- 无标题文档
查看论文信息

中文题名:

 农宅直销模式下基于成熟度的水蜜桃采摘配送与双渠道定价研究    

姓名:

 卞贝    

学号:

 2018112037    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 120100    

学科名称:

 管理学 - 管理科学与工程(可授管理学、工学学位) - 管理科学与工程    

学生类型:

 硕士    

学位:

 管理学硕士    

学校:

 南京农业大学    

院系:

 信息管理学院    

专业:

 管理科学与工程    

研究方向:

 农产品物流    

第一导师姓名:

 江亿平    

第一导师单位:

 南京农业大学    

完成日期:

 2021-04-06    

答辩日期:

 2021-05-27    

外文题名:

 Peach picking-distribution and dual-channel pricing based on maturity under farm-to-door mode    

中文关键词:

 鲜果物流 ; 成熟度 ; 采摘配送 ; 双渠道定价 ; 时空网络    

外文关键词:

 Fresh fruit logistics ; Maturity ; Picking and distribution ; Dual-channel pricing ; Time-space network    

中文摘要:

       随着消费水平升级与鲜果零售业态变革,农宅直销因其流通环节少与直线化经营的特点,成为现代鲜果供应链体系发展的重要模式。在此模式下,考虑到鲜果后熟性与易腐性特征,如何综合集成成熟度与物流销售环节决策,建立高效协同的采摘配送与销售体系,成为鲜果供应链领域共同关注的热点问题。基于此,本文在农宅直销模式下,以具有显著后熟特性的水蜜桃为例,以降低水蜜桃流通损耗与农户经营效益为研究目标,以基于成熟度的水蜜桃采摘配送与双渠道定价为重点研究问题,以揭示水蜜桃成熟度与采摘配送定价决策的耦合关系为突破口,按照“识别问题—定义问题—解决问题”的研究思路,围绕着“成熟度演化性—决策时空性—渠道交互性”的水蜜桃流通销售内在要求,运用模糊分类、时空网络、交替方向乘子法和消费者行为等理论方法,开展对水蜜桃成熟度判别方法、基于成熟度的水蜜桃采摘配送联合优化模型与求解算法,以及基于成熟度的水蜜桃双渠道定价决策研究。具体研究工作如下:
       (1)针对鲜果成熟度区间的模糊性与不确定性,以江苏省无锡市阳山镇“阳山蜜露”水蜜桃为例,研究基于聚核模糊分类的多维指标水蜜桃成熟度判别问题。首先识别水蜜桃成熟过程中影响显著的内部与外部指标,构建多维指标数据集;其次运用模糊分类理论,引入模糊区间重叠度调整隶属度函数属性参数,建立半梯半岭型水蜜桃成熟隶属度函数;最后提出聚核权规则融合相邻成熟区间重要信息,以降低相邻成熟区间的混淆性,构建基于聚核模糊分类的水蜜桃成熟度判别模型,为水蜜桃后续采摘配送与定价决策提供了科学可靠的理论基础。
       (2)针对水蜜桃成熟度演化性与订单履行时空耦合性,研究基于成熟度的水蜜桃采摘配送联合优化问题。首先挖掘采摘配送过程中成熟度与时间的关联关系,构建成熟度随时间演化模型;其次从时间与空间双重维度,明确成熟度与采摘配送决策的耦合性,应用时空网络理论方法,构建基于成熟度的水蜜桃采摘配送联合优化模型;最后针对水蜜桃成熟度、时空关联度和决策变量耦合特征,提出了基于交替方向乘子法的模型求解算法,为制定水蜜桃高质高效采摘配送计划提供了有效的建模方法。
       (3)针对水蜜桃采后成熟品质下降和货架期短特征,研究基于成熟度的水蜜桃双渠道定价问题。首先挖掘水蜜桃货架期内品质下降规律,构建基于成熟度的水蜜桃品质效用函数;其次针对水蜜桃“线上+线下”销售渠道特征,分析不同渠道成本效益差异性,引入水蜜桃品质效用函数,从捆绑定价管理视角,构建基于成熟度的水蜜桃双渠道定价模型;最后面向不同成熟度特征鲜果与消费群体,开展数值实验与仿真分析,为制定水蜜桃最优捆绑定价策略提供了科学的决策工具。
       本论文研究为农宅直销模式下水蜜桃采摘配送与定价决策问题提供了新的理论方法,提出的水蜜桃成熟度判别方法、采摘配送联合优化方法、双渠道定价方法,为形成创新的鲜果采摘配送与销售模式奠定了理论基础,对实现鲜果产销降本减耗增效、促进农产品上行体系建设、全面推进乡村振兴战略发展,具有重要的理论价值与实践意义。

外文摘要:

