban on antibiotics in feed, safe and efficient alternatives are urgently needed in the market. Therefore, exploring a pure natural plant extract as a feed additive for poultry breeding to improve the immune protection of broilers is of great practical application value. Carnosic acid (CA), a phenolic diterpenoid found in rosemary and sage plants, has been shown to have strong antioxidant, anti-inflammatory, antibacterial and antitumor functions. It is widely used in various industries such as food processing, biomedicine, cosmetics and health care products due to its good pharmacological activity. Previous studies have also shown that CA has certain medicinal value in in vitro and in vivo experimental models, and the addition of Carnosic acid as a feed additive for poultry breeding is also in line with the current national policy of reducing and limiting resistance.In this experiment, Arbor Acres (AA) broiler chickens and chicken liver cells (LMH) were selected to explore the protective effect of Carnosic acid on poultry organs (especially liver, intestinal tract) and its anti-injury mechanism,and LPS was used for establish oxidative stress and inflammation models in vivo and in vitro. The experiment consisted of the following three experimental parts: Experiment 1: Protective effect of Carnosic acid on LPS-induced liver injury in chickens 120 18-day-old AA broilers were divided into 8 groups according to their average body weight, with at least 10 chickens in each experiment group. Each group in the chicken coop maintained a consistent temperature and humidity, and the hygienic environment of the chicken cage was cleaned on time, and each group had free access to food and water. The test period was 14 days in total. In the first week, the chickens were allowed to adapt to the environment to avoid additional stress, and then they were fed Carnosic acid in the second week. The control group (CON) and the LPS group were not treated with Carnosic acid, and the other groups were given CA at a low dose (20 mg/kg), a medium dose (40 mg/kg), and a high dose (80 mg/kg) respectively. After one week of gavage maintenance, LPS was injected intraperitoneally at a dose of 200 mL/kg, and samples were seleted after treatment for 12 hour hours. The experiment results showed that: (1) CA had no significant effect on the body weight of broiler chickens after gavage of Carnosic acid for one week. (2) Among broiler chicken serum biochemical indicators, compared with broiler chickens stimulated only by LPS, Carnosic acid + LPS group significantly redused the damage associated indicaters such as IL-6, MDA, IL-1β, CK-MB, AST, iNOS, TNF-α, LDH, CK-MB level (P < 0.05) and increased the level of anti-oxidative enzyme SOD and T-AOC (P < 0.05). (3) Our pathological experiment showed that, compared with the control group, broiler livers in the LPS group had severe inflammation response, inflammatory cell infiltration, hepatocyte cord arrangement disorder, and nuclear pyknosis. The groups fed with CA showed much lighter pathological changes in liver. (4) Our immunohistochemistry results showed that, Hsp60, Hsp70 and Nrf2 were expressed in both the experiment and the control group in liver. The positive signals of Hsp60 and Hsp70 were significantly increased under LPS stimulation, and both proteins were mainly distributed in the cytoplasm of hepatocytes. Under normal circumstances, Nrf2 is located in the cytoplasm, and after the treatment with LPS, a large amount of Nrf2 is transferred to the nuclear, and the expression level is also significantly increased, while the LPS + CA group is extremely significantly induced. (5) Our western blot results suggested LPS significantly upregulated the expression of Hsp70, P38, and ERK in chicken liver (P < 0.05) , and the expression of Hsp70, P38, and ERK proteins were significantly decreased in the LPS+CA group (P < 0.05). Among them, the statistical analysis of the gray value of the JNK protein found that the individual data of each group had a large difference, and the data difference was not obvious. Experiment 2: Protective effect of Carnosic acid on LPS-induced intestinal injury in chickens The experimental design was the same as that of Experiment 1. (1) Compared with the CON group, the CA group can increase the height of intestinal villi and the depth of crypts. In the LPS group, the inflammatory injury of intestinal tissue was more severe, presented the length of intestinal villi was reduced, shed and broken, and inflammatory cells infiltrated significantly. After CA intervention, the damage caused by LPS could be alleviated, and the height of villi and the depth of crypts were significantly improved. (2) Immunohistochemistry results suggested Hsp60 and Hsp70 were expressed in both the experiment and the control group. The expression of Hsp60 and Hsp70 in the high-dose CA group was up-regulated, with a significant upward trend in the LPS group (P < 0.05) and a significant downward trend in the LPS+CA group (P < 0.05). The expression of Connexin was less in the control group and LPS group, while both the low-dose group and the middle-dose Carnosic acid could up-regulate the expression of Connexin to a certain extent (P < 0.05). CD45 had no positive signal expression in the CON group under normal conditions, CD45 as an inflammatory cell marker was significantly increased in the LPS group. However in LPS+CA group, CD45 showed weaker signal which suggested that Carnosic acid could reduce LPS induced inflammation resopnse. (3) Western blot results showed that CA can increase the expression of Hsp70, Hsp60 protein, reduce the expression of p38, ERK protein, LPS can significantly up-regulate the expression of Hsp70, Hsp60, p38, ERK in chicken intestine. And after fed with Carnosic acid the expression of Hsp70, Hsp60, P38 and ERK were decreased compared with the LPS treatment group (P < 0.01). Experiment 3: Protective effect of Carnosic acid on LPS-induced hepatocellular carcinoma cell injury in vitro Chicken hepatocytes (LMH) were used in this experiment, and they were divided into CON group, CA group, LPS group, and CA+LPS group, with 3 replicates in each group. According to the previous experimental results, the optimal concentration of CA dissolved in dimethyl sulfoxide (DMSO) was 3.5 μg/mL, and the concentration of LPS dissolved in PBS was 1 μg/mL. After the cells adhered to the wall, the supernatant was removed, and CA and DMSO were added to react for 