- 无标题文档
查看论文信息

中文题名:

 马铃薯广谱抗病受体Rpi-vnt1.1识别致病疫霉的分子机制研究     

姓名:

 高楚云    

学号:

 2017202005    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090401    

学科名称:

 农学 - 植物保护 - 植物病理学    

学生类型:

 博士    

学位:

 农学博士    

学校:

 南京农业大学    

院系:

 植物保护学院    

专业:

 植物病理学    

研究方向:

 作物抗病机制    

第一导师姓名:

 董莎萌    

第一导师单位:

 南京农业大学    

完成日期:

 2020-06-17    

答辩日期:

 2020-05-31    

外文题名:

 The molecular basis of potato immune recognition to Phytophthora infestans mediated by broad-spectrum resistance receptor Rpi-vnt1.1     

中文关键词:

 致病疫霉 ; 马铃薯 ; AVRvnt1 ; Rpi-vnt1.1 ; GLYK ; 免疫反应    

外文关键词:

 Phytophthora infestans ; potato ; AVRvnt1 ; Rpi-vnt1.1 ; GLYK ; immune response    

中文摘要:

由致病疫霉(Phytophthora infestans)引起的马铃薯晚疫病是全球农业生产中的毁灭性病害之一,严重威胁茄科作物马铃薯和番茄的安全生产。由于致病疫霉在田间的变异速度与流行速度非常快,目前选育栽培的抗病品种往往在短期内就被致病疫霉克服,从而导致抗性丧失。因此,为农业生产开发更广谱且持久的马铃薯抗病基因(Rpi)迫在眉睫。植物抗病基因发挥功能基于其编码的受体蛋白对病原菌无毒蛋白(AVR)的特异性识别,解析抗病受体识别无毒蛋白的分子机制将有助于精准设计与改良农作物的抗性,为作物安全、高效生产提供绿色解决方案。从野生茄科植物(Solanum venturii)中克隆的马铃薯抗病基因Rpi-vnt1.1编码典型的NLR(Nucleotide-binding Leucine-rich Repeat)蛋白,它能通过识别致病疫霉保守的无毒蛋白AVRvnt1介导马铃薯广谱抗性。我国已经成功培育出携带Rpi-vnt1.1及其等位基因的抗病马铃薯品种,然而该抗病受体识别AVRvnt1的分子机制尚不清楚,制约了基于该广谱抗病基因的马铃薯品种在田间的大规模使用。

本研究聚焦抗病受体Rpi-vnt1.1和无毒蛋白AVRvnt1的互作分子机制,利用马铃薯和模式茄科植物-本氏烟等材料开展深入研究。以AVRvnt1的互作蛋白-叶绿体甘油酸盐激酶(glycerate 3-kinase, GLYK)是Rpi-vnt1.1识别AVRvnt1的关键因子这一发现为切入点,深入系统地解析了马铃薯抗病受体Rpi-vnt1.1识别致病疫霉AVRvnt1的分子机制,具体内容如下:

叶绿体蛋白GLYK参与Rpi-vnt1.1介导的免疫反应。为了解析Rpi-vnt1.1识别AVRvnt1并介导免疫反应的分子机制,本研究通过酵母双杂交筛库鉴定出AVRvnt1的结合蛋白之一为GLYK。酵母双杂交以及体内体外免疫沉淀实验证明AVRvnt1与GLYK互作,并且该互作反应依赖于GLYK的叶绿体转运肽(cTP)功能域。病毒介导的本氏烟基因瞬时沉默(VIGS)实验以及人工合成序列的回补表达实验证明GLYK特异性地参与Rpi-vnt1.1介导的免疫反应。本研究进一步在DesireeRpi-vnt1.1马铃薯材料中转基因导入特异性沉默GLYK基因的RNAi载体,实现了GLYK基因的稳定沉默。研究发现GLYK沉默的DesireeRpi-vnt1.1马铃薯虽然仍正常表达Rpi-vnt1.1,但不同程度地丧失了对携带AVRvnt1的致病疫霉非亲和菌株的抗性。以上结果均鉴定到了Rpi-vnt1.1介导免疫反应的关键因子GLYK,为进一步研究Rpi-vnt1.1识别AVRvnt1并介导免疫反应的分子机制提供了遗传学基础。

StGLYK遗传位点在不同光条件下存在可变启动子选择(APS)调控,导致Rpi-vnt1.1的免疫功能具有光依赖性。本研究发现Rpi-vnt1.1在光照条件下能够正常介导抗病功能,在黑暗条件下则丧失功能,而GLYK作为Rpi-vnt1.1介导免疫反应过程中的关键蛋白,其同源基因AtGLYK在拟南芥中的转录受光依赖的APS调控,推断Rpi-vnt1.1抗病功能的光依赖性与GLYK相关。本研究进一步利用5’RACE和qRT-PCR实验发现马铃薯GLYK遗传位点在不同光照条件下存在APS调控并产生StGLYKFL和StGLYKcyt两种主要转录本。其中StGLYKFL在光照条件下为主要的转录本,其产物定位于叶绿体内并维持叶绿体功能,而StGLYKcyt在黑暗条件下积累,其产物定位于细胞质并参与光呼吸分支通路。体内外互作验证发现StGLYKcyt由于丧失了完整的cTP功能域从而不能像StGLYKFL一样被AVRvnt1靶向并结合。NbGLYK沉默本氏烟上的回补表达实验表明人工合成StGLYKcyt不能恢复沉默本氏烟上Rpi-vnt1.1识别AVRvnt1产生的免疫反应。以上结果揭示了一种Rpi-vnt1.1介导光依赖性免疫反应的分子机制。

Rpi-vnt1.1的免疫功能依赖AVRvnt1和GLYK之间的互作。为了深入研究Rpi-vnt1.1识别AVRvnt1的分子机制,本研究获得了AVRvnt1的三维结构。根据结构所构建的羧基端带负电氨基酸突变体AVRvnt1DE不能与GLYK互作,也不能触发本氏烟HR。本研究进一步对AVRvnt1/GLYK复合体开展免疫共沉淀结合液质联用检测,在沉淀蛋白中鉴定出Rpi-vnt1.1蛋白LRR功能域的肽段。免疫共沉淀验证得出Rpi-vnt1.1LRR与GLYK和AVRvnt1互作而不与AVRvnt1DE互作,证明AVRvnt1/GLYK复合体是Rpi-vnt1.1激活免疫功能所必需的。为了筛选逃避Rpi-vnt1.1识别的AVRvnt1天然突变体,本研究搜集比对了来自致病疫霉及其3个近缘种中的8个AVRvnt1同源序列。本氏烟HR检测发现牵牛花疫霉中PipAVRvnt1能够完全逃避Rpi-vnt1.1的识别,进一步通过酵母双杂以及体外体内互作实验发现PipAVRvnt1仍能结合GLYK,提示Rpi-vnt1.1可能识别AVRvnt1/GLYK复合体空间结构激活免疫功能。以上结果初步揭示了马铃薯抗病基因Rpi-vnt1.1的激活机制,为未来进一步深入开展相关机制研究提供了突变体材料与研究线索。

AVRvnt1促进GLYK在细胞质中被蛋白酶体降解导致寄主更加感病。本研究发现在马铃薯和本氏烟中特异性沉默GLYK基因导致植物对致病疫霉更加感病,回补StGLYKFL促进本氏烟更加抗病,证明GLYK是植物免疫正调控因子,且因为激酶失活突变体StGLYKK222R不能促进抗病,说明GLYK调控植物免疫的功能依赖其激酶活性。进一步的细胞生物学观察和western blot检测实验发现AVRvnt1在植物中表达或者接种致病疫霉均能显著减少StGLYK在叶绿体中的积累,而利用26S蛋白酶体抑制剂bortezomib预处理植物叶片能提高StGLYK蛋白在细胞质中的积累,证明AVRvnt1阻遏StGLYK进入叶绿体,并导致其在细胞质中被26S蛋白酶体降解。为了揭示GLYK正调控植物免疫的机制,本研究通过转录组测序(RNA-seq)分析发现,GLYK沉默马铃薯中致病相关基因PR1、ERF4和激素相关基因GH3、EBF1的基因表达在被侵染1天和2天时相比对照植株显著下降。以上结果揭示了致病疫霉分泌效应分子AVRvnt1干扰叶绿体蛋白GLYK参与植物免疫反应的分子机制。

本论文系统阐明了马铃薯广谱抗病受体Rpi-vnt1.1识别致病疫霉AVRvnt1的分子机制,为进一步开发和利用抗病基因Rpi-vnt1.1,促进马铃薯晚疫病的绿色高效防控提供了重要的理论依据与实践指导。

外文摘要:

Potato late blight caused by Phytophthora infestans is one of the most devastating diseases in agricultural system, threatening the global production security of potatoes and tomatoes. Due to the rapid adaptative feature of this aggressive plant pathogen, it is difficult to effectively reduce the agricultural loss caused by P. infestans through growing the current resistant cultivars. Therefore, broad-spectrum and durable Resistance genes to P. infestans (Rpi) need to be further explored and utilized. The immune function of resistance receptors encoding by plant resistance genes rely on their specific recognition of the Phytophthora avirulence (AVR). Dissecting the mode of actions of how plant Rpi receptors recognize pathogen AVR effectors will greatly help to accurately design and improve crop resistance, providing solutions for safe and efficient crop production. The potato disease resistance gene Rpi-vnt1.1 from wild potato species (Solanum venturi) encodes a typical NLR (Nucleotide-binding Leucine-rich Repeat) receptor, and recognize AVRvnt1, a conserved AVR protein, to confer broad-spectrum resistance against most of of P. infestans filed isolates. The cultivated potato cultivars carrying Rpi-vnt1.1 are available in market. However, the molecular basis of how Rpi-vnt1.1 recognize AVRvnt1 reamins unclear, which restricts the further utilization of this broad-spectrum resistance gene.

