中文题名: | 多位点混合模型上位性关联分析及其应用 |
姓名: | |
学号: | 2022111007 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 070103 |
学科名称: | 理学 - 数学 - 概率论与数理统计 |
学生类型: | 硕士 |
学位: | 理学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 生物统计 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2025-05-27 |
答辩日期: | 2025-05-28 |
外文题名: | Multiple-locus Mixed Model for Epistatic Association Analysis and Application |
中文关键词: | |
外文关键词: | Genome-wide association studies ; Multi-locus mixed linear model ; Epistasis ; Variance heterogeneity test ; Fast algorithm |
中文摘要: |
随着大数据的应用普及和测序成本的下降,全基因组关联分析(genome-wide association studies,GWAS)已在人类和动植物数量性状遗传解析方面得到广泛应用,大大推动了人类和动植物遗传学的发展。 然而,相比于传统的对数量性状核苷酸(quantitative trait nucleotide, QTN)进行全基因组扫描的方法,针对连续型数量性状上位性的全基因组关联分析方法鲜有研究。主要是因为传统的统计方法大多数是对所有上位性进行单位点扫描,使得标记数量指数级增长,会导致算法运行时间长、统计功效低、假阳性率高等问题。本研究通过对压缩方差混合模型3VmrMLM算法的应用分析,探索了高维互作组合降维的方法,同时基于加速算法SmrEMMA(Super FASTmrEMMA),提出了多位点混合线性模型上位性关联分析新算法EpiSmrEMMA。新算法分为三个阶段: 第一阶段,使用方差异质性检验方法DGLM对全基因组位点进行扫描,初筛出存在潜在互作效应的QTN,称为方差异质性数量性状核苷酸(variance-heterogeneity QTN,vQTN),随后对所有显著vQTNs标记使用Hadamard 乘积,计算得到上位性对标记。第二阶段,使用SmrEMMA算法中单位点扫描模型,对上述上位性对标记和全基因组标记分别进行独立检测,得到潜在关联标记。第三阶段,将潜在加性和上位性标记联合放入多位点模型中,最终得到显著关联的主效QTNs和QTN 1.新算法利用方差异质性检验实现上位性标记矩阵降维处理,同时利用多线程并行技术和C++编码进行高维矩阵运算,保证了算法高功效的同时,大大缩短了上位性检测时间。 2.模拟研究共设置了6组标记数为10,000的不同样本量、不同总遗传率的模拟数据:样本量为800、1,000时,设置了0.6、0.8两种总遗传率;样本量为2,000时,设置了0.3、0.5两种总遗传率。每组重复100次。对于QQI的检测,新算法的平均检测功效比REMMA和PLINK分别提高了24.48%和24.32%;效应估计值的均方误差分别减少了0.16和0.42;新算法的假阳性率保持在1.17E-07~2.04E-07区间,REMMA在2.25E-07~1.60E-05区间,而PLINK在8.73E-06~1.13E-03。此外,EpiSmrEMMA算法对6组实验QQI和QTN检测运行时间之和为平均105.86秒,比REMMA快了3倍以上。 3.实际数据分析了拟南芥的9个性状,样本数量在674~1,058之间,SNP数量在19,114~21,590之间。结果显示,EpiSmrEMMA算法的平均运行时间比REMMA算法快了12倍;从基因检测能力来看,新算法挖掘到的已知基因数为29,REMMA为9,且已知基因数占显著位点数的比值是REMMA的5.62倍,而PLINK由于没有考虑到群体结构和多基因背景导致检测出的显著位点数量过于庞大。这表明EpiSmrEMMA算法挖掘基因的能力更精准、更高效。 4.将方差异质性方法与3VmrMLM关联分析方法结合对拟南芥11个开花相关性状进行了应用研究。该真实数据的样本量为199,SNP数量为216,130。共挖掘出34个与开花性状相关联的已知基因,并通过差异表达、功能富集以及单倍型差异分析,挖掘出20个候选基因,其中,AT1G12990和AT1G09950可能存在相互作用。 本研究为全基因组上位性关联分析应用到大数据集上提供了新思路,同时为挖掘与数量性状相关联的上位性互作基因提供了研究方向。 |
外文摘要: |
With the widespread application of big data and the decline in sequencing costs, genome-wide association studies (GWAS) have been extensively applied in the genetic dissection of quantitative traits in order to promote genetic development in human, animal and plant. However, compared to traditional methods for genome-wide scanning of quantitative trait nucleotides (QTNs), there are few studies on GWAS methods for epistasis in continuous quantitative traits. This is because traditional statistical methods involve single-locus scanning for all QQIs (QTN×QTN interactions) across the genome. This approach leads to an exponential increase in the number of markers, resulting in long algorithm running time, low statistical power, and high false - positive rates.In this study, we explored methods for dimensionality reduction of high-dimensional interaction combinations by applying the 3VmrMLM algorithm of the compressed variance mixed model. Meanwhile, based on the accelerated algorithm SmrEMMA (Super FASTmrEMMA), we proposed a new algorithm for epistatic association analysis of the multi-locus mixed linear model, named EpiSmrEMMA. The new algorithm is divided into three stages: In the first stage, we use the variance heterogeneity test method DGLM to scan the entire genome, preliminarily screening QTNs with potential interaction effects. These QTNs are named variance-heterogeneity QTNs (vQTNs). Subsequently, perform the Hadamard product on all significant vQTNs markers to generate epistatic pair markers. In the second stage, the single-locus model in the SmrEMMA algorithm is used to independently scan the epistatic pair markers in the first stage and the genome-wide markers. In the third stage, potential additive and epistatic markers were jointly incorporated into a multi-locus model to finally identify significantly associated major-effect QTNs and QTN×QTN interactions (QQI). The main results of this study are as follows: 1.The new algorithm achieves dimensionality reduction of the epistatic marker matrix through variance heterogeneity test, and uses multi-threaded parallel processing and C++ coding to perform high-dimensional matrix operations, ensuring high statistical power while significantly reducing the time required for epistasis detection. 