24 h, and then stimulated with LPS for 1 h to collect the samples. Experimental results were: (1) The morphology of LMH cells in control group CON was epithelial-like, and normal cell morphology could be found in CA group and CA+LPS group. Under LPS stimulation, some LMH cells appeared swelling, nuclear dissolved and pyknotic, and the staining deepened. (2) Based on the RNA-Seq results, we know that compared with LPS group,404 differential genes were expressed in CA+LPS group, and these differential genes are mainly involved in protein anabolism, bioregulation, cell signaling and other important biological processes. (3) CryAB protein level was not significantly expressed in the CON group and the LPS group, while it was significantly expressed in the group with the addition of Carnosic acid (P < 0.05). Hsp60, P38, and ERK in the CA group showed downregulate expression level compared with CON group. The expression of Hsp60, P38, ERK, and Hsp70 were all increased when the cells were stimulated by LPS. However the expression of each protein was decreased but not statistically different under Carnosic acid intervention. (4) The results of immunofluorescence staining of LMH cells were consistent with the results of Western blot results. CryAB protein had only a small amount of signal in the CON group and the LPS group, but it was significantly expressed in the CA group and the CA+ LPS group. Under normal circumstances, a small amount of Hsp60 signal is located in the cytoplasm, and CA can up-regulate the expression of Hsp60, while the signal in the LPS group increased significantly, and the CA+LPS group showed a downward trend. In the CON group, the Nrf2 fluorescence signal is mainly located in the cytoplasm, and there is also a weak expression in the nucleus; in the CA group, the expression of the fluorescence intensity of Nrf2 localized in the cytoplasm is slightly increased; under the stimulation of LPS, the expression of the fluorescence signal of Nrf2 entering the nuclear is significant. Compared with the LPS group, the expression of Nrf2 nuclear import signal was down-regulated after CA intervention. (5) The expression levels of MDA, SOD, T-AOC and AST/GOT in cell supernatants were measured in low (2.5 μg/mL), medium (3.5 μg/mL) and high (4.5 μg/mL) dose groups. CA in the medium dose group (3.5 μg/mL) significantly inhibited the upregulation of MDA and AST/GOT levels caused by LPS, and significantly upregulated the expression of SOD. (6) The relative content of intracellular ROS was detected by DCHF-DA fluorescent probe method. Compared with the CON group, the ROS level in the LPS group increased; compared with the LPS group, the intracellular ROS level after CA intervention decreased, indicating that CA has an effect on LPS-induced up-regulation of ROS levels in LMH cells has an inhibitory effect. The above in vitro experimental results show that carnoic acid can reduce oxidative stress and inflammatory damage in poultry organs (especially liver and intestines) caused by LPS, and CA is expected to be developed as a feed additive for poultry farming. |
参考文献: |
参考文献 [1] 沈根明, 杨建生, 华国浩, 等. 日粮中添加迷迭香对高温蛋鸡血清抗氧化指标的影响[J]. 中国饲料, 2015(16): 22-24. [2] 沈云辉, 陈长勋. 抗氧化应激研究进展[J]. 中成药,2019,41(11):2715-2719. [3] 陈吉, 高美丽, 白晓茹, 等. 核因子-κB 和细胞因子在溃疡性结肠炎中的表达及其意义[J]. 世界华人消化杂志, 2009, 17(2): 209-212. [4] 程伟贤, 陈鸿雁, 张义平, 等. 迷迭香化学成分研究[J]. 中草药, 2005, 36(11): 1622-1624. [5] 崔秀云, 王红, 赵宝昌. 凋亡信号调节激酶 1 对细胞凋亡的调节作用[J]. 中国生物工程杂志, 2002, 22(4): 22-28. [6] 丁芷倩, 许敏, 吴华, 等. 4种迷迭香化合物对脂多糖诱导的RAW264.7细胞氧化应激和炎症的抑制作用[J]. 食品科学,2022,43(23):125-133. [7] 冯瑞, 王子铭, 黄富硕, 等. 褪黑素对LPS诱导的犊牛睾丸支持细胞氧化应激和凋亡的影响[J]. 中国兽医学报,2022,42(11):2216-2222. [8] 符小琴, 范晴, 勾丹, 等. 迷迭香提取物对黑羽绿壳蛋鸡生产性能、蛋品质和抗氧化功能的影响[J]. 动物营养学报,2022,34(1):329-339. [9] 贾蕾蕾, 王爱玲. 棉子酚通过干扰氧化应激反应, 抑制 JNK/p38MAPK 信号通路的激活减轻大鼠离体心脏缺血再灌注损伤[J]. 安徽医科大学学报, 2017, 52(10): 1424-1429. [10] 焦静雅, 廉丽花. 鼠尾草酸基于NLRP3炎症小体调控酒精性脂肪肝中脂肪蓄积与炎症机制研究[D]. 延边大学. 2022. [11] 金立志. 植物提取物添加剂在动物营养中的应用及其机制的研究进展[J]. 动物营养学报, 2010(5): 1154-1164. [12] 李涌泉, 余学清, 李晓艳, 等. 白细胞介素 1β 通过 p38 信号通路上调系膜细胞表达白细胞介素 6[J]. 中国免疫学杂志, 2004, 20(6): 389-392. [13] 梁婵华, 黄妍, 莫敏敏, 等. 元宝枫籽油改善脂多糖诱导的小鼠肠道炎症[J]. 现代食品科技,2021,37(10):37-45,6. [14] 刘大林, 王奎, 杨俊俏, 等. 迷迭香精油对京海黄鸡生长性能, 肉品质及抗氧化指标影响的研究[J]. 中国畜牧杂志, 2014, 50(11): 65-68. [15] 刘士德, 余玉雯, 张建华, 等. 迷迭香抗氧化提取物的应用研究[J]. 食品科学, 2003, 24(2): 95-99. [16] 刘双, 肖献忠. αB-晶体蛋白的功能与疾病[J]. 生命的化学, 2005, 25(2): 89-91. [17] 刘腾飞, 田静, 耿智霞, 等. 抗菌药物对 LPS 诱导鸡肝细胞损伤的影响及复方甘草酸单胺的修复效应[J]. 畜牧兽医学报, 2015(2): 309-316. [18] 刘亚楠, 李爱华, 谢恺舟, 等. 迷迭香提取物对京海黄鸡生长性能, 免疫器官指数和血清抗氧化性的影响[J]. 中国兽医学报, 2016, 36(7): 1218-1223. [19] 罗心静, 莫选荣, 肖献忠. 细胞外热休克蛋白 70 的释放机制及免疫功能[J]. 国际病理科学与临床杂志, 2007, 27(1): 77-80. [20] 彭兰, 甘华田. P38MAPK 信号传导通路与炎症性肠病[J]. 华西医学, 2005, 20(2): 411-412. [21] 孙晓明. 氧化应激与急性肝损伤[J]. 大家健康 (学术版), 2014, 22. [22] 谭榀新, 叶涛, 刘湘新, 等. 植物提取物抗氧化成分及机理研究进展[J]. 食品科学, 2010, 31(15): 288-292. [23] 唐姝, 殷斌, 徐蛟, 等. 迷迭香诱导鸡心肌中CRYAB和Hsp70表达缓解热应激研究[A]. 江苏省畜牧兽医学会首届“青年科技论坛”论文集[C]. 江苏扬州: , 2019: 682-693. [24] 田云, 卢向阳, 易克, 等. 天然植物抗氧化剂研究进展[J]. 中草药, 2005, 36(3): 468-470. [25] 王利平. 浅论检测急性心肌梗死合并心律失常患者血清中 CK-MB, MYO 和 cTnI 水平的临床意义[J]. 当代医药论丛, 2014(9): 192-193. [26] 王莹, 魏金庚, 靳鹏, 等. 迷迭香的使用价值与文化价值探讨[J]. 现代农业科技, 2016(5): 171-171. [27] 吴胜旭, 徐勇, 梁丽敏, 等. 富含鼠尾草酸液态提取物的制备工艺研究[J]. 现代食品科技, 2011, 27(6): 681-683. [28] 夏田娟, 毕良武, 赵振东, 等. 鼠尾草酸的抗氧化活性及抑菌活性研究[J]. 天然产物研究与开发,2015,27(1):35-40. [29] 肖雷, 梅贵春, 武丽华, 等. 丹参川芎嗪注射液对脓毒症幼鼠急性肝损伤保护作用的研究[J]. 中国中医急症, 2019, 28(09): 1585-1589. [30] 徐萍, 周小江, 吕农华, 等. 溃疡性结肠炎组织中环氧合酶-2 与一氧化氮合酶的表达及意义[J]. 中华消化内镜杂志, 2003, 20(6): 398-399. [31] 许艺凡, 刘普, 刘佩佩, 等. HPLC-DAD 法测定迷迭香茎和叶中 11 种抗氧化活性成分[J]. 中草药, 2018, 49(9): 2153-2157. [32] 阎伦飚, 何德华. 肿瘤坏死因子对肿瘤细胞杀伤作用的病理研究[J]. 第二军医大学学报, 1989, 10(2): 101-104. [33] 袁晓旭, 贾春梅, 姜采荣. 肝细胞生长因子对儿童重症肺炎支原体肺炎的早期诊断及动态监测意义[J]. 临床儿科杂志, 2021, 39(11): 855. [34] 张国彬, 张宇, 孙秀红. 热休克蛋白 70 的研究进展[J]. 中国综合临床, 2009, 25(8): 892-894. [35] 赵杰, 齐永芬, 鱼艳荣. 氧化应激在肝纤维化发生发展中的作用[J]. 临床肝胆病杂志, 2019, 35(9): 2067-2071. [36] 郑秋闿, 范晶晶. 迷迭香提取物的主要成分及其抗氧化作用研究[J]. 实验技术与管理, 2017, 34(8): 43-46. [37] 钟炜昕, 李粮辉, 王兰兰, 等. Hsp70在臭氧预处理减轻大鼠肝缺血再灌注损伤中的作用[J]. 中华麻醉学杂志,2018,38(4):493-496. [38] 朱金娥, 陈志华. 茶多酚作饲料抗氧化剂的研究[J]. 粮食与食品工业, 1998(4): 29-31. [39] 朱丽红. 病毒性肝炎检测 AST 与 ALT 比值的临床意义[J]. 慢性病学杂志, 2010(12). [40] 朱明, 徐吟亚. 血管内皮生长因子, α-羟丁酸脱氢酶, β2-微球蛋白和乳酸脱氢酶在非霍奇金淋巴瘤诊断及预后中的价值[J]. 