 This study focused on the potato resistant mechanism mediated by NLR receptor Rpi-vnt1.1, and conducted research using materials such as potato and model plant Nicotiana benthamiana. Our preliminary observation that chloroplast glycerate kinase (GLYK) is the interact protein of AVRvnt1 and contributes to Rpi-vnt1.1 resistance provide key clue for this study. Our study here described a systematic and in-depth analysis of the molecular mechanism how Rpi-vnt1.1 confer potato resistance to P. infestans in a AVRvnt1 specific manner:

Plant chloroplast protein GLYK was a key game player in Rpi-vnt1.1 mediated immune response. In order to dissecting the mode of actions Rpi-vnt1.1 mediates immune response, we identified GLYK as one of AVRvnt1 binding proteins through yeast two-hybrid (Y2H) screening. Y2H, in vitro and in vivo immunoprecipitation experiments demonstrated that AVRvnt1 interacts with GLYK, and the interaction require a full sequence of the chloroplast transit peptide (cTP) of GLYK. Virus induced gene silencing (VIGS) and complementation of synthetic (Syn) GLYK sequences assays in N. benthamiana collectively confirmed that GLYK is specifically requiredfor Rpi-vnt1.1 mediated immune response. In this study, an RNAi interference vector was introduced into the DesireeRpi-vnt1.1 potato to trigger stable silencing of GLYK gene. It was found that the GLYK silenced potato lines still express Rpi-vnt1.1, but their resistance against P. infestans isolates carrying AVRvnt1 was lost to different degrees. The above results validated that GLYK is a key factor for Rpi-vnt1.1 immune function, providing a genetic frame work to further study the molecular mechanism of how Rpi-vnt1.1 - AVRvnt1 interaction.

The alternative promoter selection (APS) regulated by light conditions occurs in potato GLYK gene locus was, leding to a light-dependent resistance conferred by Rpi-vnt1.1. In this study, we found that Rpi-vnt1.1 conferred resistance to late blight depends on light and was significantly impaired in dark. The transcription of AtGLYK, potato GLYK orthologous gene, is regulated by light-dependent APS in Arabidopsis. We therefore speculated that Rpi-vnt1.1 mediated light-dependent resistance links to APS in GLYK locus. In this study, 5’RACE and qRT-PCR assays were used to validate that APS exists in potato GLYK gene locus under different light conditions, yielding two major transcript isoforms namely StGLYKFL and StGLYKcyt. StGLYKFL is the dominant transcript under light condition, and its translation product StGLYKFL are located and functions in chloroplast, while the isoform StGLYKcyt accumulates in dark condition with its product locates in cytoplasm and participates in the photorespiratory bypass. In vivo and in vitro assays found that StGLYKcyt are not able to be targeted by AVRvnt1 due to the loss of cTP domain. The genetic complementation assays on NbGLYK silenced plants validated that StGLYKcyt does not restore the Rpi-vnt1.1 immune function in GLYK silenced plants. In summary, these results revealed that the APS regulation of GLYK is one of the major mechanisms of light-dependent immune response conferred by Rpi-vnt1.1.

The immune function of Rpi-vnt1.1 depends on the physical interaction between AVRvnt1 and GLYK. In order to further explore the molecular mechanism how Rpi-vnt1.1 recognize AVRvnt1, we examined the three-dimensional crystal structure of AVRvnt1 harvested from our collaborator. AVRvnt1DE, a C-terminal negatively charged amino acid mutant, does not interact with GLYK and fails to trigger HR on N. benthamiana. The in vivo AVRvnt1/GLYK complex was further co-immunoprecipitated and submitted for Liquid chromatography-tandem mass spectrometry (LC-MS/MS) detection. The peptides from the LRR domain of the Rpi-vnt1.1 were consistently identified. Further Co-immunoprecipitation assay verified that LRR domain of the Rpi-vnt1.1(Rpi-vnt1.1LRR) interacts with GLYK and AVRvnt1, but it fails to interact with AVRvnt1DE, suggesting that AVRvnt1/GLYK complex is necessary for Rpi-vnt1.1 activated immune function. In order to screen natural AVRvnt1 allele that evade Rpi-vnt1.1 recognition, we harvested 8 AVRvnt1 allelic sequences from P. infestans and its sister species. The HR assays found that PipAVRvnt1 from Phytophthora ipomoeae completely escapes Rpi-vnt1.1 recognition. The interaction experiments such as Y2H, in vitro pull-down and in vivo Co-IP, it was found that PipAVRvnt1 still binds GLYK, suggesting that in additional to AVRvnt1/GLYK interaction, the biochemical features or and conformation of AVRvnt1/GLYK complex is required for Rpi-vnt1.1 immune function. These results not only provide insight into the activation mechanism of Rpi-vnt1.1, but also spark research clues for the future research on the mode of actions of.

 AVRvnt1 promotes GLYK degradation leading to increased host susceptibility. In this study, we found that silencing of the GLYK in potato and N. benthamiana promote plant susceptibility to P. infestans. Complementation of synthetic functional StGLYK instead of the kinase dead mutant StGLYKK222R rescured the basal immunity in N. benthamiana, indicating that GLYK is a positive immune regulator in a kinase activity dependent manner. Cell biology observations and western blot detections revealed that AVRvnt1 expression in planta or inoculation with P. infestans significantly abolished StGLYK accumulation in chloroplast. Whereas pretreatment with 26S proteasome inhibitor Bortezomib in N. benthamiana leaves increased StGLYK accumulation in the cytoplasm, indicating that AVRvnt1 blocked StGLYK uptake into chloroplast and promote its cytosolic degradation by 26S proteasome. We used transcriptome sequencing (RNA-seq) analysis revealed that the expression of PR genes PR1, ERF4 and hormone-related genes GH3, EBF1 in GLYK silenced potato at 1 dpi and 2 dpi were significantly down-regulated. These result reveals a novel mechanism that P. infestans effector protein interferes with chloroplast function and consequently impairs plant immune responses.

In summary, this thesis systematically clarified the mode of actions of how potato disease resistance receptor Rpi-vnt1.1 recognition P. infestans AVRvnt1 to activate plant immunity in a light dependent manner, providing both theoretical frame concept and practical guidance for developing and utilizing potato Rpi-vnt1.1 gene, and as such to contribute the sustainable and efficient disease management for potato late blight.

参考文献:

Abramovitch RB, Janjusevic R, Stebbins CE, and Martin GB (2006). Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity. Proceedings of the National Academy of Sciences of the United States of America 103, 2851-2856.

2. Adachi H, Contreras MP, Harant A, Wu CH, Derevnina L, Sakai T, Duggan C, Moratto E, Bozkurt TO, Maqbool A, et al. (2019). An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. eLife 8.

3. Adachi H, Nakano T, Miyagawa N, Ishihama N, Yoshioka M, Katou Y, Yaeno T, Shirasu K, and Yoshioka H (2015). WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana. The Plant cell 27, 2645-2663.

4. Allen RL, Meitz JC, Baumber RE, Hall SA, Lee SC, Rose LE, and Beynon JL (2008). Natural variation reveals key amino acids in a downy mildew effector that alters recognition specificity by an Arabidopsis resistance gene. Molecular plant pathology 9, 511-523.

5. An J, Li Q, Yang J, Zhang G, Zhao Z, Wu Y, Wang Y, and Wang W (2019). Wheat F-box protein TaFBA1 positively regulates plant drought tolerance but negatively regulates stomatal closure. Frontiers in plant science 10, 1242.

6. Armstrong MR, Whisson SC, Pritchard L, Bos JI, Venter E, Avrova AO, Rehmany AP, Bohme U, Brooks K, Cherevach I, et al. (2005). An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proceedings of the National Academy of Sciences of the United States of America 102, 7766-7771.