2. Six sets of simulated data with 10,000 markers and different sample sizes and total heritability were set up: for sample sizes of 800 and 1,000, total heritability of 0.6 and 0.8 were set; for a sample size of 2,000, total heritability of 0.3 and 0.5 were set. Each set was repeated 100 times. For QQI detection, the new algorithm had 24.48% and 24.32% higher average power than REMMA and PLINK; the average mean squared error of effect estimates was reduced by 0.16 and 0.42, respectively; the false positive rate of the new algorithm was maintained between 1.17E-07 and 2.04E-07, while REMMA was between 2.25E-07 and 1.60E-05, and PLINK was between 8.73E-06 and 1.13E-03. Moreover, the total running time of the EpiSmrEMMA algorithm for QQI and QTN detection in the six experimental sets was an average of 105.86 seconds, which is more than three times faster than REMMA. 3. In the real data analysis of nine traits in Arabidopsis, with sample sizes ranging from 674 to 1,058 and SNP numbers ranging from 19,114 to 21,590, the average running time of the EpiSmrEMMA algorithm was 12 times faster than that of the REMMA algorithm. In terms of gene detection capability, the new algorithm identified 29 known genes, compared to 9 by REMMA, and the ratio of known genes to significant loci was 5.62 times that of REMMA. PLINK, which did not account for population structure and polygenic background, resulted in an excessively large number of significant loci. This indicates that the EpiSmrEMMA algorithm is more precise and efficient in gene mining. 4.The combination of variance heterogeneity methods and 3VmrMLM was applied to 11 flowering-related traits of 199 Arabidopsis accessions with 216,130 markers. A total of 34 known genes associated with flowering-related traits were identified, and 20 candidate genes were mined through differential expression, functional enrichment, and haplotype and phenotypic difference analyses. Among these candidates, AT1G12990 and AT1G09950 may interact with each other. This study provides a new idea for GWAS of epistasis in large datasets and offers a research direction for mining gene-by-gene interactions associated with quantitative traits. |
参考文献: |
[1] 冯建英,温阳俊,张瑾,等.植物关联分析方法的研究进展[J].作物学报,2016,42(07):945-956. [2] 冯建英,岳秀丽,倪元丽,等.多歧性状上位性关联分析的分层广义混合线性模型方法[J].南京农业大学学报,2017,40(02):211-218. [3] 王建康.数量遗传学[M].北京:科学出版社,2017. [4] 王媛.基于快速多位点随机 SNP 效应有效混合模型关联算法的加速研究[D].南京农业大学理学院,2023. [5] 朱军.数量性状基因定位的混合线性模型分析方法[J].遗传,1998(S1):139-140. [6] Abe M, Kobayashi Y, Yamamoto S, et al. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex[J]. Science (New York, N.Y.), 2005, 309(5737): 1052-1056. [7] Aschard H, Chen J, Cornelis M C, et al. Inclusion of gene-gene and gene-environment interactions unlikely to dramatically improve risk prediction for complex diseases[J]. American Journal of Human Genetics, 2012, 90(6): 962-972. [8] Atwell S, Huang Y S, Vilhjálmsson B J, et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines[J]. Nature, 2010, 465(7298): 627-631. [9] Bao Y, Song W M, Jin Y L, et al. Characterization of Arabidopsis Tubby-like proteins and redundant function of AtTLP3 and AtTLP9 in plant response to ABA and osmotic stress[J]. Plant Molecular Biology, 2014, 86(4-5): 471-483. [10] Bartlett M S. Properties of sufficiency and statistical tests[J]. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 1937. [11] Beagle B, Y Z, Sr B. A One-Penny Imputed Genome from Next-Generation Reference Panels[J]. American journal of human genetics, 2018, 103(3). [12] Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing[J]. Journal of the Royal Statistical Society: Series B (Methodological), 2018, 57(1): 289-300. [13] Besseau S, Li J, Palva E T. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2012, 63(7): 2667-2679. [14] Brown A A, Buil A, Viñuela A, et al. Genetic interactions affecting human gene expression identified by variance association mapping[J]. eLife, 2014, 3: e01381. [15] Brown M B, Forsythe A B. Robust Tests for the Equality of Variances[J]. Journal of the American Statistical Association, 1974. [16] Cai L, Ma A, Lei J, et al. METTL4-mediated N6-methyladenine DNA modification regulates thermotolerance in Arabidopsis thaliana[J]. Plant Science: An International Journal of Experimental Plant Biology, 2024, 338: 111916. [17] Cao Y, Wei P, Bailey M, et al. A versatile omnibus test for detecting mean and variance heterogeneity[J]. Genetic Epidemiology, 2014, 38(1): 51-59. [18] Carter C, Pan S, Zouhar J, et al. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins[J]. The Plant Cell, 2004, 16(12): 3285-3303. [19] Chahtane H, Zhang B, Norberg M, et al. LEAFY activity is post-transcriptionally regulated by BLADE ON PETIOLE2 and CULLIN3 in Arabidopsis[J]. The New Phytologist, 2018, 220(2): 579-592. [20] Chang Y C, Wu J T, Hong M Y, et al. GenEpi: gene-based epistasis discovery using machine learning[J]. BMC bioinformatics, 2020, 21(1): 68. [21] Chen E, Huang X, Tian Z, et al. The Genomics of Oryza Species Provides Insights into Rice Domestication and Heterosis[J]. Annual Review of Plant Biology, 2019, 70: 639-665. [22] Colby T, Matthäi A, Boeckelmann A, et al. SUMO-conjugating and SUMO-deconjugating enzymes from Arabidopsis[J]. Plant Physiology, 2006, 142(1): 318-332. [23] Collani S, Neumann M, Yant L, et al. FT Modulates Genome-Wide DNA-Binding of the bZIP Transcription Factor FD[J]. Plant Physiology, 2019, 180(1): 367-380. [24] Corty R W, Kumar V, Tarantino L M, et al. Mean-Variance QTL Mapping Identifies Novel QTL for Circadian Activity and Exploratory Behavior in Mice[J]. G3 (Bethesda, Md.), 2018, 8(12): 3783-3790. [25] Crawford L, Zeng P, Mukherjee S, et al. Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits[J]. PLoS genetics, 2017, 13(7): e1006869. [26] Curaba J, Moritz T, Blervaque R, et al. AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis[J]. Plant Physiology, 2004, 136(3): 3660-3669. [27] De Lucia F, Crevillen P, Jones A M E, et al. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(44): 16831-16836. [28] del Campillo E, Gaddam S, Mettle-Amuah D, et al. A tale of two tissues: AtGH9C1 is an endo-β-1,4-glucanase involved in root hair and endosperm development in Arabidopsis[J]. PloS One, 2012, 7(11): e49363. [29] Ding L, Yan S, Jiang L, et al. HANABA TARANU (HAN) Bridges Meristem and Organ Primordia Boundaries through PINHEAD, JAGGED, BLADE-ON-PETIOLE2 and CYTOKININ OXIDASE 3 during Flower Development in Arabidopsis[J]. PLoS genetics, 2015, 11(9): e1005479. [30] Dong X, Zhang L P, Tang Y H, et al. Arabidopsis AGAMOUS-LIKE16 and SUPPRESSOR OF CONSTANS1 regulate the genome-wide expression and flowering time[J]. Plant Physiology, 2023, 192(1): 154-169. [31] Duan H C, Wei L H, Zhang C, et al. ALKBH10B Is an RNA N6-Methyladenosine Demethylase Affecting Arabidopsis Floral Transition[J]. The Plant Cell, 2017, 29(12): 2995-3011. [32] Duan H, Schuler M A. Differential expression and evolution of the Arabidopsis CYP86A subfamily[J]. Plant Physiology, 2005, 137(3): 1067-1081. [33] Dumitrascu B, Darnell G, Ayroles J, et al. Statistical tests for detecting variance effects in quantitative trait studies[J]. Bioinformatics (Oxford, England), 2019, 35(2): 200-210. [34] Dutta A, Choudhary P, Caruana J, et al. JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against Pseudomonas syringae and flowering time[J]. The Plant Journal: For Cell and Molecular Biology, 2017, 91(6): 1015-1028. [35] Eddelbuettel D, Balamuta J J. Extending R with C++: A Brief Introduction to Rcpp[J]. The American Statistician, 2018, 72(1): 28-36. [36] Feng C, Cai X W, Su Y N, et al. Arabidopsis RPD3-like histone deacetylases form multiple complexes involved in stress response[J]. Journal of Genetics and Genomics = Yi Chuan Xue Bao, 2021, 48(5): 369-383. [37] Feng C Z, Chen Y, Wang C, et al. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development[J]. The Plant Journal: For Cell and Molecular Biology, 2014, 80(4): 654-668. [38] Fisher R A. XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance.[J]. Transactions of the Royal Society of Edinburgh, 1919, 52(2): 399-433. [39] Fligner M A, Killeen T J. Distribution-free two-sample tests for scale[J]. Journal of the American Statistical Association, 1976, 71(353): 210-213. [40] Fornara F, Gregis V, Pelucchi N, et al. The rice StMADS11-like genes OsMADS22 and OsMADS47 cause floral reversions in Arabidopsis without complementing the svp and agl24 mutants[J]. Journal of Experimental Botany, 2008, 59(8): 2181-2190. [41] Forsberg S K G, Carlborg Ö. On the relationship between epistasis and genetic variance heterogeneity[J]. Journal of Experimental Botany, 2017, 68(20): 5431-5438. [42] Gorham S R, Weiner A I, Yamadi M, et al. HISTONE DEACETYLASE 19 and the flowering time gene FD maintain reproductive meristem identity in an age-dependent manner[J]. Journal of Experimental Botany, 2018, 69(20): 4757-4771. [43] Gui J, Moore J H, Williams S M, et al. A Simple and Computationally Efficient Approach to Multifactor Dimensionality Reduction Analysis of Gene-Gene Interactions for Quantitative Traits[J]. PloS One, 2013, 8(6): e66545. [44] Gusareva E S, Carrasquillo M M, Bellenguez C, et al. Genome-wide association