现代肿瘤医学, 2017, 25(10): 1639-1642. [41] Ackermann J A, Hofheinz K, Zaiss M M, et al. The Double-edged role of 12/15-lipoxygenase during inflammation and Immunity[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2017, 1862(4): 371-381. [42] Akasaka E, Takekoshi S, Horikoshi Y, et al. Protein oxidative damage and heme oxygenase in Sunlight-exposed human skin: Roles of MAPK responses to oxidative Stress[J]. Tokai J Exp Clin Med, 2010, 35(4): 152-164. [43] Arai H, Atomi Y. Chaperone activity of ΑB-crystallin suppresses tubulin aggregation through complex Formation[J]. Cell structure and Function, 1997, 22(5): 539-544. [44] Arthur J R. The glutathione Peroxidases[J]. Cellular and Molecular Life Sciences CMLS, 2001, 57: 1825-1835. [45] Arulselvan P, Fard M T, Tan W S, et al. Role of antioxidants and natural products in Inflammation[J]. Oxidative medicine and cellular Longevity, 2016, 2016. [46] Asakura H, Kitahora T. Chapter 23 - Antioxidants and Polyphenols in Inflammatory Bowel Disease: Ulcerative Colitis and Crohn Disease[A]. Polyphenols: Prevention and Treatment of Human Disease (Second Edition)Academic Press, 2018: 279-292. [47] Aviello G, Knaus U G. NADPH oxidases and ROS signaling in the gastrointestinal Tract[J]. Mucosal Immunology, 2018, 11(4): 1011-1023. [48] Azad N, Iyer A K V. Reactive Oxygen Species and Apoptosis[A]. Systems Biology of Free Radicals and Antioxidants[C]. Berlin, Heidelberg: Springer, 2014: 113-135. [49] Baca-Estrada M E, Gupta R S, Stead R H, et al. Intestinal expression and cellular immune responses to human Heat-shock protein 60 in Crohn’s Disease[J]. Digestive diseases and Sciences, 1994, 39(3): 498-506. [50] Bachstetter A D, Van Eldik L J. The p38 MAP kinase family as regulators of proinflammatory cytokine production in degenerative diseases of the CNS[J]. Aging and Disease, 2010, 1(3): 199. [51] Bahri S, Jameleddine S, Shlyonsky V. Relevance of carnosic acid to the treatment of several health disorders: Molecular targets and Mechanisms[J]. Biomedicine & Pharmacotherapy, 2016, 84: 569-582. [52] Benov L, Fridovich I. Growth in Iron-enriched medium partially compensates Escherichia coli for the lack of manganese and iron superoxide Dismutase[J]. Journal of Biological Chemistry, 1998, 273(17): 10313-10316. [53] Berger E, Rath E, Yuan D, et al. Mitochondrial function controls intestinal epithelial stemness and Proliferation[J]. Nature Communications, 2016, 7(1): 13171. [54] Beyer R E. The role of ascorbate in antioxidant protection of biomembranes: Interaction with vitamin E and coenzyme Q[J]. Journal of bioenergetics and Biomembranes, 1994, 26: 349-358. [55] Bian Z, Guo Y, Ha B, et al. Regulation of the inflammatory response: Enhancing neutrophil infiltration under chronic inflammatory Conditions[J]. The Journal of Immunology, 2012, 188(2): 844-853. [56] Binion D G, Otterson M F, Rafiee P. Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK Inhibition[J]. Gut, 2008, 57(11): 1509-1517. [57] Birtić S, Dussort P, Pierre F-X, et al. Carnosic Acid[J]. Phytochemistry, 2015, 115: 9-19. [58] Brigelius-Flohé R. Tissue-specific functions of individual glutathione Peroxidases[J]. Free Radical Biology and Medicine, 1999, 27(9-10): 951-965. [59] Broom O J, Widjaya B, Troelsen J, et al. Mitogen activated protein kinases: A role in inflammatory bowel Disease?[J]. Clinical & Experimental Immunology, 2009, 158(3): 272-280. [60] Bühler S, Laufer S A. P38 MAPK inhibitors: A patent review (2012–2013)[J]. Expert opinion on therapeutic Patents, 2014, 24(5): 535-554. [61] Carnevale R, Pastori D, Nocella C, et al. Okada[J]. European journal of Nutrition, 2019, 58: 843-851. [62] Carotti S, Guarino M P L, Vespasiani-Gentilucci U, et al. Starring role of Toll-like receptor-4 activation in the gut-liver Axis[J]. World journal of gastrointestinal Pathophysiology, 2015, 6(4): 99. [63] Cetin E, Yibar A, Yesilbag D, et al. The effect of volatile oil mixtures on the performance and Ilio-caecal microflora of broiler Chickens[J]. British Poultry Science, 2016, 57(6): 780-787. [64] Chawla A, Nguyen K D, Goh Y S. Macrophage-mediated inflammation in metabolic Disease[J]. Nature Reviews Immunology, 2011, 11(11): 738-749. [65] Chen J, Jing J, Yu S, et al. Advanced glycation endproducts induce apoptosis of endothelial progenitor cells by activating receptor RAGE and NADPH oxidase/JNK signaling Axis[J]. American journal of translational Research, 2016, 8(5): 2169. [66] Chen J, Zhang R, Wang J, et al. Protective effects of baicalin on LPS-induced injury in intestinal epithelial cells and intercellular tight Junctions[J]. Canadian Journal of Physiology and Pharmacology, 2015, 93(4): 233-237. [67] Chen Shanwen, Zhu J, Chen G, et al. 1,25-Dihydroxyvitamin D3 preserves intestinal epithelial barrier function from TNF-α induced injury via suppression of NF-kB p65 mediated MLCK-P-MLC signaling Pathway[J]. Biochemical and Biophysical Research Communications, 2015, 460(3): 873-878. [68] Chen Shan-wen, Zhu J, Zuo S, et al. Protective effect of hydrogen sulfide on TNF-α and IFN-γ-induced injury of intestinal epithelial barrier function in Caco-2 Monolayers[J]. Inflammation Research, 2015, 64(10): 789-797. [69] Chen W, Syldath U, Bellmann K, et al. Human 60-kDa heat-shock protein: A danger signal to the innate immune System[J]. The Journal of Immunology, 1999, 162(6): 3212-3219. [70] Chevion S, Moran D S, Heled Y, et al. Plasma antioxidant status and cell injury after severe physical Exercise[J]. Proceedings of the National Academy of Sciences, 2003, 100(9): 5119-5123. [71] Chiappero J, Cappellari L del R, Palermo T B, et al. A simple method to determine antioxidant status in aromatic plants subjected to drought Stress[J]. Biochemistry and Molecular Biology Education, 2021, 49(3): 483-491. [72] Cho H-Y, Reddy S P, Kleeberger S R. Nrf2 defends the lung from oxidative Stress[J]. Antioxidants & redox Signaling, 2006, 8(1-2): 76-87. [73] Choudhury S, Ghosh S, Gupta P, et al. Inflammation-induced ROS generation causes pancreatic cell death through modulation of Nrf2/NF-κB and SAPK/JNK Pathway[J]. Free Radical Research, 2015, 49(11): 1371-1383. [74] Chu F-F, Doroshow, and Esworthy R S. Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI.[J]. Journal of Biological Chemistry, 1993, 268(4): 2571-2576. [75] Davey M W, Stals E, Panis B, et al. High-throughput determination of malondialdehyde in plant Tissues[J]. Analytical Biochemistry, 2005, 347(2): 201-207. [76] De Kimpe S J, Van Heuven-Nolsen D, Van Amsterdam J G, et al. Induction of nitric oxide release by Interferon-gamma inhibits vasodilation and cyclic GMP increase in bovine isolated mesenteric Arteries.