       With the development of Internet technology and mobile payment, the farm-to-door mode with fewer intermediate links is crucial for modern fresh fruit supply chain system development. Considering the postharvest maturity characteristics and perishability of fresh fruit, an efficient collaboration of picking-distribution and marketing system is a hot research problem in academic communities. This thesis integrates the fresh fruit maturity and optimization decisions to establish a modern fresh fruit supply chain system.
       This thesis concentrates on peach picking-distribution and dual-channel pricing under farm-to-door mode, which has the significant postharvest maturity characteristic. The aim of this thesis is to reduce the decay cost and increase farmers’ income. The breakthrough of this thesis is the collaborative optimization condition between peach maturity and picking-distribution and pricing decisions. The thesis adopts a problem-solution approach with three steps that problem recognition, problem definition and problem solution. The research methodologies include fuzzy classification, time-space network, alternating direction method of multipliers and consumer behavior. This thesis investigates the peach maturity discrimination method, integrated picking and distribution method, and dual-channel pricing method by analyzing the maturity evolution, spatial-temporal decisions and channel interaction. In details, the studying works focus on three parts given below.
       (1) This thesis proposes a fuzzy classification with kernel clustering by using multi-dimensional indexes for ‘Yangshan Milu’ peach to reduce the fuzzy and uncertainty of maturity interval. Firstly, the significant indexes influencing peach maturity are identified to establish a multi-dimensional index data set. Then, the peach maturity membership functions of semi-ladder and semi-ridge are formulated based on fuzzy classification theory. The attribute parameters of the membership functions are adjusted by introducing the overlap degree of fuzzy regions. Finally, a weight vector group of kernel clustering is proposed to merge information at adjacent stages, which could improve the discrimination performance of peach maturity. This research achievement provides a scientific and reliable basis for peach picking-distribution and pricing decisions.
       (2) This thesis investigates the integrated optimization approach for peach picking and distribution based on maturity with consideration of maturity evolution and spatial-temporal decisions. First, the relationship between maturity and time is captured to formulate the peach maturity model. Then, the collaborative optimization condition between maturity and picking-distribution decisions is identified to develop a joint optimization model in the time-space network for peach picking and distribution based on maturity. Finally, an efficient algorithm based on alternating direction method of multipliers is designed to solve the proposed model. This research achievement provides an effective method for making optimal picking and distribution decisions.
       (3) This thesis addresses the dual-channel pricing problem for peach based on maturity with consideration of quality deterioration and multiple marketing channels. Firstly, the maturity quality deterioration trend in peach shelf life is investigated to formulate the quality utility function. Then, the cost-benefit differences between online and offline channels are analyzed to develop the dual-channel pricing model for peach. Finally, numerical experiments are carried out for fresh fruits and consumer groups with different characteristics. This research achievement provides a decision-making tool for the optimal peach bundle pricing strategy.
       In summary, this thesis provides an effective decision-making approach to assist peach picking-distribution and dual-channel pricing based on maturity under farm-to-door mode. The research achievements contain the peach maturity discrimination method, integrated picking and distribution model and solution algorithm, and dual-channel pricing strategy. These achievements could innovate the modern operation of fresh fruit supply chain, compress intermediate links for fresh fruit distributed to the upside, and advance rural vitalization on all fronts. Therefore, this thesis not only has great value theoretically, but also has high significance practically.

参考文献:

[1] 中国经济网. 别让农产品“漏撒”在“最先一公里”[EB/OL]. [2021-04-09]. http://views.ce.cn/view/ent/202104/09/t20210409_36455237.shtml?utm_source=UfqiNews.

[2] 胡逸磊, 姜洪喆, 周宏平, 等. 水果成熟度近红外光谱及高光谱成像无损检测研究进展[J]. 食品工业科技, 2020:1-12. DOI:10.13386/j.issn1002-0306.2020070074.

[3] 王铁伟, 赵瑶, 孙宇馨, 等. 基于数据平衡深度学习的不同成熟度冬枣识别[J]. 农业机械学报, 2020, 51(S1):457-463.

[4] 邹小波, 张俊俊, 黄晓玮, 等. 基于音频和近红外光谱融合技术的西瓜成熟度判别[J]. 农业工程学报, 2019, 35(09):301-307.

[5] 曹晓峰, 任惠如, 李幸芝, 等. 高光谱技术结合特征波长/光谱指数对冬枣成熟度可视化判别[J]. 光谱学与光谱分析, 2018, 38(07):2175-2182.

[6] 向阳, 林洁雯, 李亚军, 等. 芒果双面成熟度在线检测分级系统[J]. 农业工程学报, 2019, 35(10):259-266.

[7] Tu S Q, Xue Y J, Zheng C, et al. Detection of passion fruits and maturity classification using Red-Green-Blue Depth images[J]. Biosystems Engineering, 2018, 175:156-167.