7. Asada K (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant physiology 141, 391-396.

8. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, and Sheen J (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977-983.

9. Ashfield T, Ong LE, Nobuta K, Schneider CM, and Innes RW (2004). Convergent evolution of disease resistance gene specificity in two flowering plant families. The Plant cell 16, 309-318.

10. Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, and Yano M (2008). Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180, 2267-2276.

11. Asselin JE, Lin J, Perez-Quintero AL, Gentzel I, Majerczak D, Opiyo SO, Zhao W, Paek SM, Kim MG, Coplin DL, et al. (2015). Perturbation of maize phenylpropanoid metabolism by an AvrE family type III effector from Pantoea stewartii. Plant physiology 167, 1117-1135.

12. Axtell MJ, and Staskawicz BJ (2003). Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112, 369-377.

13. Bachan S, and Dinesh-Kumar SP (2012). Tobacco rattle virus (TRV)-based virus-induced gene silencing. Methods in molecular biology 894, 83-92.

14. Bae W, Lee YJ, Kim DH, Lee J, Kim S, Sohn EJ, and Hwang I (2008). AKR2A-mediated import of chloroplast outer membrane proteins is essential for chloroplast biogenesis. Nature cell biology 10, 220-227.

15. Ballare CL (2014). Light regulation of plant defense. Annual review of plant biology 65, 335-363.

16. Banerjee A, and Sharkey TD (2014). Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Natural product reports 31, 1043-1055.

17. Baudin M, Schreiber KJ, Martin EC, Petrescu AJ, and Lewis JD (2020). Structure-function analysis of ZAR1 immune receptor reveals key molecular interactions for activity. The Plant journal : for cell and molecular biology 101, 352-370.

18. Belhaj K, Lin B, and Mauch F (2009). The chloroplast protein RPH1 plays a role in the immune response of Arabidopsis to Phytophthora brassicae. The Plant journal : for cell and molecular biology 58, 287-298.

19. Bernoux M, Ve T, Williams S, Warren C, Hatters D, Valkov E, Zhang X, Ellis JG, Kobe B, and Dodds PN (2011). Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell host & microbe 9, 200-211.

20. Bhandari DD, Lapin D, Kracher B, von Born P, Bautor J, Niefind K, and Parker JE (2019). An EDS1 heterodimer signalling surface enforces timely reprogramming of immunity genes in Arabidopsis. Nature communications 10, 772.

21. Bhattacharjee S, Garner CM, and Gassmann W (2013). New clues in the nucleus: transcriptional reprogramming in effector-triggered immunity. Frontiers in plant science 4, 364.

22. Birch PR, Rehmany AP, Pritchard L, Kamoun S, and Beynon JL (2006). Trafficking arms: oomycete effectors enter host plant cells. Trends in microbiology 14, 8-11.

23. Block A, Toruno TY, Elowsky CG, Zhang C, Steinbrenner J, Beynon J, and Alfano JR (2014). The Pseudomonas syringae type III effector HopD1 suppresses effector-triggered immunity, localizes to the endoplasmic reticulum, and targets the Arabidopsis transcription factor NTL9. The New phytologist 201, 1358-1370.

24. Boldt R, Edner C, Kolukisaoglu U, Hagemann M, Weckwerth W, Wienkoop S, Morgenthal K, and Bauwe H (2005). D-GLYCERATE 3-KINASE, the last unknown enzyme in the photorespiratory cycle in Arabidopsis, belongs to a novel kinase family. The Plant cell 17, 2413-2420.

25. Bonardi V, Tang S, Stallmann A, Roberts M, Cherkis K, and Dangl JL (2011). Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proceedings of the National Academy of Sciences of the United States of America 108, 16463-16468.

26. Bos JI, Chaparro-Garcia A, Quesada-Ocampo LM, McSpadden Gardener BB, and Kamoun S (2009). Distinct amino acids of the Phytophthora infestans effector AVR3a condition activation of R3a hypersensitivity and suppression of cell death. Molecular plant-microbe interactions : MPMI 22, 269-281.

27. Bos JI, Kanneganti TD, Young C, Cakir C, Huitema E, Win J, Armstrong MR, Birch PR, and Kamoun S (2006). The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana. The Plant journal : for cell and molecular biology 48, 165-176.

28. Boter M, Golz JF, Gimenez-Ibanez S, Fernandez-Barbero G, Franco-Zorrilla JM, and Solano R (2015). FILAMENTOUS FLOWER is a direct target of JAZ3 and modulates responses to jasmonate. The Plant cell 27, 3160-3174.

29. Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L, He P, Bush J, Cheng SH, and Sheen J (2010). Differential innate immune signalling via Ca(2+) sensor protein kinases. Nature 464, 418-422.

30. Caarls L, Pieterse CM, and Van Wees SC (2015). How salicylic acid takes transcriptional control over jasmonic acid signaling. Frontiers in plant science 6, 170.

31. Cai L, Cao Y, Xu Z, Ma W, Zakria M, Zou L, Cheng Z, and Chen G (2017). A transcription activator-like effector Tal7 of Xanthomonas oryzae pv. oryzicola activates rice gene Os09g29100 to suppress rice immunity. Scientific reports 7, 5089.

32. Caillaud MC, Asai S, Rallapalli G, Piquerez S, Fabro G, and Jones JD (2013). A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS biology 11, e1001732.

33. Canonne J, Marino D, Jauneau A, Pouzet C, Briere C, Roby D, and Rivas S (2011). The Xanthomonas type III effector XopD targets the Arabidopsis transcription factor MYB30 to suppress plant defense. The Plant cell 23, 3498-3511.

34. Caplan JL, Kumar AS, Park E, Padmanabhan MS, Hoban K, Modla S, Czymmek K, and Dinesh-Kumar SP (2015). Chloroplast Stromules Function during Innate Immunity. Developmental cell 34, 45-57.

35. Caplan JL, Mamillapalli P, Burch-Smith TM, Czymmek K, and Dinesh-Kumar SP (2008). Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132, 449-462.

36. Cesari S, Kanzaki H, Fujiwara T, Bernoux M, Chalvon V, Kawano Y, Shimamoto K, Dodds P, Terauchi R, and Kroj T (2014). The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. The EMBO journal 33, 1941-1959.

37. Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, et al. (2013). The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. The Plant cell 25, 1463-1481.

38. Chaiwanon J, Wang W, Zhu JY, Oh E, and Wang ZY (2016). Information integration and communication in plant growth regulation. Cell 164, 1257-1268.

39. Champouret N, Bouwmeester K, Rietman H, van der Lee T, Maliepaard C, Heupink A, van de Vondervoort PJ, Jacobsen E, Visser RG, van der Vossen EA, et al. (2009). Phytophthora infestans isolates lacking class I ipiO variants are virulent on Rpi-blb1 potato. Molecular plant-microbe interactions : MPMI 22, 1535-1545.

40. Chan KX, Phua SY, Crisp P, McQuinn R, and Pogson BJ (2016). Learning the Languages of the Chloroplast: Retrograde Signaling and Beyond. Annual review of plant biology 67, 25-53.

41. Chan SL, Mukasa T, Santelli E, Low LY, and Pascual J (2010). The crystal structure of a TIR domain from Arabidopsis thaliana reveals a conserved helical region unique to plants. Protein science : a publication of the Protein Society 19, 155-161.

42. Chang C, Yu D, Jiao J, Jing S, Schulze-Lefert P, and Shen QH (2013). Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling. The Plant cell 25, 1158-1173.

43. Chen Y, and Halterman DA (2017). Phytophthora infestans effectors IPI-O1 and IPI-O4 each contribute to pathogen virulence. Phytopathology 107, 600-606.

44. Chen Y, Liu Z, and Halterman DA (2012). Molecular determinants of resistance activation and suppression by Phytophthora infestans effector IPI-O. PLoS Pathog 8, e1002595.

45. Cheng W, Munkvold KR, Gao H, Mathieu J, Schwizer S, Wang S, Yan YB, Wang J, Martin GB, and Chai J (2011). Structural analysis of Pseudomonas syringae AvrPtoB bound to host BAK1 reveals two similar kinase-interacting domains in a type III Effector. Cell host & microbe 10, 616-626.

46. Cheng YT, Zhang L, and He SY (2019). Plant-microbe interactions facing environmental challenge. Cell host & microbe 26, 183-192.

47. Cho Y, Ohm RA, Grigoriev IV, and Srivastava A (2013). Fungal-specific transcription factor AbPf2 activates pathogenicity in Alternaria brassicicola. The Plant journal : for cell and molecular biology 75, 498-514.

48. Choi S, Jayaraman J, Segonzac C, Park HJ, Park H, Han SW, and Sohn KH (2017). Pseudomonas syringae pv. actinidiae type III effectors localized at multiple cellular compartments activate or Suppress innate immune responses in Nicotiana benthamiana. Frontiers in plant science 8, 2157.