[J]. Journal of Pharmacology and Experimental Therapeutics, 1994, 268(2): 910-915. [77] Del Ré P V, Jorge N. Antioxidant potential of oregano (Oreganum vulgare L.), basil (Ocimum basilicum L.) and thyme (Thymus vulgaris L.): Application of oleoresins in vegetable Oil[J]. Food Science and Technology, 2011, 31: 955-959. [78] Dev A, Iyer S, Razani B, et al. NF-κB and innate Immunity[J]. NF-kB in Health and Disease, 2011: 115-143. [79] Ding F, Li Y, Hou X, et al. Oxymatrine inhibits microglia activation via Hsp60-TLR4 Signaling[J]. Biomedical Reports, 2016, 5(5): 623-628. [80] Einbond L S, Wu H, Kashiwazaki R, et al. Carnosic acid inhibits the growth of ER-negative human breast cancer cells and synergizes with Curcumin[J]. Fitoterapia, 2012, 83(7): 1160-1168. [81] El-Benna J, Hurtado-Nedelec M, Marzaioli V, et al. Priming of the neutrophil respiratory burst: Role in host defense and Inflammation[J]. Immunological Reviews, 2016, 273(1): 180-193. [82] Eskandani M, Hamishehkar H, Dolatabadi J E N. Cytotoxicity and DNA damage properties of Tert-butylhydroquinone (TBHQ) food Additive[J]. Food Chemistry, 2014, 153: 315-320. [83] Esterbauer H, Schaur R J, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related Aldehydes[J]. Free radical Biology and Medicine, 1991, 11(1): 81-128. [84] Fox J G, Beck P, Dangler C A, et al. Concurrent enteric helminth infection modulates inflammation and gastric immune responses and reduces Helicobacter-induced gastric Atrophy[J]. Nature Medicine, 2000, 6(5): 536-542. [85] Frankel E N, Huang S-W, Aeschbach R, et al. Antioxidant activity of a rosemary extract and its constituents, carnosic acid, carnosol, and rosmarinic acid, in bulk oil and oil-in-water Emulsion[J]. Journal of agricultural and food Chemistry, 1996, 44(1): 131-135. [86] Fuhrman B, Volkova N, Rosenblat M, et al. Lycopene synergistically inhibits LDL oxidation in combination with vitamin E, glabridin, rosmarinic acid, carnosic acid, or Garlic[J]. Antioxidants and Redox Signaling, 2000, 2(3): 491-506. [87] German Z, Chambliss K L, Pace M C, et al. Molecular basis of Cell-specific endothelial nitric-oxide synthase expression in airway Epithelium[J]. Journal of Biological Chemistry, 2000, 275(11): 8183-8189. [88] Ghiselli A, Serafini M, Natella F, et al. Total antioxidant capacity as a tool to assess redox status: Critical view and experimental Data[J]. Free Radical Biology and Medicine, 2000, 29(11): 1106-1114. [89] Giannenas I, Florou-Paneri P, Papazahariadou M, et al. Effect of dietary supplementation with oregano essential oil on performance of broilers after experimental infection with Eimeria Tenella[J]. Archives of Animal Nutrition, 2003, 57(2): 99-106. [90] Goh Y C, Yap C T, Huang B H, et al. Heat-shock protein 60 translocates to the surface of apoptotic cells and differentiated megakaryocytes and stimulates Phagocytosis[J]. Cellular and molecular life Sciences, 2011, 68: 1581-1592. [91] Golenhofen N, Ness W, Koob R, et al. Ischemia-induced phosphorylation and translocation of stress protein αB-crystallin to Z lines of Myocardium[J]. American Journal of Physiology-Heart and Circulatory Physiology, 1998, 274(5): H1457-H1464. [92] Gong G, Yuan L, Cai L, et al. Tetramethylpyrazine suppresses transient Oxygen-glucose deprivation-induced connexin32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathway in cultured hippocampal Neurons[J]. PLoS One, 2014, 9(9): e105944. [93] Groschwitz K R, Hogan S P. Intestinal barrier function: Molecular regulation and disease Pathogenesis[J]. Journal of allergy and clinical Immunology, 2009, 124(1): 3-20. [94] Guo Q, Shen Z, Yu H, et al. Carnosic acid protects against Acetaminophen-induced hepatotoxicity by potentiating Nrf2-mediated antioxidant capacity in Mice[J]. The Korean journal of physiology & pharmacology: Official journal of the Korean Physiological Society and the Korean Society of Pharmacology, 2016, 20(1): 15. [95] Gupta J, del Barco Barrantes I, Igea A, et al. Dual function of p38α MAPK in colon cancer: Suppression of colitis-associated tumor initiation but requirement for cancer cell Survival[J]. Cancer Cell, 2014, 25(4): 484-500. [96] Gurley S B, Ghosh S, Johnson S A, et al. Inflammation and immunity pathways regulate genetic susceptibility to diabetic Nephropathy[J]. Diabetes, 2018, 67(10): 2096-2106. [97] Guyton K Z, Gorospe M, Kensler T W, et al. Mitogen-activated protein kinase (MAPK) activation by butylated hydroxytoluene hydroperoxide: Implications for cellular survival and tumor Promotion[J]. Cancer Research, 1996, 56(15): 3480-3485. [98] Harris E D. Regulation of antioxidant enzymes 1[J]. The FASEB Journal, 1992, 6(9): 2675-2683. [99] Hartman S, Taleb S A, Geng T, et al. Comparison of plasma uric acid levels in five varieties of the domestic turkey, Meleagris Gallopavo[J]. Poultry Science, 2006, 85(10): 1791-1794. [100] Hashemi S R, Davoodi H. Herbal plants and their derivatives as growth and health promoters in animal Nutrition[J]. Veterinary research Communications, 2011, 35: 169-180. [101] Henderson B. Integrating the cell stress response: A new view of molecular chaperones as immunological and physiological homeostatic Regulators[J]. Cell Biochemistry and Function: Cellular biochemistry and its modulation by active agents or Disease, 2010, 28(1): 1-14. [102] Hijdra D, Vorselaars A D, Grutters J C, et al. Differential expression of TNFR1 (CD120a) and TNFR2 (CD120b) on subpopulations of human Monocytes[J]. Journal of Inflammation, 2012, 9: 1-6. [103] Hollander J M, Lin K M, Scott B T, et al. Overexpression of PHGPx and Hsp60/10 protects against ischemia/reoxygenation Injury[J]. Free Radical Biology and Medicine, 2003, 35(7): 742-751. [104] Holmes N. CD45: All is not yet crystal Clear[J]. Immunology, 2006, 117(2): 145-155. [105] Hu M, Li T, Bo Z, et al. The protective role of carnosic acid in ischemic/reperfusion injury through regulation of autophagy under T2DM[J]. Experimental Biology and Medicine, 2019, 244(7): 602-611. [106] Islam M, Diwan A, Mani K. Come together: Protein assemblies, aggregates and the sarcostat at the heart of cardiac myocyte Homeostasis[J]. Frontiers in Physiology, 2020, 11: 586. [107] Jesenak M, Zelieskova M, Babusikova E. Oxidative stress and bronchial asthma in children—causes or Consequences?