interaction analysis for Alzheimer’s disease[J]. Neurobiology of Aging, 2014, 35(11): 2436-2443. [45] Gyenesei A, Moody J, Laiho A, et al. BiForce Toolbox: powerful high-throughput computational analysis of gene-gene interactions in genome-wide association studies[J]. Nucleic Acids Research, 2012a, 40(Web Server issue): W628-632. [46] Gyenesei A, Moody J, Semple C A M, et al. High-throughput analysis of epistasis in genome-wide association studies with BiForce[J]. Bioinformatics (Oxford, England), 2012b, 28(15): 1957-1964. [47] Han P, García-Ponce B, Fonseca-Salazar G, et al. AGAMOUS-LIKE 17, a novel flowering promoter, acts in a FT-independent photoperiod pathway[J]. The Plant Journal: For Cell and Molecular Biology, 2008, 55(2): 253-265. [48] Hanano S, Goto K. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression[J]. The Plant Cell, 2011, 23(9): 3172-3184. [49] Hazak O, Brandt B, Cattaneo P, et al. Perception of root-active CLE peptides requires CORYNE function in the phloem vasculature[J]. EMBO reports, 2017, 18(8): 1367-1381. [50] He Y N, Peng J S, Cai Y, et al. Tonoplast-localized nitrate uptake transporters involved in vacuolar nitrate efflux and reallocation in Arabidopsis[J]. Scientific Reports, 2017, 7(1): 6417. [51] Hemani G, Theocharidis A, Wei W, et al. EpiGPU: exhaustive pairwise epistasis scans parallelized on consumer level graphics cards[J]. Bioinformatics (Oxford, England), 2011, 27(11): 1462-1465. [52] Hisanaga T, Ferjani A, Horiguchi G, et al. The ATM-dependent DNA damage response acts as an upstream trigger for compensation in the fas1 mutation during Arabidopsis leaf development[J]. Plant Physiology, 2013, 162(2): 831-841. [53] Hua J P, Xing Y Z, Xu C G, et al. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance[J]. Genetics, 2002, 162(4): 1885-1895. [54] Huang W, Mackay T F C. The Genetic Architecture of Quantitative Traits Cannot Be Inferred from Variance Component Analysis[J]. PLoS genetics, 2016, 12(11): e1006421. [55] Huh S M, Noh E K, Kim H G, et al. Arabidopsis annexins AnnAt1 and AnnAt4 interact with each other and regulate drought and salt stress responses[J]. Plant & Cell Physiology, 2010, 51(9): 1499-1514. [56] Hussain W, Campbell M T, Jarquin D, et al. Variance heterogeneity genome-wide mapping for cadmium in bread wheat reveals novel genomic loci and epistatic interactions[J]. The Plant Genome, 2020, 13(1): e20011. [57] Iñigo S, Giraldez A N, Chory J, et al. Proteasome-mediated turnover of Arabidopsis MED25 is coupled to the activation of FLOWERING LOCUS T transcription[J]. Plant Physiology, 2012, 160(3): 1662-1673. [58] Jetha K, Theißen G, Melzer R. Arabidopsis SEPALLATA proteins differ in cooperative DNA-binding during the formation of floral quartet-like complexes[J]. Nucleic Acids Research, 2014, 42(17): 10927-10942. [59] Jiang L, Zheng Z, Qi T, et al. A resource-efficient tool for mixed model association analysis of large-scale data[J]. Nature Genetics, 2019, 51(12): 1749-1755. [60] Jiang S, Xiao L, Huang P, et al. Nucleoporin Nup98 participates in flowering regulation in a CONSTANS-independent mode[J]. Plant Cell Reports, 2019, 38(10): 1263-1271. [61] Jiang Y, Reif J C. Modeling Epistasis in Genomic Selection[J]. Genetics, 2015, 201(2): 759-768. [62] Jiang Y, Schmidt R H, Zhao Y, et al. A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat[J]. Nature Genetics, 2017, 49(12): 1741-1746. [63] Jung J H, Lee H J, Ryu J Y, et al. SPL3/4/5 Integrate Developmental Aging and Photoperiodic Signals into the FT-FD Module in Arabidopsis Flowering[J]. Molecular Plant, 2016, 9(12): 1647-1659. [64] Kang H M, Sul J H, Service S K, et al. Variance component model to account for sample structure in genome-wide association studies[J]. Nature Genetics, 2010, 42(4): 348-354. [65] Kang H M, Zaitlen N A, Wade C M, et al. Efficient control of population structure in model organism association mapping[J]. Genetics, 2008, 178(3): 1709-1723. [66] Kawabe A, Matsunaga S, Nakagawa K, et al. Characterization of plant Aurora kinases during mitosis[J]. Plant Molecular Biology, 2005, 58(1): 1-13. [67] Kim H S, Abbasi N, Choi S B. Bruno-like proteins modulate flowering time via 3’ UTR-dependent decay of SOC1 mRNA[J]. The New Phytologist, 2013, 198(3): 747-756. [68] Kim J, Kim Y, Yeom M, et al. FIONA1 is essential for regulating period length in the Arabidopsis circadian clock[J]. The Plant Cell, 2008, 20(2): 307-319. [69] Koornneef M, Meinke D. The development of Arabidopsis as a model plant[J]. The Plant Journal: For Cell and Molecular Biology, 2010, 61(6): 909-921. [70] Kumar S V, Lucyshyn D, Jaeger K E, et al. Transcription factor PIF4 controls the thermosensory activation of flowering[J]. Nature, 2012, 484(7393): 242-245. [71] Laubinger S, Marchal V, Le Gourrierec J, et al. Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability[J]. Development (Cambridge, England), 2006, 133(16): 3213-3222. [72] Lazaro A, Mouriz A, Piñeiro M, et al. Red Light-Mediated Degradation of CONSTANS by the E3 Ubiquitin Ligase HOS1 Regulates Photoperiodic Flowering in Arabidopsis[J]. The Plant Cell, 2015, 27(9): 2437-2454. [73] Lee C M, Feke A, Li M W, et al. Decoys Untangle Complicated Redundancy and Reveal Targets of Circadian Clock F-Box Proteins[J]. Plant Physiology, 2018, 177(3): 1170-1186. [74]Li H, Wang M, Li W, et al. Genetic variants and underlying mechanisms influencing variance heterogeneity in maize[J]. The Plant Journal: For Cell and Molecular Biology, 2020, 103(3): 1089-1102. [75] Li M, Liu X, Bradbury P, et al. Enrichment of statistical power for genome-wide association studies[J]. BMC biology, 2014, 12: 73. [76] Li M, Zhang Y W, Xiang Y, et al. IIIVmrMLM: The R and C++ tools associated with 3VmrMLM, a comprehensive GWAS method for dissecting quantitative traits[J]. Molecular Plant, 2022a, 15(8): 1251-1253. [77] Li M, Zhang Y W, Zhang Z C, et al. A compressed variance component mixed model for detecting QTNs and QTN-by-environment and QTN-by-QTN interactions in genome-wide association studies[J]. Molecular Plant, 2022b, 15(4): 630-650. [78] Li Y, Pi L, Huang H, et al. ATH1 and KNAT2 proteins act together in regulation of plant inflorescence architecture[J]. Journal of Experimental Botany, 2012, 63(3): 1423-1433. [79] Lin K, Zhao H, Gan S, et al. Arabidopsis ELF4-like proteins EFL1 and EFL3 influence flowering time[J]. Gene, 2019, 700: 131-138. [80] Lin Y C, Kobayashi K, Wada H, et al. Phosphatidylglycerophosphate phosphatase is required for root growth in Arabidopsis[J]. Biochimica Et Biophysica Acta. Molecular and Cell Biology of Lipids, 2018, 1863(6): 563-575. [81] Lippert C, Listgarten J, Liu Y, et al. FaST linear mixed models for genome-wide association studies[J]. Nature Methods, 2011, 8(10): 833-835. [82] Listgarten J, Lippert C, Kadie C M, et al. Improved linear mixed models for genome-wide association studies[J]. Nature Methods, 2012, 9(6): 525-526. [83] Liu C, Cheng J, Zhuang Y, et al. Polycomb repressive complex 2 attenuates ABA-induced senescence in Arabidopsis[J]. The Plant Journal: For Cell and Molecular Biology, 2019, 97(2): 368-377. [84] Liu Q, Wang Q, Deng W, et al. Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2[J]. Nature Communications, 2017, 8: 15234. [85] Liu X, Huang M, Fan B, et al. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies[J]. PLoS genetics, 2016, 12(2): e1005767. [86] Liu X L, Liu L, Niu Q K, et al. Male gametophyte defective 4 encodes a rhamnogalacturonan II xylosyltransferase and is important for growth of pollen tubes and roots in Arabidopsis[J]. The Plant Journal: For Cell and Molecular Biology, 2011, 65(4): 647-660. [87] Loh P R, Tucker G, Bulik-Sullivan B K, et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts[J]. Nature Genetics, 2015, 47(3): 284-290. [88] Lopez-Arboleda W A, Reinert S, Nordborg M, et al. Global Genetic Heterogeneity in Adaptive Traits[J]. Molecular Biology and Evolution, 2021, 38(11): 4822-4831. [89] Lou Y, Zhou H S, Han Y, et al. Positive regulation of AMS by TDF1 and the formation of a TDF1-AMS complex are required for anther development in Arabidopsis thaliana[J]. The New Phytologist, 2018, 217(1): 378-391. [90] Ma Y, Shafee T, Mudiyanselage A M, et al. Distinct functions of FASCILIN-LIKE ARABINOGALACTAN PROTEINS relate to domain structure[J]. Plant Physiology, 2023, 192(1): 119-132. [91] Maier A, Schrader A, Kokkelink L, et al. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis[J]. The Plant Journal: For Cell and Molecular Biology, 2013, 74(4): 638-651. [92] Misra G, Badoni S, Parween S, et al. Genome-wide association coupled gene to gene interaction studies unveil novel epistatic targets among major effect loci impacting rice grain chalkiness[J]. Plant Biotechnology Journal, 2021, 19(5): 910-925. [93] Mockler T, Yang H, Yu X, et al. Regulation of photoperiodic flowering by Arabidopsis photoreceptors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(4): 2140-2145. [94] Moore J H. Computational analysis of gene-gene interactions using multifactor dimensionality reduction[J]. Expert Review of Molecular Diagnostics, 2004, 4(6): 795-803. [95] Moore J H, Gilbert J C, Tsai C T, et al. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility[J]. Journal of Theoretical Biology, 2006, 241(2): 252-261. [96] Nelson R M, Pettersson M E, Li X, et al. Variance heterogeneity in Saccharomyces cerevisiae expression data: trans-regulation and epistasis[J]. PloS One, 2013, 8(11): e79507. [97] Ning C, Wang D, Kang H, et al. A rapid epistatic mixed-model association analysis by linear retransformations of genomic estimated values[J]. Bioinformatics (Oxford, England), 2018, 34(11): 1817-1825. [98] Nowak K, Wójcik A M, Konopka K, et al. miR156-SPL and miR169-NF-YA Modules Regulate the Induction of Somatic Embryogenesis in Arabidopsis via LEC- and Auxin-Related Pathways[J]. International Journal of Molecular Sciences, 2024, 25(17): 9217. [99] O’Brien M, Kaplan-Levy R N, Quon T, et al. PETAL LOSS, a trihelix transcription factor that represses growth in Arabidopsis thaliana, binds the energy-sensing SnRK1 kinase AKIN10[J]. Journal of Experimental Botany, 2015, 66(9): 2475-2485. [100] Pandey S P, Roccaro M, Schön M, et al. Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis[J]. The Plant Journal: For Cell and Molecular Biology, 2010, 64(6): 912-923. [101] Park N il, Muench D G. Biochemical and cellular characterization of the plant ortholog of PYM, a protein that interacts with the exon junction complex core proteins Mago and Y14[J]. Planta, 2007, 225(3): 625-639. [102] Pérez-Amador M A, Abler M L, De Rocher E J, et al. Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis[J]. Plant Physiology, 2000, 122(1): 169-180. [103] Perochon A, Dieterle S, Pouzet C, et al. Interaction of a plant pseudo-response regulator with a calmodulin-like protein[J]. Biochemical and Biophysical Research Communications, 2010, 398(4): 747-751. [104] Phan H A, Iacuone S, Li S F, et al. The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana[J]. The Plant Cell, 2011, 23(6): 2209-2224. [105] Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. American Journal of Human Genetics, 2007, 81(3): 559-575. [106] Ranjan A, Fiene G, Fackendahl P, et al. The Arabidopsis repressor of light signaling SPA1 acts in the phloem to regulate seedling de-etiolation, leaf expansion and flowering time[J]. Development (Cambridge, England), 2011, 138(9): 1851-1862. [107] Ren W L, Wen Y J, Dunwell J M, et al. pKWmEB: integration of Kruskal-Wallis test with empirical Bayes under polygenic background control for multi-locus genome-wide association study[J]. Heredity, 2018, 120(3): 208-218. [108] Ren Z, Zheng Z, Chinnusamy V, et al. RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(12): 5669-5674. [109] Romay M C, Millard M J, Glaubitz J C, et al. Comprehensive genotyping of the USA national maize inbred seed bank[J]. Genome Biology, 2013, 14(6): R55. [110] Rönnegård L, Felleki M, Fikse F, et al. Genetic heterogeneity of residual variance - estimation of variance components using double hierarchical generalized linear models[J]. Genetics, selection, evolution: GSE, 2010, 42(1): 8. [111] Rönnegård L, Valdar W. Detecting major genetic loci controlling phenotypic variability in experimental crosses[J]. Genetics, 2011, 188(2): 435-447. [112] Sachidanandam R, Weissman D, Schmidt S C, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms[J]. Nature, 2001, 409(6822): 928-933. [113] Saha S, Perrin L, Röder L, et al. Epi-MEIF: detecting higher order epistatic interactions for complex traits using mixed effect conditional inference forests[J]. Nucleic Acids Research, 2022, 50(19): e114. [114] Schüpbach T, Xenarios I, Bergmann S, et al. FastEpistasis: a high performance computing solution for quantitative trait epistasis[J]. Bioinformatics (Oxford, England), 2010, 26(11): 1468-1469. [115] Segura V, Vilhjálmsson B J, Platt A, et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations[J]. Nature Genetics, 2012, 44(7): 825-830. [116] Seren Ü, Grimm D, Fitz J, et al. AraPheno: a public database for Arabidopsis thaliana phenotypes[J]. Nucleic Acids Research, 2017, 45(D1): D1054-D1059. [117] Shang J Y, Lu Y J, Cai X W, et al. COMPASS functions as a module of the INO80 chromatin remodeling complex to mediate histone H3K4 methylation in Arabidopsis[J]. The Plant Cell, 2021, 33(10): 3250-3271. [118] Shen G, Zhan W, Chen H, et al. Dominance and epistasis are the main contributors to heterosis for plant height in rice[J]. Plant Science: An International Journal of Experimental Plant Biology, 2014, 215-216: 11-18. [119] Shindo C, Aranzana M J, Lister C, et al. Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis[J]. Plant Physiology, 2005, 138(2): 1163-1173. [120] Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes[J]. Nature, 2007, 445(7130): 881-885. [121] Stahle M I, Kuehlich J, Staron L, et al. YABBYs and the transcriptional corepressors LEUNIG and LEUNIG_HOMOLOG maintain leaf polarity and meristem activity in Arabidopsis[J]. The Plant Cell, 2009, 21(10): 3105-3118. [122] Stephan J, Stegle O, Beyer A. A random forest approach to capture genetic effects in the presence of population structure[J]. Nature Communications, 2015, 6: 7432. [123] Stern M D, Aihara H, Cho K H, et al. Structurally related Arabidopsis ANGUSTIFOLIA is functionally distinct from the transcriptional corepressor CtBP[J]. Development Genes and Evolution, 2007, 217(11-12): 759-769. [124] Sun J, Jiang H, Xu Y, et al. The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis[J]. Plant & Cell Physiology, 2007, 48(8): 1148-1158. [125] Sun Q, Csorba T, Skourti-Stathaki K, et al. R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus[J]. Science (New York, N.Y.), 2013, 340(6132): 619-621. [126] Taylor-Teeples M, Lin L, de Lucas M, et al. An Arabidopsis gene regulatory network for secondary cell wall synthesis[J]. Nature, 2015, 517(7536): 571-575. [127] Torti S, Fornara F, Vincent C, et al. Analysis of the Arabidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering[J]. The Plant Cell, 2012, 24(2): 444-462. [128] VanRaden P M. Efficient methods to compute genomic predictions[J]. Journal of Dairy Science, 2008, 91(11): 4414-4423. [129] Visscher P M, Wray N R, Zhang Q, et al. 10 Years of GWAS Discovery: Biology, Function, and Translation[J]. American Journal of Human Genetics, 2017, 101(1): 5-22. [130] Wan X, Yang C, Yang Q, et al. BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies[J]. American Journal of Human Genetics, 2010, 87(3): 325-340. [131] Wang D, Eskridge K M, Crossa J. Identifying QTLs and Epistasis in Structured Plant Populations Using Adaptive Mixed LASSO[J]. Journal of Agricultural, Biological, and Environmental Statistics, 2011, 16(2): 170-184. [132] Wang H, Zhang F, Zeng J, et al. Genotype-by-environment interactions inferred from genetic effects on phenotypic variability in the UK Biobank[J]. Science Advances, 2019, 5(8): eaaw3538. [133] Wang M, Xu S. A coordinate descent approach for sparse Bayesian learning in high dimensional QTL mapping and genome-wide association studies[J]. Bioinformatics (Oxford, England), 2019, 35(21): 4327-4335. [134] Wang Q, Tian F, Pan Y, et al. A SUPER powerful method for genome wide association study[J]. PloS One, 2014, 9(9): e107684. [135] Wang S B, Feng J Y, Ren W L, et al. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology[J]. Scientific Reports, 2016, 6: 19444. [136] Wen Y J, Zhang H, Ni Y L, et al. Methodological implementation of mixed linear models in multi-locus genome-wide association studies[J]. Briefings in Bioinformatics, 2018, 19(4): 700-712. [137] Wen Y J, Zhang Y W, Zhang J, et al. An efficient multi-locus mixed model framework for the detection of small and linked QTLs in F2[J]. Briefings in Bioinformatics, 2019, 20(5): 1913-1924. [138] Wen Y, Zhang Yawen, Zhang J, et al. The improved FASTmr EMMA and GCIM algorithms for genome-wide association and linkage studies in large mapping populations[J]. The Crop Journal, 2020, 8(05): 723-732. [139] Winham S J, Motsinger-Reif A A. An R package implementation of multifactor dimensionality reduction[J]. BioData Mining, 2011, 4(1): 24. [140] Wood A R, Tuke M A, Nalls M A, et al. Another explanation for apparent epistasis[J]. Nature, 2014, 514(7520): E3-5. [141] Wormit A, Trentmann O, Feifer I, et al. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport[J]. The Plant Cell, 2006, 18(12): 3476-3490. [142] Wu G, Gu Y, Li S, et al. A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets[J]. The Plant Cell, 2001, 13(12): 2841-2856. [143] Xu L, Zheng S, Witzel K, et al. Chromatin attachment to the nuclear matrix represses hypocotyl elongation in Arabidopsis thaliana[J]. Nature Communications, 2024, 15(1): 1286. [144] Xu P, Chen H, Li T, et al. Blue light-dependent interactions of CRY1 with GID1 and DELLA proteins regulate gibberellin signaling and photomorphogenesis in Arabidopsis[J]. The Plant Cell, 2021, 33(7): 2375-2394. [145] Xu S. An expectation-maximization algorithm for the Lasso estimation of