[8] El-Bendary N, El Hariri E, Hassanien A E, et al. Using machine learning techniques for evaluating tomato ripeness[J]. Expert Systems with Applications, 2015, 42(4):1892-1905.

[9] Wan P, Toudeshki A, Tan H Q, et al. A methodology for fresh tomato maturity detection using computer vision[J]. Computers and Electronics in Agriculture, 2018, 146:43-50.

[10] Tan K Z, Lee W S, Gan H, et al. Recognising blueberry fruit of different maturity using histogram oriented gradients and colour features in outdoor scenes[J]. Biosystems Engineering, 2018, 176:59-72.

[11] 刘阳泰, 董庆利, 秦智轩, 等. 基于Android智能手机图像分析判定香蕉成熟阶段[J]. 食品与发酵工业, 2016, 42(01):212-218.

[12] Khojastehnazhand M, Mohammadi V, Minaei S. Maturity detection and volume estimation of apricot using image processing technique[J]. Scientia Horticulturae, 2019, 251:247-251.

[13] Kaur H, Sawhney B K, Jawandha S K. Evaluation of plum fruit maturity by image processing techniques[J]. Journal of Food Science and Technology, 2018, 55(8):3008-3015.

[14] Zhang M S, Zhang B, Li H, et al. Determination of bagged ‘Fuji’ apple maturity by visible and near-infrared spectroscopy combined with a machine learning algorithm[J]. Infrared Physics & Technology, 2020, 111:103529. DOI:10.1016/j.infrared.2020.103529.

[15] Blakey R J. Evaluation of avocado fruit maturity with a portable near-infrared spectrometer[J]. Postharvest Biology and Technology, 2016, 121: 101-105.

[16] Jie D F, Zhou W H, Wei X. Nondestructive detection of maturity of watermelon by spectral characteristic using NIR diffuse transmittance technique[J]. Scientia Horticulturae, 2019, 257:108718. DOI:10.1016/j.scienta.2019.108718.

[17] 黄玉萍, Renfu Lu, 戚超, 等. 基于空间可分辨光谱的番茄成熟度判别方法研究[J]. 光谱学与光谱分析, 2018, 38(07):2183-2188.

[18] 薛建新, 张淑娟, 张晶晶. 基于高光谱成像技术的沙金杏成熟度判别[J]. 农业工程学报, 2015, 31(11):300-307.

[19] 蒋浩, 张初, 刘飞, 等. 基于高光谱图像多光谱参数的草莓成熟度识别[J]. 光谱学与光谱分析, 2016, 36(05):1423-1427.

[20] 兰海鹏, 贾富国, 唐玉荣, 等. 库尔勒香梨成熟度量化评价方法[J]. 农业工程学报, 2015, 31(05):325-330.

[21] Xiao H, Li A, Li M Y, et al. Quality assessment and discrimination of intact white and red grapes from Vitis vinifera L. at five ripening stages by visible and near-infrared spectroscopy[J]. Scientia Horticulturae, 2018, 233:99-107.

[22] Li X L, Wei Y Z, Xu J, et al. SSC and pH for sweet assessment and maturity classification of harvested cherry fruit based on NIR hyperspectral imaging technology[J]. Postharvest Biology and Technology, 2018, 143:112-118.

[23] Phuangsombut K, Phuangsombut A, Terdwongworakul A. Combination of visible reflectance and acoustic response to improve non-destructive assessment of maturity and indirect prediction of internal quality of red-fleshed pomelo[J]. International Journal of Food Science and Technology, 2021, 56(2):936-944.

[24] 孙静涛, 马本学, 董娟, 等. 高光谱技术结合特征波长筛选和支持向量机的哈密瓜成熟度判别研究[J]. 光谱学与光谱分析, 2017, 37(07):2184-2191.

[25] 赵娟, 全朋坤, 马敏娟, 等. 富士苹果采收成熟度光谱无损预测模型对比分析[J]. 农业机械学报, 2018, 49(12):347-354.

[26] 徐赛, 陆华忠, 周志艳, 等. 基于理化指标和电子鼻的果园荔枝成熟度识别方法[J]. 农业机械学报, 2015, 46(12):226-232.

[27] Costa D D, Mesa N F O, Freire M S, et al. Development of predictive models for quality and maturation stage attributes of wine grapes using vis-nir reflectance spectroscopy[J]. Postharvest Biology and Technology, 2019, 150:166-178.

[28] Scalisi A, Pelliccia D, O'Connell M G. Maturity prediction in yellow peach (Prunus persica L.) cultivars using a fluorescence spectrometer[J]. Sensors, 2020, 20(22):6555. DOI:10.3390/s20226555.