49. Ciuffetti LM, Manning VA, Pandelova I, Betts MF, and Martinez JP (2010). Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis-wheat interaction. The New phytologist 187, 911-919.

50. Coaker G, Falick A, and Staskawicz B (2005). Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin. Science 308, 548-550.

51. Collier SM, Hamel LP, and Moffett P (2011). Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Molecular plant-microbe interactions : MPMI 24, 918-931.

52. Cui H, Tsuda K, and Parker JE (2015). Effector-triggered immunity: from pathogen perception to robust defense. Annual review of plant biology 66, 487-511.

53. Daverdin G, Rouxel T, Gout L, Aubertot JN, Fudal I, Meyer M, Parlange F, Carpezat J, and Balesdent MH (2012). Genome structure and reproductive behaviour influence the evolutionary potential of a fungal phytopathogen. PLoS Pathog 8, e1003020.

54. Day B, Dahlbeck D, Huang J, Chisholm ST, Li D, and Staskawicz BJ (2005). Molecular basis for the RIN4 negative regulation of RPS2 disease resistance. The Plant cell 17, 1292-1305.

55. De Bruyne L, Hofte M, and De Vleesschauwer D (2014). Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. Molecular plant 7, 943-959.

56. de Torres Zabala M, Littlejohn G, Jayaraman S, Studholme D, Bailey T, Lawson T, Tillich M, Licht D, Bolter B, Delfino L, et al. (2015). Chloroplasts play a central role in plant defence and are targeted by pathogen effectors. Nature plants 1, 15074.

57. Demkura PV, Abdala G, Baldwin IT, and Ballare CL (2010). Jasmonate-dependent and -independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant physiology 152, 1084-1095.

58. Dempsey DA, Vlot AC, Wildermuth MC, and Klessig DF (2011). Salicylic Acid biosynthesis and metabolism. The arabidopsis book 9, e0156.

59. Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, Osorio S, Tohge T, Fernie AR, Feussner I, et al. (2011). Metabolic priming by a secreted fungal effector. Nature 478, 395-398.

60. Dodds PN, Lawrence GJ, Catanzariti AM, Ayliffe MA, and Ellis JG (2004). The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. The Plant cell 16, 755-768.

61. Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CI, Ayliffe MA, Kobe B, and Ellis JG (2006). Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proceedings of the National Academy of Sciences of the United States of America 103, 8888-8893.

62. Dong J, and Chen W (2013). The role of autophagy in chloroplast degradation and chlorophagy in immune defenses during Pst DC3000 (AvrRps4) infection. PloS one 8, e73091.

63. Dong S, Raffaele S, and Kamoun S (2015). The two-speed genomes of filamentous pathogens: waltz with plants. Current opinion in genetics & development 35, 57-65.

64. Dutheil JY, Mannhaupt G, Schweizer G, C MKS, Munsterkotter M, Guldener U, Schirawski J, and Kahmann R (2016). A tale of genome compartmentalization: the evolution of virulence clusters in smut fungi. Genome biology and evolution 8, 681-704.

65. Endo T, Uebayashi N, Ishida S, Ikeuchi M, and Sato F (2014). Light energy allocation at PSII under field light conditions: how much energy is lost in NPQ-associated dissipation? Plant physiology and biochemistry : PPB 81, 115-120.

66. Faino L, Seidl MF, Shi-Kunne X, Pauper M, van den Berg GC, Wittenberg AH, and Thomma BP (2016). Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen. Genome research 26, 1091-1100.

67. Finkelstein R (2013). Abscisic acid synthesis and response. The arabidopsis book 11, e0166.

68. Flores-Perez U, and Jarvis P (2013). Molecular chaperone involvement in chloroplast protein import. Biochimica et biophysica acta 1833, 332-340.

69. Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, and Solano R (2009). (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nature chemical biology 5, 344-350.

70. Foster SJ, Park TH, Pel M, Brigneti G, Sliwka J, Jagger L, van der Vossen E, and Jones JD (2009). Rpi-vnt1.1, a Tm-2(2) homolog from Solanum venturii, confers resistance to potato late blight. Molecular plant-microbe interactions : MPMI 22, 589-600.

71. Gapper C, and Dolan L (2006). Control of plant development by reactive oxygen species. Plant physiology 141, 341-345.

72. Gimenez-Ibanez S, and Solano R (2013). Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Frontiers in plant science 4, 72.

73. Glazebrook J, Chen W, Estes B, Chang HS, Nawrath C, Metraux JP, Zhu T, and Katagiri F (2003). Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. The Plant journal : for cell and molecular biology 34, 217-228.

74. Gohre V, Jones AM, Sklenar J, Robatzek S, and Weber AP (2012). Molecular crosstalk between PAMP-triggered immunity and photosynthesis. Molecular plant-microbe interactions : MPMI 25, 1083-1092.

75. Grant M, and Lamb C (2006). Systemic immunity. Current opinion in plant biology 9, 414-420.

76. Grant MR, and Jones JD (2009). Hormone (dis)harmony moulds plant health and disease. Science 324, 750-752.

77. H. E. Stewart PHF, D. C. McCalmont, R. L. Wastie (1983). Correlation between glasshouse and field tests for resistance to foliage blight caused by Phytophthora infestans. Potato Research 26, 41-48.

78. Haas BJ, Kamoun S, Zody MC, Jiang RH, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T, et al. (2009). Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461, 393-398.

79. Ham JH, Majerczak DR, Nomura K, Mecey C, Uribe F, He SY, Mackey D, and Coplin DL (2009). Multiple activities of the plant pathogen type III effector proteins WtsE and AvrE require WxxxE motifs. Molecular plant-microbe interactions : MPMI 22, 703-712.

80. Hamel LP, Sekine KT, Wallon T, Sugiwaka Y, Kobayashi K, and Moffett P (2016). The chloroplastic protein THF1 interacts with the coiled-coil domain of the disease resistance protein N' and regulates light-dependent cell death. Plant physiology 171, 658-674.

81. Hanson MR, and Sattarzadeh A (2011). Stromules: recent insights into a long neglected feature of plastid morphology and function. Plant physiology 155, 1486-1492.

82. Hedtmann C, Guo W, Reifschneider E, Heiber I, Hiltscher H, van Buer J, Barsch A, Niehaus K, Rowan B, Lortzing T, et al. (2017). The plant immunity regulating F-box protein CPR1 supports plastid function in absence of pathogens. Frontiers in plant science 8, 1650.

83. Hein I, Gilroy EM, Armstrong MR, and Birch PR (2009). The zig-zag-zig in oomycete-plant interactions. Molecular plant pathology 10, 547-562.

84. Ho YP, Tan CM, Li MY, Lin H, Deng WL, and Yang JY (2013). The AvrB_AvrC domain of AvrXccC of Xanthomonas campestris pv. campestris is required to elicit plant defense responses and manipulate ABA homeostasis. Molecular plant-microbe interactions : MPMI 26, 419-430.

85. Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NH, Mattsson O, Jorgensen LB, Jones JD, Mundy J, and Petersen M (2009). Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137, 773-783.

86. Huang J, Chen L, Lu X, Peng Q, Zhang Y, Yang J, Zhang BY, Yang B, Waletich JR, Yin W, et al. (2019). Natural allelic variations provide insights into host adaptation of Phytophthora avirulence effector PsAvr3c. The New phytologist 221, 1010-1022.

87. Hui S, Hao M, Liu H, Xiao J, Li X, Yuan M, and Wang S (2019). The group I GH3 family genes encoding JA-Ile synthetase act as positive regulator in the resistance of rice to Xanthomonas oryzae pv. oryzae. Biochemical and biophysical research communications 508, 1062-1066.

88. Hurley B, Lee D, Mott A, Wilton M, Liu J, Liu YC, Angers S, Coaker G, Guttman DS, and Desveaux D (2014). The Pseudomonas syringae type III effector HopF2 suppresses Arabidopsis stomatal immunity. PloS one 9, e114921.

89. Hyun KG, Lee Y, Yoon J, Yi H, and Song JJ (2016). Crystal structure of Arabidopsis thaliana SNC1 TIR domain. Biochemical and biophysical research communications 481, 146-152.

90. Ifuku K, Yamamoto Y, Ono TA, Ishihara S, and Sato F (2005). PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant physiology 139, 1175-1184.

91. Ishiga Y, Uppalapati SR, Ishiga T, Elavarthi S, Martin B, and Bender CL (2009). The phytotoxin coronatine induces light-dependent reactive oxygen species in tomato seedlings. The New phytologist 181, 147-160.