quantitative trait locus effects[J]. Heredity, 2010, 105(5): 483-494. [146] Yamaguchi N, Komeda Y. The role of CORYMBOSA1/BIG and auxin in the growth of Arabidopsis pedicel and internode[J]. Plant Science: An International Journal of Experimental Plant Biology, 2013, 209: 64-74. [147] Yan Y, Ham B K, Chong Y H, et al. A Plant SMALL RNA-BINDING PROTEIN 1 Family Mediates Cell-to-Cell Trafficking of RNAi Signals[J]. Molecular Plant, 2020, 13(2): 321-335. [148] Yang H, Liu J, Lin J, et al. Overexpression of CHMP7 from rapeseed and Arabidopsis causes dwarfism and premature senescence in Arabidopsis[J]. Journal of Plant Physiology, 2016, 204: 16-26. [149] Yang J, Bakshi A, Zhu Z, et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index[J]. Nature Genetics, 2015, 47(10): 1114-1120. [150] Yi N, Liu N, Zhi D, et al. Hierarchical generalized linear models for multiple groups of rare and common variants: jointly estimating group and individual-variant effects[J]. PLoS genetics, 2011, 7(12): e1002382. [151] Yoo S K, Lee J S, Ahn J H. Overexpression of AGAMOUS-LIKE 28 (AGL28) promotes flowering by upregulating expression of floral promoters within the autonomous pathway[J]. Biochemical and Biophysical Research Communications, 2006, 348(3): 929-936. [152] Young A I, Wauthier F L, Donnelly P. Identifying loci affecting trait variability and detecting interactions in genome-wide association studies[J]. Nature Genetics, 2018, 50(11): 1608-1614. [153] Yu J, Pressoir G, Briggs W H, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness[J]. Nature Genetics, 2006, 38(2): 203-208. [154] Yu S B, Li J X, Xu C G, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(17): 9226-9231. [155] Yu W, Kwon M S, Park T. Multivariate Quantitative Multifactor Dimensionality Reduction for Detecting Gene-Gene Interactions[J]. Human Heredity, 2015, 79(3-4): 168-181. [156] Yu Z, Qu X, Lv B, et al. MAC3A and MAC3B mediate degradation of the transcription factor ERF13 and thus promote lateral root emergence[J]. The Plant Cell, 2024, 36(9): 3162-3176. [157] Zhang C, Cao L, Rong L, et al. The chromatin-remodeling factor AtINO80 plays crucial roles in genome stability maintenance and in plant development[J]. The Plant Journal: For Cell and Molecular Biology, 2015, 82(4): 655-668. [158] Zhang C, Dong S S, Xu J Y, et al. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files[J]. Bioinformatics (Oxford, England), 2019, 35(10): 1786-1788. [159] Zhang F, Boerwinkle E, Xiong M. Epistasis analysis for quantitative traits by functional regression model[J]. Genome Research, 2014, 24(6): 989-998. [160] Zhang F, Chen W, Zhu Z, et al. OSCA: a tool for omic-data-based complex trait analysis[J]. Genome Biology, 2019, 20(1): 107. [161] Zhang F T, Zhu Z H, Tong X R, et al. Mixed Linear Model Approaches of Association Mapping for Complex Traits Based on Omics Variants[J]. Scientific Reports, 2015, 5: 10298. [162] Zhang J, Feng J Y, Ni Y L, et al. pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies[J]. Heredity, 2017, 118(6): 517-524. [163] Zhang X, Huang S, Zou F, et al. TEAM: efficient two-locus epistasis tests in human genome-wide association study[J]. Bioinformatics (Oxford, England), 2010, 26(12): i217-227. [164] Zhang Y, Jiang B, Zhu J, et al. Bayesian models for detecting epistatic interactions from genetic data[J]. Annals of Human Genetics, 2011, 75(1): 183-193. [165] Zhang Y M, Mao Y, Xie C, et al. Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.)[J]. Genetics, 2005, 169(4): 2267-2275. [166] Zhang Y, Shen L. CPL2 and CPL3 act redundantly in FLC activation and flowering time regulation in Arabidopsis[J]. Plant signaling & behavior, 2022, 17(1): 2026614. [167] Zhang Z, Ersoz E, Lai C Q, et al. Mixed linear model approach adapted for genome-wide association studies[J]. Nature Genetics, 2010, 42(4): 355-360. [168] Zhao N, Su X M, Liu Z W, et al. The RNA recognition motif-containing protein UBA2c prevents early flowering by promoting transcription of the flowering repressor FLM in Arabidopsis[J]. The New Phytologist, 2022, 233(2): 751-765. [169] Zhou G, Chen Y, Yao W, et al. Genetic composition of yield heterosis in an elite rice hybrid[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): 15847-15852. [170] Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies[J]. Nature Genetics, 2012, 44(7): 821-824. [171] Zybailov B, Rutschow H, Friso G, et al. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome[J]. PloS One, 2008, 3(4): e1994. |
中图分类号: | O21 |
开放日期: | 2025-05-29 |