[J]. Frontiers in Pediatrics, 2017, 5: 162. [108] Jin S, Wang R, LI H, et al. Effect of sophocarpine on TLR4/p38 MAPK expression in spared nerve injury-induced neuropathic pain in Mice[J]. Chinese Pharmacological Bulletin, 2017: 1266-1271. [109] Johnson G L, Dohlman H G, Graves L M. MAPK kinase kinases (MKKKs) as a target class for small-molecule inhibition to modulate signaling networks and gene Expression[J]. Current Opinion in Chemical Biology, 2005, 9(3): 325-331. [110] Jolly C, Morimoto R I. Role of the heat shock response and molecular chaperones in oncogenesis and cell Death[J]. Journal of the National Cancer Institute, 2000, 92(19): 1564-1572. [111] Jones R M, Neish A S. Redox signaling mediated by the gut Microbiota[J]. Free Radical Biology and Medicine, 2017, 105: 41-47. [112] Juan C A, Pérez de la Lastra J M, Plou F J, et al. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies[J]. International Journal of Molecular Sciences, 2021, 22(9): 4642. [113] Kang M-I, Kobayashi A, Wakabayashi N, et al. Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 Genes[J]. Proceedings of the National Academy of Sciences, 2004, 101(7): 2046-2051. [114] Kansanen E, Kivelä A M, Levonen A-L. Regulation of Nrf2-dependent gene expression by 15-deoxy-Δ12, 14-prostaglandin J2[J]. Free Radical Biology and Medicine, 2009, 47(9): 1310-1317. [115] Karin M, Marshall C J. The regulation of AP-1 activity by mitogen-activated protein Kinases[J]. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 1996, 351(1336): 127-134. [116] Kellogg 3rd E W, Fridovich I. Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase System.[J]. Journal of biological Chemistry, 1975, 250(22): 8812-8817. [117] Kemp M, Donovan J, Higham H, et al. Biochemical markers of myocardial Injury[J]. British journal of Anaesthesia, 2004, 93(1): 63-73. [118] Kim E K, Choi E-J. Pathological roles of MAPK signaling pathways in human Diseases[J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2010, 1802(4): 396-405. [119] Kim J-S, Ha T-Y, Ahn J, et al. Pterostilbene from Vitis coignetiae protect H2O2-induced inhibition of gap junctional intercellular communication in rat liver cell Line[J]. Food and chemical Toxicology, 2009, 47(2): 404-409. [120] Kim J-Y, Hong H-L, Kim G M, et al. Protective effects of carnosic acid on Lipopolysaccharide-induced acute kidney injury in Mice[J]. Molecules, 2021, 26(24): 7589. [121] Kim Y-M, de Vera M E, Watkins S C, et al. Nitric oxide protects cultured rat hepatocytes from tumor necrosis Factor-α-induced apoptosis by inducing heat shock protein 70 Expression[J]. Journal of Biological Chemistry, 1997, 272(2): 1402-1411. [122] Kleinert H, Forstermann U. Inducible Nitric Oxide Synthase[A]. xPharm: The Comprehensive Pharmacology Reference[C]. New York: Elsevier, 2007: 1-12. [123] Kosaka K, Mimura J, Itoh K, et al. Role of Nrf2 and p62/ZIP in the neurite outgrowth by carnosic acid in PC12h Cells[J]. Journal of Biochemistry, 2010, 147(1): 73-81. [124] Le Y, Zhou Y, Iribarren P, et al. Chemokines and chemokine receptors: Their manifold roles in homeostasis and Disease[J]. Cell Mol Immunol, 2004, 1(2): 95-104. [125] Lee J-M, Li J, Johnson D A, et al. Nrf2, a multi-organ Protector?[J]. The FASEB Journal, 2005, 19(9): 1061-1066. [126] Lee K-H, Lee C-T, Kim Y W, et al. Heat shock protein 70 negatively regulates the Heat-shock-induced suppression of the IκB/NF-κB cascade by facilitating IκB kinase renaturation and blocking its further Denaturation[J]. Experimental cell Research, 2005, 307(1): 276-284. [127] Lee Y, Lee Sung-hyen, Gadde U D, et al. Dietary Allium hookeri reduces inflammatory response and increases expression of intestinal tight junction proteins in LPS-induced young broiler Chicken[J]. Res. Vet. Sci, 2017, 112: 149-155. [128] Lee Y-H, Govinda B, Kim J-C, et al. Oxidative stress resistance through blocking Hsp60 translocation followed by SAPK/JNK inhibition in aged human diploid Fibroblasts[J]. Cell Biochemistry and Function: Cellular biochemistry and its modulation by active agents or Disease, 2009, 27(1): 35-39. [129] Lee Y-H, Lim W, Sung M-K. Carnosic Acid Modulates Increased Hepatic Lipogenesis and Adipocytes Differentiation in Ovariectomized Mice Fed Normal or High-Fat Diets[J]. Nutrients, 2018, 10(12). [130] Lei J, Fu Y, Zhuang Y, et al. MiR-382-3p suppressed IL-1β induced inflammatory response of chondrocytes via the TLR4/MyD88/NF-κB signaling pathway by directly targeting CX43[J]. Journal of cellular Physiology, 2019, 234(12): 23160-23168. [131] Lei J, Wei Y, Song P, et al. Cordycepin inhibits LPS-induced acute lung injury by inhibiting inflammation and oxidative Stress[J]. European Journal of Pharmacology, 2018, 818: 110-114. [132] Li H, Sun J-J, Chen G-Y, et al. Carnosic acid nanoparticles suppress liver ischemia/reperfusion injury by inhibition of ROS, Caspases and NF-κB signaling pathway in Mice[J]. Biomedicine & Pharmacotherapy, 2016, 82: 237-246. [133] Li N, Liboni K, Fang M Z, et al. Glutamine decreases Lipopolysaccharide-induced intestinal inflammation in infant Rats[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2004, 286(6): G914-G921. [134] Liu D, Wang B, Zhu Y, et al. Carnosic acid regulates cell proliferation and invasion in chronic myeloid leukemia cancer cells via suppressing MicroRNA-708[J]. J. BUON, 2018, 23(3): 741-746. [135] Liu J-P, Schlosser R, Ma W-Y, et al. Human ΑA-and αB-crystallins prevent UVA-induced apoptosis through regulation of PKCα, RAF/MEK/ERK and AKT signaling Pathways[J]. Experimental eye Research, 2004, 79(3): 393-403. [136] Liu M, Zhou X, Zhou L, et al. Carnosic acid inhibits inflammation response and joint destruction on osteoclasts, fibroblast-like synoviocytes, and collagen-induced arthritis Rats[J]. Journal of cellular Physiology, 2018, 233(8): 6291-6303. [137] Liu S, Pi J, Zhang Q. Signal amplification in the KEAP1-NRF2-ARE antioxidant response Pathway[J]. Redox Biology, 2022, 54: 102389. [138] Liu W-H, Chang L-S. Arachidonic acid induces Fas and FasL upregulation in human leukemia U937 cells via Ca2+/ROS-mediated suppression of ERK/c-Fos pathway and activation of p38 MAPK/ATF-2 Pathway[J]. Toxicology Letters, 2009, 191(2-3): 140-148. [139] Londero A S, Arana M R, Perdomo V G, et al. Intestinal multidrug Resistance-associated protein 2 is down-regulated in fructose-fed Rats[J]. The Journal of Nutritional Biochemistry, 2017, 40: 178-186. [140] Maeda S, Yanagihara Y. Inflammatory cytokines (Il-4, IL-5 and IL-13)[J]. Nihon rinsho. Japanese journal of clinical Medicine, 2001, 59(10): 1894-1899. [141] Malmuthuge N, Liang G, Griebel P J, et al. Taxonomic and functional compositions of the small intestinal microbiome in neonatal calves provide a framework for understanding early life gut Health[J]. Applied and environmental Microbiology, 2019, 85(6): e02534-18. [142] Manoharan S, Balakrishnan