92. Ishiga Y, Watanabe M, Ishiga T, Tohge T, Matsuura T, Ikeda Y, Hoefgen R, Fernie AR, and Mysore KS (2017). The SAL-PAP chloroplast retrograde pathway contributes to plant immunity by regulating glucosinolate pathway and phytohormone signaling. Molecular plant-microbe interactions : MPMI 30, 829-841.

93. Jarvis P, and Lopez-Juez E (2013). Biogenesis and homeostasis of chloroplasts and other plastids. Nature reviews Molecular cell biology 14, 787-802.

94. Jelenska J, van Hal JA, and Greenberg JT (2010). Pseudomonas syringae hijacks plant stress chaperone machinery for virulence. Proceedings of the National Academy of Sciences of the United States of America 107, 13177-13182.

95. Jelenska J, Yao N, Vinatzer BA, Wright CM, Brodsky JL, and Greenberg JT (2007). A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Current biology : CB 17, 499-508.

96. Jiang S, Yao J, Ma KW, Zhou H, Song J, He SY, and Ma W (2013). Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional repressors. PLoS Pathog 9, e1003715.

97. Jo KR, Kim CJ, Kim SJ, Kim TY, Bergervoet M, Jongsma MA, Visser RG, Jacobsen E, and Vossen JH (2014). Development of late blight resistant potatoes by cisgene stacking. BMC biotechnology 14, 50.

98. Jones JD, and Dangl JL (2006). The plant immune system. Nature 444, 323-329.

99. Jones JD, Witek K, Verweij W, Jupe F, Cooke D, Dorling S, Tomlinson L, Smoker M, Perkins S, and Foster S (2014). Elevating crop disease resistance with cloned genes. Philosophical transactions of the Royal Society of London Series B, Biological sciences 369, 20130087.

100. Kadota Y, Shirasu K, and Zipfel C (2015). Regulation of the NADPH oxidase RBOHD during plant immunity. Plant & cell physiology 56, 1472-1480.

101. Kamoun S (2006). A catalogue of the effector secretome of plant pathogenic oomycetes. Annual review of phytopathology 44, 41-60.

102. Kamoun S, van West P, Vleeshouwers VG, de Groot KE, and Govers F (1998). Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. The Plant cell 10, 1413-1426.

103. Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, and Terauchi R (2012). Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. The Plant journal : for cell and molecular biology 72, 894-907.

104. Katagiri F (2004). A global view of defense gene expression regulation-a highly interconnected signaling network. Current opinion in plant biology 7, 506-511.

105. Kay S, Hahn S, Marois E, Hause G, and Bonas U (2007). A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318, 648-651.

106. Kessens R, Ashfield T, Kim SH, and Innes RW (2014). Determining the GmRIN4 requirements of the soybean disease resistance proteins Rpg1b and Rpg1r using a Nicotiana glutinosa-based agroinfiltration system. PloS one 9, e108159.

107. Kim HG, Kwon SJ, Jang YJ, Nam MH, Chung JH, Na YC, Guo H, and Park OK (2013). GDSL LIPASE1 modulates plant immunity through feedback regulation of ethylene signaling. Plant physiology 163, 1776-1791.

108. Kim J, Perera BPU, and Ghimire S (2018). Enhancer-driven alternative promoters of imprinted genes. PloS one 13, e0208421.

109. Kim MG, Geng X, Lee SY, and Mackey D (2009). The Pseudomonas syringae type III effector AvrRpm1 induces significant defenses by activating the Arabidopsis nucleotide-binding leucine-rich repeat protein RPS2. The Plant journal : for cell and molecular biology 57, 645-653.

110. Kim YJ, Lin NC, and Martin GB (2002). Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell 109, 589-598.

111. Klinkenberg J (2014). Extraction of chloroplast proteins from transiently transformed Nicotiana benthamiana leaves. bio-protocol 4.

112. Knepper C, Savory EA, and Day B (2011). Arabidopsis NDR1 is an integrin-like protein with a role in fluid loss and plasma membrane-cell wall adhesion. Plant physiology 156, 286-300.

113. Konig J, Baier M, Horling F, Kahmann U, Harris G, Schurmann P, and Dietz KJ (2002). The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proceedings of the National Academy of Sciences of the United States of America 99, 5738-5743.

114. Kourelis J, and van der Hoorn RAL (2018). Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. The Plant cell 30, 285-299.

115. Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, and Chory J (2007). Signals from chloroplasts converge to regulate nuclear gene expression. Science 316, 715-719.

116. Krasileva KV, Dahlbeck D, and Staskawicz BJ (2010). Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. The Plant cell 22, 2444-2458.

117. Kruger J, Thomas CM, Golstein C, Dixon MS, Smoker M, Tang S, Mulder L, and Jones JD (2002). A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296, 744-747.

118. Lamb C, and Dixon RA (1997). The oxidative burst in plant disease resistance. Annual review of plant physiology and plant molecular biology 48, 251-275.

119. Lee D, Bourdais G, Yu G, Robatzek S, and Coaker G (2015). Phosphorylation of the plant immune regulator RPM1-INTERACTING PROTEIN4 enhances plant plasma membrane H(+)-ATPase activity and inhibits flagellin-triggered immune responses in Arabidopsis. The Plant cell 27, 2042-2056.

120. Lewis JD, Lee AH, Hassan JA, Wan J, Hurley B, Jhingree JR, Wang PW, Lo T, Youn JY, Guttman DS, et al. (2013). The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proceedings of the National Academy of Sciences of the United States of America 110, 18722-18727.

121. Lewis JD, Wu R, Guttman DS, and Desveaux D (2010). Allele-specific virulence attenuation of the Pseudomonas syringae HopZ1a type III effector via the Arabidopsis ZAR1 resistance protein. PLoS genetics 6, e1000894.

122. Lewis LA, Polanski K, de Torres-Zabala M, Jayaraman S, Bowden L, Moore J, Penfold CA, Jenkins DJ, Hill C, Baxter L, et al. (2015). Transcriptional dynamics driving MAMP-triggered immunity and pathogen effector-mediated immunosuppression in Arabidopsis leaves following infection with Pseudomonas syringae pv tomato DC3000. The Plant cell 27, 3038-3064.

123. Li G, Froehlich JE, Elowsky C, Msanne J, Ostosh AC, Zhang C, Awada T, and Alfano JR (2014a). Distinct Pseudomonas type-III effectors use a cleavable transit peptide to target chloroplasts. The Plant journal : for cell and molecular biology 77, 310-321.

124. Li J, Huang H, Zhu M, Huang S, Zhang W, Dinesh-Kumar SP, and Tao X (2019). A plant immune receptor adopts a two-step recognition mechanism to enhance viral effector perception. Molecular plant 12, 248-262.

125. Li M, Ma X, Chiang YH, Yadeta KA, Ding P, Dong L, Zhao Y, Li X, Yu Y, Zhang L, et al. (2014b). Proline isomerization of the immune receptor-interacting protein RIN4 by a cyclophilin inhibits effector-triggered immunity in Arabidopsis. Cell host & microbe 16, 473-483.

126. Li X, Kapos P, and Zhang Y (2015). NLRs in plants. Current opinion in immunology 32, 114-121.

127. Li Y, Hu X, Chen J, Wang W, Xiong X, and He C (2017). Integrated mRNA and microRNA transcriptome analysis reveals miRNA regulation in response to PVA in potato. Scientific reports 7, 16925.

128. Lim MT, and Kunkel BN (2004). The Pseudomonas syringae type III effector AvrRpt2 promotes virulence independently of RIN4, a predicted virulence target in Arabidopsis thaliana. The Plant journal : for cell and molecular biology 40, 790-798.

129. Ling Q, Broad W, Trosch R, Topel M, Demiral Sert T, Lymperopoulos P, Baldwin A, and Jarvis RP (2019). Ubiquitin-dependent chloroplast-associated protein degradation in plants. Science 363.

130. Ling Q, and Jarvis P (2015). Regulation of chloroplast protein import by the ubiquitin E3 ligase SP1 is important for stress tolerance in plants. Current biology : CB 25, 2527-2534.

131. Liu J, Elmore JM, Fuglsang AT, Palmgren MG, Staskawicz BJ, and Coaker G (2009). RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLoS biology 7, e1000139.

132. Liu J, Elmore JM, Lin ZJ, and Coaker G (2011). A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor. Cell host & microbe 9, 137-146.

133. Liu JW, Deng DY, Yu Y, Liu FF, Lin BX, Cao YJ, Hu XG, and Wu JZ (2015). In situ detection of salicylic acid binding sites in plant tissues. Luminescence : the journal of biological and chemical luminescence 30, 18-25.

134. Liu L, Sonbol FM, Huot B, Gu Y, Withers J, Mwimba M, Yao J, He SY, and Dong X (2016). Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nature communications 7, 13099.