S, Vinothkumar V, et al. Anti-clastogenic potential of carnosic acid against 7, 12-dimethylbenz (a) anthracene (DMBA)-induced Clastogenesis[J]. Pharmacological Reports, 2010, 62(6): 1170-1177. [143] Mansoori B, Nodeh H, Modirsanei M, et al. Evaluating the influence of tannic acid alone or with polyethylene glycol on the intestinal absorption capacity of broiler chickens, using d-xylose absorption Test[J]. Animal feed science and Technology, 2007, 134(3-4): 252-260. [144] Manzanero S, Santro T, Arumugam T V. Neuronal oxidative stress in acute ischemic stroke: Sources and contribution to cell Injury[J]. Neurochemistry International, 2013, 62(5): 712-718. [145] Mao Y-W, Xiang H, Wang J, et al. Human Bcl-2 gene attenuates the ability of rabbit lens epithelial cells against H2O2-induced apoptosis through down-regulation of the αB-crystallin Gene[J]. Journal of Biological Chemistry, 2001, 276(46): 43435-43445. [146] Marshall J C. The gut as a potential trigger of Exercise-induced inflammatory Responses[J]. Canadian journal of physiology and Pharmacology, 1998, 76(5): 479-484. [147] McCord J M, Fridovich I. Superoxide Dismutase[J]. Journal of Biological Chemistry, 1969, 244(22): 6049-6055. [148] McMahon M, Itoh K, Yamamoto M, et al. The Cap ‘n’Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic Enzymes[J]. Cancer Research, 2001, 61(8): 3299-3307. [149] McNaughton L, Puttagunta L, Martinez-Cuesta M A, et al. Distribution of nitric oxide synthase in normal and cirrhotic human Liver[J]. Proceedings of the National Academy of Sciences, 2002, 99(26): 17161-17166. [150] Meşe G, Richard G, White T W. Gap junctions: Basic structure and Function[J]. Journal of Investigative Dermatology, 2007, 127(11): 2516-2524. [151] Michie C A, McLean A, Alcock C, et al. Lifespan of human lymphocyte subsets defined by CD45 Isoforms[J]. Nature, 1992, 360(6401): 264-265. [152] Miemyk J. The 70 kDa Stress-related proteins as molecular Chaperones[J]. Trends in plant Science, 1997, 2(5): 180-187. [153] Moloney J N, Cotter T G. ROS signalling in the biology of Cancer[A]. Seminars in cell & developmental biologyElsevier, 2018: 50-64. [154] Morán L, Giráldez F J, Bodas R, et al. Metabolic acidosis corrected by including antioxidants in diets of fattening Lambs[J]. Small Ruminant Research, 2013, 109(2-3): 133-135. [155] Moreno S, Scheyer T, Romano C S, et al. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol Composition[J]. Free radical Research, 2006, 40(2): 223-231. [156] Morimoto R I. Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative Regulators[J]. Genes & Development, 1998, 12(24): 3788-3796. [157] MR de la Vega M R, Chapman E, Zhang D D. NRF2 and the Hallmarks of Cancer[J]. Cancer Cell, 2018, 34(1): 21-43. [158] Mukherjee S, Forde R, Belton A, et al. SOD2, the principal scavenger of mitochondrial superoxide, is dispensable for embryogenesis and imaginal tissue development but essential for adult Survival[J]. Fly, 2011, 5(1): 39-46. [159] Musch M W, Sugi K, Straus D, et al. Heat-shock protein 72 protects against oxidant-induced injury of barrier function of human colonic epithelial Caco2/bbe Cells[J]. Gastroenterology, 1999, 117(1): 115-122. [160] Muthamilselvan T, Kuo T-F, Wu Y-C, et al. Herbal remedies for coccidiosis control: A review of plants, compounds, and anticoccidial Actions[J]. Evidence-based complementary and alternative medicine: ECAM, 2016, 2016. [161] Naik E, Dixit V M. Mitochondrial reactive oxygen species drive proinflammatory cytokine Production[J]. Journal of Experimental Medicine, 2011, 208(3): 417-420. [162] Nandi D, Mishra M K, Basu A, et al. Protective effects of Interleukin-6 in lipopolysaccharide (LPS)-induced experimental endotoxemia are linked to alteration in hepatic anti-oxidant enzymes and endogenous Cytokines[J]. Immunobiology, 2010, 215(6): 443-451. [163] Nguyen T, Sherratt P J, Pickett C B. Regulatory mechanisms controlling gene expression mediated by the antioxidant response Element[J]. Annual review of pharmacology and Toxicology, 2003, 43(1): 233-260. [164] Nick J A, Avdi N J, Young S K, et al. Selective activation and functional significance of p38α Mitogen-activated protein kinase in lipopolysaccharide-stimulated Neutrophils[J]. The Journal of clinical Investigation, 1999, 103(6): 851-858. [165] Ogura T, Tong K I, Mio K, et al. Keap1 is a Forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal Domains[J]. Proceedings of the National Academy of Sciences, 2010, 107(7): 2842-2847. [166] Okada M, Hasebe N, Aizawa Y, et al. Thermal treatment attenuates neointimal thickening with enhanced expression of Heat-shock protein 72 and suppression of oxidative Stress[J]. Circulation, 2004, 109(14): 1763-1768. [167] O’Leary D P, Bhatt L, Woolley J F, et al. TLR-4 signalling accelerates colon cancer cell adhesion via NF-κB mediated transcriptional up-regulation of Nox-1[J]. 2012, Public Library of Science San Francisco, USA, 2012. [168] Osselaere A, Santos R, Hautekiet V, et al. Deoxynivalenol impairs hepatic and intestinal gene expression of selected oxidative stress, tight junction and inflammation proteins in broiler chickens, but addition of an adsorbing agent shifts the effects to the distal parts of the small Intestine[J]. PloS One, 2013, 8(7): e69014. [169] Ott M, Gogvadze V, Orrenius S, et al. Mitochondria, oxidative stress and cell Death[J]. Apoptosis, 2007, 12: 913-922. [170] Ousman S S, Tomooka B H, van Noort J M, et al. Protective and therapeutic role for AlphaB-crystallin in autoimmune Demyelination[J]. Nature, 2007, 448(7152): 474-479. [171] Paniker N V, Srivastava S K, Beutler E. Glutathione metabolism of the red cells effect of glutathione reductase deficiency on the stimulation of hexose monophosphate shunt under oxidative Stress[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 1970, 215(3): 456-460. [172] Park M-Y, Mun S T. Carnosic acid inhibits TLR4-MyD88 signaling pathway in LPS-stimulated 3T3-L1 Adipocytes[J]. Nutrition Research and Practice, 2014, 8(5): 516-520. [173] Parkes T L, Elia A J, Dickinson D, et al. Extension of Drosophila lifespan by overexpression of human SOD1 in Motorneurons[J]. Nature Genetics, 1998, 19(2): 171-174. [174] Paul A, Wilson S, Belham C M, et al. Stress-activated protein kinases: Activation, regulation and Function[J]. Cellular Signalling, 1997, 9(6): 403-410. [175] Pearson D A, Frankel E N, Aeschbach R, et al. Inhibition of endothelial Cell-mediated oxidation of low-density lipoprotein by rosemary and plant Phenolics[J]. Journal of Agricultural and Food Chemistry, 1997, 45(3): 578-582. [176] Pérez-Fons L, GarzÓn M T, Micol V. Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid Order[J]. Journal of agricultural and food Chemistry, 2010, 58(1): 161-171. [177] Prince J M, Levy R M, Yang R, et al. Toll-like receptor-4 signaling mediates hepatic injury and systemic inflammation in hemorrhagic Shock[J]. Journal of the American College of Surgeons, 2006, 202(3): 407-417. [178] Quintana F J, Cohen I R. Heat shock proteins as endogenous adjuvants in sterile and septic Inflammation[J]. The journal of Immunology, 2005, 175(5): 2777-2782. [179] Quintana F J, Cohen I R. The Hsp60 immune system Network[J]. Trends in Immunology, 2011, 32(2): 89-95. [180] Radmark O, Werz O, Steinhilber D, et al. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and Disease[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2015, 1851(4): 331-339. [181] Reustle A, Torzewski M. Role of p38 MAPK in atherosclerosis and aortic valve Sclerosis[J]. International journal of molecular Sciences, 2018, 19(12): 3761. [182] Roberts P J, Riley G P, Morgan K, et al. The physiological expression of inducible nitric oxide synthase (iNOS) in the human Colon[J]. Journal of clinical Pathology, 2001, 54(4): 293-297. [183] Rogers I, Yamanaka N, Bielecki R, et al. Identification and analysis of in vitro cultured CD45-positive cells capable of multi-lineage Differentiation[J]. Experimental Cell Research, 2007, 313(9): 1839-1852. [184] Rosenzweig R, Nillegoda N B, Mayer M P, et al. The Hsp70 chaperone Network[J]. Nature reviews molecular cell Biology, 2019, 20(11): 665-680. [185] Rotunno M S, Bosco D A. An emerging role for misfolded Wild-type SOD1 in sporadic ALS Pathogenesis[J]. Frontiers in cellular Neuroscience, 2013, 7: 253. [186] Sánchez-Valle V, C Chavez-Tapia N, Uribe M, et al. Role of oxidative stress and molecular changes in liver fibrosis: A Review[J]. Current medicinal Chemistry, 2012, 19(28): 4850-4860. [187] Sander C S, Chang H, Hamm F, et al. Role of oxidative stress and the antioxidant network in cutaneous Carcinogenesis[J]. International journal of Dermatology, 2004, 43(5): 326-335. [188] Sanz A, Caro P, Ibañez J, et al. Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complex I and oxidative DNA damage in rat Brain[J]. Journal of bioenergetics and Biomembranes, 2005, 37: 83-90. [189] Sanz-Cameno P, Medina J, Garcı́a-Buey L, et al. Enhanced intrahepatic inducible nitric oxide synthase expression and nitrotyrosine accumulation in primary biliary cirrhosis and autoimmune Hepatitis[J]. Journal of Hepatology, 2002, 37(6): 723-729. [190] Sasahara H, Otaka M, Itoh S, et al. Effect of preinduction of Heat-shock proteins on acetic acid-induced small intestinal lesions in Rats[J]. Digestive diseases and Sciences, 1998, 43: 2117-2130. [191] Schieber M, Chandel N S. ROS function in redox signaling and oxidative Stress[J]. Current Biology, 2014, 24(10): R453-R462. [192] Senthilkumar G P, Anithalekshmi M S, Yasir M, et al. Role of omentin 1 and IL-6 in type 2 diabetes mellitus patients with diabetic Nephropathy[J]. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2018, 12(1): 23-26. [193] Seo S H, Webster R G. Tumor necrosis factor alpha exerts powerful Anti-influenza virus effects in lung epithelial Cells[J]. Journal of Virology, 2002, 76(3): 1071-1076. [194] Shan Y, Jiang B, Yu J, et al. Protective Effect of Schisandra chinensis Polysaccharides Against the Immunological Liver Injury in Mice Based on Nrf2/ARE and TLR4/NF-κ B Signaling Pathway[J]. Journal of medicinal Food, 2019, 22(9): 885-895. [195] Shin J-H, Jeong J-Y, Jin Y, et al. P38β MAPK affords cytoprotection against oxidative Stress-induced astrocyte apoptosis via induction of αB-crystallin and its anti-apoptotic Function[J]. Neuroscience Letters, 2011, 501(3): 132-137. [196] Sies H. Oxidative stress: Oxidants and Antioxidants[J]. Experimental Physiology, 1997, 82(2): 291-295. [197] Smolen J S, Maini R N. Interleukin-6: A new therapeutic Target[J]. Arthritis Research & Therapy, 2006, 8(Suppl 2): S5. [198] Song H-M, Li X, Liu Y-Y, et al. Carnosic acid protects mice from High-fat diet-induced NAFLD by regulating MARCKS[J]. International journal of molecular Medicine, 2018, 42(1): 193-207. [199] Stocker R, Keaney Jr J F. Role of oxidative modifications in Atherosclerosis[J]. Physiological Reviews, 2004, 84(4): 1381-1478. [200] Stuehr D J. Mammalian nitric oxide Synthases[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1999, 1411(2): 217-230. [201] Surai P F, Fisinin V I. Antioxidant-prooxidant balance in the intestine: Applications in chick placement and pig Weaning[J]. Journal of Veterinary Science & Medicine, 2015, 3(1): 66-84. [202] Suttles J, Milhorn D M, Miller R W, et al. CD40 signaling of monocyte inflammatory cytokine synthesis through an ERK1/2-dependent pathway: A target of interleukin (IL)-4 and IL-10 anti-inflammatory Action[J]. Journal of Biological Chemistry, 1999, 274(9): 5835-5842. [203] Takada M, Otaka M, Takahashi T, et al. Overexpression of a 60-kDa heat shock protein enhances cytoprotective function of small intestinal epithelial Cells[J]. Life Sciences, 2010, 86(13-14): 499-504. [204] Tamura D Y, Moore E E, Johnson J L, et al. P38 Mitogen-activated protein kinase inhibition attenuates intercellular adhesion molecule–1 up-regulation on human pulmonary microvascular endothelial Cells[J]. Surgery, 1998, 124(2): 403-408. [205] Tanaka T, Narazaki M, Kishimoto T. IL-6 in Inflammation, Immunity, and Disease[J]. Cold Spring Harbor Perspectives in Biology, 2014, 6(10): a016295. [206] Taram F, Ignowski E, Duval N, et al. Neuroprotection comparison of rosmarinic acid and carnosic acid in primary cultures of cerebellar granule Neurons[J]. Molecules, 2018, 23(11): 2956. [207] Thèze J. The cytokine network and immune Functions[M]. Oxford University Press, USA, 1999. [208] van de Schootbrugge C, Schults E M, Bussink J, et al. Effect of hypoxia on the expression of ΑB-crystallin in head and neck squamous cell Carcinoma[J]. BMC Cancer, 2014, 14(1): 1-9. [209] van der Weerd L, Lythgoe M F, Badin R A, et al. Neuroprotective effects of Hsp70 overexpression after cerebral ischaemia—an MRI Study[J]. Experimental Neurology, 2005, 195(1): 257-266. [210] Vázquez N M, Fiorilli G, Guido P A C, et al. Carnosic acid acts synergistically with gentamicin in killing Methicillin-resistant Staphylococcus aureus clinical Isolates[J]. Phytomedicine, 