135. Liu M, Zhang S, Hu J, Sun W, Padilla J, He Y, Li Y, Yin Z, Liu X, Wang W, et al. (2019). Phosphorylation-guarded light-harvesting complex II contributes to broad-spectrum blast resistance in rice. Proceedings of the National Academy of Sciences of the United States of America 116, 17572-17577.

136. Lorrain S, Vailleau F, Balague C, and Roby D (2003). Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends in plant science 8, 263-271.

137. Lu Y, and Yao J (2018). Chloroplasts at the crossroad of photosynthesis, pathogen infection and plant defense. International journal of molecular sciences 19.

138. Ma KW, Flores C, and Ma W (2011). Chromatin configuration as a battlefield in plant-bacteria interactions. Plant physiology 157, 535-543.

139. Ma Y, Guo H, Hu L, Martinez PP, Moschou PN, Cevik V, Ding P, Duxbury Z, Sarris PF, and Jones JDG (2018). Distinct modes of derepression of an Arabidopsis immune receptor complex by two different bacterial effectors. Proceedings of the National Academy of Sciences of the United States of America 115, 10218-10227.

140. Mackey D, Holt BF, 3rd, Wiig A, and Dangl JL (2002). RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743-754.

141. Manning VA, Chu AL, Scofield SR, and Ciuffetti LM (2010). Intracellular expression of a host-selective toxin, ToxA, in diverse plants phenocopies silencing of a ToxA-interacting protein, ToxABP1. The New phytologist 187, 1034-1047.

142. Manning VA, Chu AL, Steeves JE, Wolpert TJ, and Ciuffetti LM (2009). A host-selective toxin of Pyrenophora tritici-repentis, Ptr ToxA, induces photosystem changes and reactive oxygen species accumulation in sensitive wheat. Molecular plant-microbe interactions : MPMI 22, 665-676.

143. Maqbool A, Saitoh H, Franceschetti M, Stevenson CE, Uemura A, Kanzaki H, Kamoun S, Terauchi R, and Banfield MJ (2015). Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. eLife 4.

144. Martin GB, Frary A, Wu T, Brommonschenkel S, Chunwongse J, Earle ED, and Tanksley SD (1994). A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell death. The Plant cell 6, 1543-1552.

145. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, et al. (2010). Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466, 253-257.

146. Melotto M, Mecey C, Niu Y, Chung HS, Katsir L, Yao J, Zeng W, Thines B, Staswick P, Browse J, et al. (2008). A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. The Plant journal : for cell and molecular biology 55, 979-988.

147. Meng X, and Zhang S (2013). MAPK cascades in plant disease resistance signaling. Annual review of phytopathology 51, 245-266.

148. Mine A, Berens ML, Nobori T, Anver S, Fukumoto K, Winkelmuller TM, Takeda A, Becker D, and Tsuda K (2017). Pathogen exploitation of an abscisic acid- and jasmonate-inducible MAPK phosphatase and its interception by Arabidopsis immunity. Proceedings of the National Academy of Sciences of the United States of America 114, 7456-7461.

149. Miras S, Salvi D, Piette L, Seigneurin-Berny D, Grunwald D, Reinbothe C, Joyard J, Reinbothe S, and Rolland N (2007). Toc159- and Toc75-independent import of a transit sequence-less precursor into the inner envelope of chloroplasts. The Journal of biological chemistry 282, 29482-29492.

150. Monteiro F, and Nishimura MT (2018). Structural, functional, and genomic diversity of plant NLR proteins: an evolved resource for rational engineering of plant immunity. Annual review of phytopathology 56, 243-267.

151. Moreno JE, Tao Y, Chory J, and Ballare CL (2009). Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proceedings of the National Academy of Sciences of the United States of America 106, 4935-4940.

152. Mur LA, Laarhoven LJ, Harren FJ, Hall MA, and Smith AR (2008). Nitric oxide interacts with salicylate to regulate biphasic ethylene production during the hypersensitive response. Plant physiology 148, 1537-1546.

153. Naito K, Taguchi F, Suzuki T, Inagaki Y, Toyoda K, Shiraishi T, and Ichinose Y (2008). Amino acid sequence of bacterial microbe-associated molecular pattern flg22 is required for virulence. Molecular plant-microbe interactions : MPMI 21, 1165-1174.

154. Nakano M, and Mukaihara T (2018). Ralstonia solanacearum type III effector RipAL targets chloroplasts and induces jasmonic acid production to suppress salicylic acid-mediated defense responses in plants. Plant & cell physiology 59, 2576-2589.

155. Natesan SK, Sullivan JA, and Gray JC (2005). Stromules: a characteristic cell-specific feature of plastid morphology. J Exp Bot 56, 787-797.

156. Nemhauser JL, Hong F, and Chory J (2006). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126, 467-475.

157. Nomura H, Komori T, Kobori M, Nakahira Y, and Shiina T (2008). Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. The Plant journal : for cell and molecular biology 53, 988-998.

158. Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K, Furuichi T, Takebayashi K, Sugimoto T, Sano S, et al. (2012). Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nature communications 3, 926.

159. Ortiz D, de Guillen K, Cesari S, Chalvon V, Gracy J, Padilla A, and Kroj T (2017). Recognition of the Magnaporthe oryzae effector AVR-Pia by the decoy domain of the rice NLR immune receptor RGA5. The Plant cell 29, 156-168.

160. Padmanabhan MS, Ma S, Burch-Smith TM, Czymmek K, Huijser P, and Dinesh-Kumar SP (2013). Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity. PLoS Pathog 9, e1003235.

161. Pais M, Yoshida K, Giannakopoulou A, Pel MA, Cano LM, Oliva RF, Witek K, Lindqvist-Kreuze H, Vleeshouwers V, and Kamoun S (2018). Gene expression polymorphism underpins evasion of host immunity in an asexual lineage of the Irish potato famine pathogen. BMC evolutionary biology 18, 93.

162. Parlange F, Daverdin G, Fudal I, Kuhn ML, Balesdent MH, Blaise F, Grezes-Besset B, and Rouxel T (2009). Leptosphaeria maculans avirulence gene AvrLm4-7 confers a dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change. Molecular microbiology 71, 851-863.

163. Peart JR, Mestre P, Lu R, Malcuit I, and Baulcombe DC (2005). NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Current biology : CB 15, 968-973.

164. Pel MA (2010). Mapping, isolation and characterization of genes responsible for late blight resistance in potato.

165. Petre B, Lorrain C, Saunders DG, Win J, Sklenar J, Duplessis S, and Kamoun S (2016). Rust fungal effectors mimic host transit peptides to translocate into chloroplasts. Cell Microbiol 18, 453-465.

166. Pitino M, Allen V, and Duan Y (2018). LasDelta5315 effector induces extreme starch accumulation and chlorosis as Ca. Liberibacter asiaticus Infection in Nicotiana benthamiana. Frontiers in plant science 9, 113.

167. Poppe S, Dorsheimer L, Happel P, and Stukenbrock EH (2015). Rapidly evolving genes are key players in host specialization and virulence of the fungal wheat pathogen Zymoseptoria tritici (Mycosphaerella graminicola). PLoS Pathog 11, e1005055.

168. Potato Genome Sequencing C, Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, et al. (2011). Genome sequence and analysis of the tuber crop potato. Nature 475, 189-195.

169. Qi T, Seong K, Thomazella DPT, Kim JR, Pham J, Seo E, Cho MJ, Schultink A, and Staskawicz BJ (2018). NRG1 functions downstream of EDS1 to regulate TIR-NLR-mediated plant immunity in Nicotiana benthamiana. Proceedings of the National Academy of Sciences of the United States of America 115, E10979-E10987.

170. Qiao Y, Li HF, Wong SM, and Fan ZF (2009). Plastocyanin transit peptide interacts with Potato virus X coat protein, while silencing of plastocyanin reduces coat protein accumulation in chloroplasts and symptom severity in host plants. Molecular plant-microbe interactions : MPMI 22, 1523-1534.

171. Qutob D, Chapman BP, and Gijzen M (2013). Transgenerational gene silencing causes gain of virulence in a plant pathogen. Nature communications 4, 1349.

172. Radhika V, Kost C, Mithofer A, and Boland W (2010). Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent. Proceedings of the National Academy of Sciences of the United States of America 107, 17228-17233.

173. Raffaele S, Rivas S, and Roby D (2006). An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS letters 580, 3498-3504.

174. Ravensdale M, Bernoux M, Ve T, Kobe B, Thrall PH, Ellis JG, and Dodds PN (2012). Intramolecular interaction influences binding of the Flax L5 and L6 resistance proteins to their AvrL567 ligands. PLoS Pathog 8, e1003004.

175. Roberts MR, and Paul ND (2006). Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens. The New phytologist 170, 677-699.

176. Rodewald J, and Trognitz B (2013). Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. Molecular plant pathology 14, 740-757.

177. Rodriguez-Herva JJ, Gonzalez-Melendi P, Cuartas-Lanza R, Antunez-Lamas M, Rio-Alvarez I, Li Z, Lopez-Torrejon G, Diaz I, Del Pozo JC, Chakravarthy S, et al. (2012). A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses. Cell Microbiol 14, 669-681.

178. Rooney HCE (2005). Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308, 1783-1786.

179. Rosebrock TR, Zeng L, Brady JJ, Abramovitch RB, Xiao F, and Martin GB (2007). A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 448, 370-374.

180. Sadali NM, Sowden RG, Ling Q, and Jarvis RP (2019). Differentiation of chromoplasts and other plastids in plants. Plant cell reports 38, 803-818.

181. Salmeron JM, Oldroyd GE, Rommens CM, Scofield SR, Kim HS, Lavelle DT, Dahlbeck D, and Staskawicz BJ (1996). Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86, 123-133.

182. Sano S, Aoyama M, Nakai K, Shimotani K, Yamasaki K, Sato MH, Tojo D, Suwastika IN, Nomura H, and Shiina T (2014). Light-dependent expression of flg22-induced defense genes in Arabidopsis. Frontiers in plant science 5, 531.

183. Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C, Sklenar J, Derbyshire P, Cevik V, Rallapalli G, Saucet SB, et al. (2015). A plant immune receptor detects rathogen effectors that target WRKY transcription factors. Cell 161, 1089-1100.

184. Saunders DG, Breen S, Win J, Schornack S, Hein I, Bozkurt TO, Champouret N, Vleeshouwers VG, Birch PR, Gilroy EM, et al. (2012). Host protein BSL1 associates with Phytophthora infestans RXLR effector AVR2 and the Solanum demissum immune receptor R2 to mediate disease resistance. The Plant cell 24, 3420-3434.

185. Schotanus K, Soyer JL, Connolly LR, Grandaubert J, Happel P, Smith KM, Freitag M, and Stukenbrock EH (2015). Histone modifications rather than the novel regional centromeres of Zymoseptoria tritici distinguish core and accessory chromosomes. Epigenetics & chromatin 8, 41.

186. Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, and Staskawicz BJ (1996). Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274, 2063-2065.

187. Selote D, and Kachroo A (2010). RPG1-B-derived resistance to AvrB-expressing Pseudomonas syringae requires RIN4-like proteins in soybean. Plant physiology 153, 1199-1211.

188. Serrano I, Audran C, and Rivas S (2016). Chloroplasts at work during plant innate immunity. J Exp Bot 67, 3845-3854.

189. Seto D, Koulena N, Lo T, Menna A, Guttman DS, and Desveaux D (2017). Expanded type III effector recognition by the ZAR1 NLR protein using ZED1-related kinases. Nature plants 3, 17027.

190. Sharma SK, Bolser D, de Boer J, Sonderkaer M, Amoros W, Carboni MF, D'Ambrosio JM, de la Cruz G, Di Genova A, Douches DS, et al. (2013). Construction of reference chromosome-scale pseudomolecules for potato: integrating the potato genome with genetic and physical maps. G3 3, 2031-2047.

191. Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, and Schulze-Lefert P (2007). Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315, 1098-1103.

192. Shikata H, Hanada K, Ushijima T, Nakashima M, Suzuki Y, and Matsushita T (2014). Phytochrome controls alternative splicing to mediate light responses in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 111, 18781-18786.

193. Sinapidou E, Williams K, Nott L, Bahkt S, Tor M, Crute I, Bittner-Eddy P, and Beynon J (2004). Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis. The Plant journal : for cell and molecular biology 38, 898-909.

194. Sowden RG, Watson SJ, and Jarvis P (2018). The role of chloroplasts in plant pathology. Essays in biochemistry 62, 21-39.

195. Soyer JL, El Ghalid M, Glaser N, Ollivier B, Linglin J, Grandaubert J, Balesdent MH, Connolly LR, Freitag M, Rouxel T, et al. (2014). Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans. PLoS genetics 10, e1004227.

196. Spoel SH, and Dong X (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature reviews Immunology 12, 89-100.

197. Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, et al. (2003). NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. The Plant cell 15, 760-770.

198. Steinbrenner AD, Goritschnig S, and Staskawicz BJ (2015). Recognition and activation domains contribute to allele-specific responses of an Arabidopsis NLR receptor to an oomycete effector protein. PLoS Pathog 11, e1004665.

199. Su J, Yang L, Zhu Q, Wu H, He Y, Liu Y, Xu J, Jiang D, and Zhang S (2018). Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity. PLoS biology 16, e2004122.

200. Suarez-Rodriguez MC, Adams-Phillips L, Liu Y, Wang H, Su SH, Jester PJ, Zhang S, Bent AF, and Krysan PJ (2007). MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant physiology 143, 661-669.

201. Swiderski MR, Birker D, and Jones JD (2009). The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction. Molecular plant-microbe interactions : MPMI 22, 157-165.

202. Takken F, and Rep M (2010). The arms race between tomato and Fusarium oxysporum. Molecular plant pathology 11, 309-314.

203. Tamarkin-Ben-Harush A, Vasseur JJ, Debart F, Ulitsky I, and Dikstein R (2017). Cap-proximal nucleotides via differential eIF4E binding and alternative promoter usage mediate translational response to energy stress. eLife 6.

204. Tang D, Wang G, and Zhou JM (2017). Receptor kinases in plant-pathogen interactions: more than pattern recognition. The Plant cell 29, 618-637.

205. Taylor NL, Tan YF, Jacoby RP, and Millar AH (2009). Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome proteomes. Journal of proteomics 72, 367-378.

206. Tobias CM, Oldroyd GE, Chang JH, and Staskawicz BJ (1999). Plants expressing the Pto disease resistance gene confer resistance to recombinant PVX containing the avirulence gene AvrPto. The Plant journal : for cell and molecular biology 17, 41-50.

207. Torres MA, Dangl JL, and Jones JD (2002). Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences of the United States of America 99, 517-522.

208. Torres MA, Jones JD, and Dangl JL (2006). Reactive oxygen species signaling in response to pathogens. Plant physiology 141, 373-378.

209. Trotta A, Rahikainen M, Konert G, Finazzi G, and Kangasjarvi S (2014). Signalling crosstalk in light stress and immune reactions in plants. Philosophical transactions of the Royal Society of London Series B, Biological sciences 369, 20130235.

210. Tsuda K, and Katagiri F (2010). Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current opinion in plant biology 13, 459-465.

211. Tsuda K, Sato M, Stoddard T, Glazebrook J, and Katagiri F (2009). Network properties of robust immunity in plants. PLoS genetics 5, e1000772.

212. Tsuda K, and Somssich IE (2015). Transcriptional networks in plant immunity. The New phytologist 206, 932-947.

213. Turnbull D, Wang H, Breen S, Malec M, Naqvi S, Yang L, Welsh L, Hemsley P, Zhendong T, Brunner F, et al. (2019). AVR2 targets BSL family members, which act as susceptibility factors to suppress host immunity. Plant physiology 180, 571-581.

214. Underwood W, Zhang S, and He SY (2007). The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana. The Plant journal : for cell and molecular biology 52, 658-672.

215. Ushijima T, Hanada K, Gotoh E, Yamori W, Kodama Y, Tanaka H, Kusano M, Fukushima A, Tokizawa M, Yamamoto YY, et al. (2017). Light controls protein localization through phytochrome-mediated alternative promoter selection. Cell 171, 1316-1325 e1312.

216. van West P, Shepherd SJ, Walker CA, Li S, Appiah AA, Grenville-Briggs LJ, Govers F, and Gow NAR (2008). Internuclear gene silencing in Phytophthora infestans is established through chromatin remodelling. Microbiology 154, 1482-1490.

217. Velasquez AC, Castroverde CDM, and He SY (2018). Plant-pathogen warfare under changing climate conditions. Current biology : CB 28, R619-R634.

218. Villarejo A, Buren S, Larsson S, Dejardin A, Monne M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N, et al. (2005). Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nature cell biology 7, 1224-1231.

219. Vleeshouwers VG, Raffaele S, Vossen JH, Champouret N, Oliva R, Segretin ME, Rietman H, Cano LM, Lokossou A, Kessel G, et al. (2011). Understanding and exploiting late blight resistance in the age of effectors. Annual review of phytopathology 49, 507-531.

220. Wang CI, Guncar G, Forwood JK, Teh T, Catanzariti AM, Lawrence GJ, Loughlin FE, Mackay JP, Schirra HJ, Anderson PA, et al. (2007). Crystal structures of flax rust avirulence proteins AvrL567-A and -D reveal details of the structural basis for flax disease resistance specificity. The Plant cell 19, 2898-2912.

221. Wang G, Roux B, Feng F, Guy E, Li L, Li N, Zhang X, Lautier M, Jardinaud MF, Chabannes M, et al. (2015). The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell host & microbe 18, 285-295.

222. Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, Qi Y, Wang HW, Zhou JM, and Chai J (2019a). Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364.

223. Wang J, Wang J, Hu M, Wu S, Qi J, Wang G, Han Z, Qi Y, Gao N, Wang HW, et al. (2019b). Ligand-triggered allosteric ADP release primes a plant NLR complex. Science 364.

224. Wang KL, Li H, and Ecker JR (2002). Ethylene biosynthesis and signaling networks. The Plant cell 14 Suppl, S131-151.

225. Wang L, Chen H, Li J, Shu H, Zhang X, Wang Y, Tyler BM, and Dong S (2019c). Effector gene silencing mediated by histone methylation underpins host adaptation in an oomycete plant pathogen. Nucleic acids research.

226. Wang Q, Li T, Zhong C, Luo S, Xu K, Gu B, Meng Y, Tyler BM, and Shan W (2019d). Small RNAs generated by bidirectional transcription mediate silencing of RXLR effector genes in the oomycete Phytophthora sojae. Phytopathology Research 1.

227. Wang WH, He EM, Chen J, Guo Y, Chen J, Liu X, and Zheng HL (2016). The reduced state of the plastoquinone pool is required for chloroplast-mediated stomatal closure in response to calcium stimulation. The Plant journal : for cell and molecular biology 86, 132-144.

228. Wang WH, Yi XQ, Han AD, Liu TW, Chen J, Wu FH, Dong XJ, He JX, Pei ZM, and Zheng HL (2012). Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. J Exp Bot 63, 177-190.

229. Wang Y, Li J, Hou S, Wang X, Li Y, Ren D, Chen S, Tang X, and Zhou JM (2010). A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases. The Plant cell 22, 2033-2044.

230. Wasternack C, and Hause B (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of botany 111, 1021-1058.

231. Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, van West P, Chapman S, et al. (2007). A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450, 115-118.

232. Wiermer M, Feys BJ, and Parker JE (2005). Plant immunity: the EDS1 regulatory node. Current opinion in plant biology 8, 383-389.

233. Williams SJ, Sohn KH, Wan L, Bernoux M, Sarris PF, Segonzac C, Ve T, Ma Y, Saucet SB, Ericsson DJ, et al. (2014). Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344, 299-303.

234. Williams SJ, Yin L, Foley G, Casey LW, Outram MA, Ericsson DJ, Lu J, Boden M, Dry IB, and Kobe B (2016). Structure and function of the TIR domain from the grape NLR protein RPV1. Frontiers in plant science 7, 1850.

235. Wilton M, Subramaniam R, Elmore J, Felsensteiner C, Coaker G, and Desveaux D (2010). The type III effector HopF2Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence. Proceedings of the National Academy of Sciences of the United States of America 107, 2349-2354.

236. Witek K, Jupe F, Witek AI, Baker D, Clark MD, and Jones JD (2016). Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. Nature biotechnology 34, 656-660.

237. Wrighton KH (2018). Transcription: Shedding light on alternative promoter selection. Nature reviews Genetics 19, 4-5.

238. Wroblewski T, Spiridon L, Martin EC, Petrescu AJ, Cavanaugh K, Truco MJ, Xu H, Gozdowski D, Pawlowski K, Michelmore RW, et al. (2018). Genome-wide functional analyses of plant coiled-coil NLR-type pathogen receptors reveal essential roles of their N-terminal domain in oligomerization, networking, and immunity. PLoS biology 16, e2005821.

239. Wrzaczek M, Brosche M, and Kangasjarvi J (2013). ROS signaling loops - production, perception, regulation. Current opinion in plant biology 16, 575-582.

240. Wu CH, Abd-El-Haliem A, Bozkurt TO, Belhaj K, Terauchi R, Vossen JH, and Kamoun S (2017). NLR network mediates immunity to diverse plant pathogens. Proceedings of the National Academy of Sciences of the United States of America 114, 8113-8118.

241. Wu CH, Belhaj K, Bozkurt TO, Birk MS, and Kamoun S (2016). Helper NLR proteins NRC2a/b and NRC3 but not NRC1 are required for Pto-mediated cell death and resistance in Nicotiana benthamiana. The New phytologist 209, 1344-1352.

242. Wu Y, and Zhou JM (2013). Receptor-like kinases in plant innate immunity. J Integr Plant Biol 55, 1271-1286.

243. Wu Z, Li M, Dong OX, Xia S, Liang W, Bao Y, Wasteneys G, and Li X (2019). Differential regulation of TNL-mediated immune signaling by redundant helper CNLs. The New phytologist 222, 938-953.

244. Xiang Y, Kakani K, Reade R, Hui E, and Rochon D (2006). A 38-amino-acid sequence encompassing the arm domain of the cucumber necrosis virus coat protein functions as a chloroplast transit peptide in infected plants. Journal of virology 80, 7952-7964.

245. Xiao Y, Savchenko T, Baidoo EE, Chehab WE, Hayden DM, Tolstikov V, Corwin JA, Kliebenstein DJ, Keasling JD, and Dehesh K (2012). Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell 149, 1525-1535.

246. Xin XF, Nomura K, Aung K, Velasquez AC, Yao J, Boutrot F, Chang JH, Zipfel C, and He SY (2016). Bacteria establish an aqueous living space in plants crucial for virulence. Nature 539, 524-529.

247. Xing W, Zou Y, Liu Q, Liu J, Luo X, Huang Q, Chen S, Zhu L, Bi R, Hao Q, et al. (2007). The structural basis for activation of plant immunity by bacterial effector protein AvrPto. Nature 449, 243-247.

248. Xu RQ, Blanvillain S, Feng JX, Jiang BL, Li XZ, Wei HY, Kroj T, Lauber E, Roby D, Chen B, et al. (2008). AvrAC(Xcc8004), a type III effector with a leucine-rich repeat domain from Xanthomonas campestris pathovar campestris confers avirulence in vascular tissues of Arabidopsis thaliana ecotype Col-0. Journal of bacteriology 190, 343-355.

249. Yigal Cohen HE, Tova Sadon (1975). Light-induced inhibition of sporangial formation of Phytophthora infestans on potato leaves. Can J Bot 53, 2680-2686.

250. Yin W, Dong S, Zhai L, Lin Y, Zheng X, and Wang Y (2013). The Phytophthora sojae Avr1d gene encodes an RxLR-dEER effector with presence and absence polymorphisms among pathogen strains. Molecular plant-microbe interactions : MPMI 26, 958-968.

251. Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, Lanz C, Martin FN, Kamoun S, Krause J, et al. (2013). The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2, e00731.

252. Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, and Shirasu K (2009). Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. The Plant cell 21, 2914-2927.

253. Yuan P, Jauregui E, Du L, Tanaka K, and Poovaiah BW (2017). Calcium signatures and signaling events orchestrate plant-microbe interactions. Current opinion in plant biology 38, 173-183.

254. Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J, et al. (2007). A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell host & microbe 1, 175-185.

255. Zhang X, Bernoux M, Bentham AR, Newman TE, Ve T, Casey LW, Raaymakers TM, Hu J, Croll TI, Schreiber KJ, et al. (2017). Multiple functional self-association interfaces in plant TIR domains. Proceedings of the National Academy of Sciences of the United States of America 114, E2046-E2052.

256. Zhang Y, Song G, Lal NK, Nagalakshmi U, Li Y, Zheng W, Huang PJ, Branon TC, Ting AY, Walley JW, et al. (2019). TurboID-based proximity labeling reveals that UBR7 is a regulator of N NLR immune receptor-mediated immunity. Nature communications 10, 3252.

257. Zheng XY, Zhou M, Yoo H, Pruneda-Paz JL, Spivey NW, Kay SA, and Dong X (2015). Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid. Proceedings of the National Academy of Sciences of the United States of America 112, 9166-9173.

258. Zhong Z, Marcel TC, Hartmann FE, Ma X, Plissonneau C, Zala M, Ducasse A, Confais J, Compain J, Lapalu N, et al. (2017). A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. The New phytologist 214, 619-631.

259. Zhu M, Jiang L, Bai B, Zhao W, Chen X, Li J, Liu Y, Chen Z, Wang B, Wang C, et al. (2017). The intracellular immune receptor Sw-5b confers broad-spectrum resistance to tospoviruses through recognition of a conserved 21-amino acid viral effector epitope. The Plant cell 29, 2214-2232.

260. Zhu S, Li Y, Vossen JH, Visser RG, and Jacobsen E (2012). Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic research 21, 89-99.

261. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, and Felix G (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749-760.

262. Zipfel C, and Oldroyd GE (2017). Plant signalling in symbiosis and immunity. Nature 543, 328-336.

中图分类号:

 S43    

开放日期:

 2020-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式