2016, 23(12): 1337-1343. [211] Verheij M, Ruiter G A, Zerp S F, et al. The role of the Stress-activated protein kinase (SAPK/JNK) signaling pathway in radiation-induced Apoptosis[J]. Radiotherapy and Oncology, 1998, 47(3): 225-232. [212] Wan Q, Song D, Li H, et al. Stress proteins: The biological functions in virus infection, present and challenges for target-based antiviral drug Development[J]. Signal transduction and targeted Therapy, 2020, 5(1): 125. [213] Wang W, Wu L, Li Q, et al. Madecassoside prevents acute liver failure in LPS/D-GalN-induced mice by inhibiting p38/NF-κB and activating Nrf2/HO-1 Signaling[J]. Biomedicine & Pharmacotherapy, 2018, 103: 1137-1145. [214] Wellwood C R, Cole R A. Relevance of carnosic acid concentrations to the selection of rosemary, Rosmarinus officinalis (L.), accessions for optimization of antioxidant Yield[J]. Journal of agricultural and food Chemistry, 2004, 52(20): 6101-6107. [215] Wendling U, Bloemendal A, Van Der Zee R, et al. Antirheumatic E. coli extract OM-89 induces T cell responses to Hsp60 and 70[J]. International journal of Immunopharmacology, 1997, 19(9-10): 565-568. [216] Wiernsperger N F. Oxidative stress as a therapeutic target in diabetes: Revisiting the Controversy[J]. Diabetes & Metabolism, 2003, 29(6): 579-585. [217] Wijeratne S S, Cuppett S L. Potential of rosemary (Rosemarinus officinalis L.) diterpenes in preventing lipid hydroperoxide-mediated oxidative stress in Caco-2 Cells[J]. Journal of agricultural and food Chemistry, 2007, 55(4): 1193-1199. [218] Williams M D, Van Remmen H, Conrad C C, et al. Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout Mice[J]. Journal of Biological Chemistry, 1998, 273(43): 28510-28515. [219] Winrow V R, Winyard P G, Morris C J, et al. Free radicals in inflammation: Second messengers and mediators of tissue Destruction[J]. British medical Bulletin, 1993, 49(3): 506-522. [220] Wong C K, Wang C B, Ip W K, et al. Role of p38 MAPK and NF-kB for chemokine release in coculture of human eosinophils and bronchial epithelial Cells[J]. Clinical & Experimental Immunology, 2005, 139(1): 90-100. [221] Wu C-R, Tsai C-W, Chang S-W, et al. Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson’s disease: Involvement of antioxidative enzymes Induction[J]. Chemico-Biological Interactions, 2015, 225: 40-46. [222] Xia G, Wang X, Sun H, et al. Carnosic acid (CA) attenuates collagen-induced arthritis in db/db mice via inflammation suppression by regulating ROS-dependent p38 Pathway[J]. Free Radical Biology and Medicine, 2017, 108: 418-432. [223] Xia Z, Dickens M, Raingeaud J, et al. Opposing effects of ERK and JNK-p38 MAP kinases on Apoptosis[J]. Science, 1995, 270(5240): 1326-1331. [224] Xiang Q, Liu Z, Wang Y, et al. Carnosic acid attenuates Lipopolysaccharide-induced liver injury in rats via fortifying cellular antioxidant defense System[J]. Food and chemical Toxicology, 2013a, 53: 1-9. [225] Xiang Q, Wang Y, Wu W, et al. Carnosic acid protects against ROS/RNS-induced protein damage and upregulates HO-1 expression in RAW264. 7 Macrophages[J]. Journal of Functional Foods, 2013b, 5(1): 362-369. [226] Xiao H, Xie G, Wang J, et al. Chicoric acid prevents obesity by attenuating hepatic steatosis, inflammation and oxidative stress in high-fat diet-fed Mice[J]. Food research International, 2013, 54(1): 345-353. [227] Yanagitai M, Itoh S, Kitagawa T, et al. Carnosic acid, a pro-electrophilic compound, inhibits LPS-induced activation of Microglia[J]. Biochemical and Biophysical Research Communications, 2012, 418(1): 22-26. [228] Yang N, Xia Z, Shao N, et al. Carnosic acid prevents dextran sulfate Sodium-induced acute colitis associated with the regulation of the Keap1/Nrf2 Pathway[J]. Scientific Reports, 2017a, 7(1): 1-12. [229] Yang N, Xia Z, Shao N, et al. Carnosic acid prevents dextran sulfate Sodium-induced acute colitis associated with the regulation of the Keap1/Nrf2 Pathway[J]. Scientific Reports, 2017b, 7(1): 1-12. [230] Yao Y, Wang Y, Zhang Y, et al. Klotho ameliorates oxidized low density lipoprotein (ox-LDL)-induced oxidative stress via regulating LOX-1 and PI3K/Akt/eNOS Pathways[J]. Lipids in health and Disease, 2017, 16(1): 1-10. [231] Yesilbag D, Eren M, Agel H, et al. Effects of dietary rosemary, rosemary volatile oil and vitamin E on broiler performance, meat quality and serum SOD Activity[J]. British Poultry Science, 2011, 52(4): 472-482. [232] You Z, Liu S-P, Du J, et al. Advancements in MAPK signaling pathways and MAPK-targeted therapies for ameloblastoma: A Review[J]. Journal of Oral Pathology & Medicine, 2019, 48(3): 201-205. [233] Yu S, Wong S L, Lau C W, et al. Oxidized LDL at low concentration promotes In-vitro angiogenesis and activates nitric oxide synthase through PI3K/Akt/eNOS pathway in human coronary artery endothelial Cells[J]. Biochemical and biophysical research Communications, 2011, 407(1): 44-48. [234] Yu Y-M, Lin H-C, Chang W-C. Carnosic acid prevents the migration of human aortic smooth muscle cells by inhibiting the activation and expression of matrix Metalloproteinase-9[J]. British journal of Nutrition, 2008, 100(4): 731-738. [235] Zaret K S. Regulatory phases of early liver development: Paradigms of Organogenesis[J]. Nature Reviews Genetics, 2002, 3(7): 499-512. [236] Zhang J, Liu J, Wu J, et al. Progression of the role of CRYAB in signaling pathways and Cancers[J]. OncoTargets and Therapy, 2019, 12: 4129-4139. [237] Zhang S, Yang N, Ni S, et al. Pretreatment of lipopolysaccharide (LPS) ameliorates D-GalN/LPS induced acute liver failure through TLR4 signaling Pathway[J]. International Journal of Clinical and Experimental Pathology, 2014, 7(10): 6626. [238] Zhang X, Chen Y, Cai G, et al. Carnosic acid induces apoptosis of hepatocellular carcinoma cells via ROS-mediated mitochondrial Pathway[J]. Chemico-Biological Interactions, 2017, 277: 91-100. [239] Zhou M-L, Shi J-X, Hang C-H, et al. Potential contribution of nuclear Factor-κB to cerebral vasospasm after experimental subarachnoid hemorrhage in Rabbits[J]. Journal of Cerebral Blood Flow & Metabolism, 2007, 27(9): 1583-1592. [240] Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome Activation[J]. Nature Immunology, 2010, 11(2): 136-140. [241] Zidenberg-Cherr S, Keen C L, Lönnerdal B, et al. Superoxide dismutase activity and lipid peroxidation in the rat: Developmental correlations affected by manganese Deficiency[J]. The Journal of Nutrition, 1983, 113(12): 2498-2504. |
中图分类号: | S852 |
开放日期: | 2023-06-14 |