[29] 马佳佳, 王克强. 水果品质光学无损检测技术研究进展[J]. 食品工业科技, 2021:1-15.

[30] Teerachaichayut S, Ho H T. Non-destructive prediction of total soluble solids, titratable acidity and maturity index of limes by near infrared hyperspectral imaging[J]. Postharvest Biology and Technology, 2017, 133:20-25.

[31] Zhu Q B, He C L, Lu R F, et al. Ripeness evaluation of ‘Sun Bright’ tomato using optical absorption and scattering properties[J]. Postharvest Biology and Technology, 2015, 103:27-34.

[32] 依绍华. 提升我国农产品物流体系运行质量的思考与建议[J]. 价格理论与实践, 2020(05):13-16.

[33] Soto-Silva W E, Nadal-Roig E, González-Araya M C, et al. Operational research models applied to the fresh fruit supply chain[J]. European Journal of Operational Research, 2016, 251(2):345-355.

[34] Han J W, Zuo M, Zhu W Y, et al. A comprehensive review of cold chain logistics for fresh agricultural products: Current status, challenges, and future trends[J]. Trends in Food Science & Technology, 2021, 109:536-551.

[35] 陈军, 曹群辉, 肖红. 基于生长价值跟踪的生鲜农产品采收销售模型[J]. 中国管理科学, 2012, 20(S2):621-626.

[36] Sethanan K, Neungmatcha W. Multi-objective particle swarm optimization for mechanical harvester route planning of sugarcane field operations[J]. European Journal of Operational Research, 2016, 252(3):969-984.

[37] Stray B J, van Vuuren J H, Bezuidenhout C N. An optimisation-based seasonal sugarcane harvest scheduling decision support system for commercial growers in South Africa[J]. Computers and Electronics in Agriculture, 2012, 83:21-31.

[38] Busato P, Berruto R. Minimising manpower in rice harvesting and transportation operations[J]. Biosystems Engineering, 2016, 151:435-445.

[39] Jena S D, Poggi M. Harvest planning in the Brazilian sugar cane industry via mixed integer programming[J]. European Journal of Operational Research, 2013, 230(2):374-384.

[40] Amaruchkul K. Planning migrant labor for green sugarcane harvest: A stochastic logistics model with dynamic yield prediction[J]. Computers & Industrial Engineering, 2021, 154:107016. DOI:10.1016/j.cie.2020.107016.

[41] Gómez-Lagos J E, González-Araya M C, Soto-Silva W E, et al. Optimizing tactical harvest planning for multiple fruit orchards using a metaheuristic modeling approach[J]. European Journal of Operational Research, 2021, 290(1):297-312.

[42] Ali O, Verlinden B, Van Oudheusden D. Infield logistics planning for crop-harvesting operations[J]. Engineering Optimization, 2009, 41(2):183-197.

[43] Bohle C, Maturana S, Vera J. A robust optimization approach to wine grape harvesting scheduling[J]. European Journal of Operational Research, 2010, 200(1):245-252.

[44] Herrera-Caceres C, Perez-Galarce F, Alvarez-Miranda E, et al. Optimization of the harvest planning in the olive oil production: A case study in Chile[J]. Computers and Electronics in Agriculture, 2017, 141:147-159.

[45] Plessen M G. Coupling of crop assignment and vehicle routing for harvest planning in agriculture[J]. Artificial Intelligence in Agriculture, 2019, 2:99-109.

[46] Lamsal K, Jones P C, Thomas B W. Harvest logistics in agricultural systems with multiple, independent producers and no on-farm storage[J]. Computers & Industrial Engineering, 2016, 91:129-138.

[47] Ahumada O, Villalobos J R. Operational model for planning the harvest and distribution of perishable agricultural products[J]. International Journal of Production Economics, 2011, 133(2):677-687.

[48] Kusumastuti R D, Donk D P V, Teunter R. Crop-related harvesting and processing planning: A review[J]. International Journal of Production Economics, 2016, 174:76-92.

[49] 王邦兆, 李慧. 生鲜农产品同城配送复杂网络布局设计[J]. 统计与决策, 2019, 35(12):40-44.

[50] 杨华龙, 计莹峰, 刘斐斐. 生鲜农产品物流网络节点布局优化[J]. 大连海事大学学报, 2010, 36(03):47-49.

[51] 狄卫民, 岳耀雪, 陈国民. 有配送能力限制的易腐农产品配送中心选址方法[J]. 计算机应用研究, 2013, 30(01):202-205.

[52] Ge H T, Goetz S, Canning P, et al. Optimal locations of fresh produce aggregation facilities in the United States with scale economies[J]. International Journal of Production Economics, 2018, 197:143-157.

[53] 肖建华, 王飞, 白焕新, 等. 基于非等覆盖半径的生鲜农产品配送中心选址[J]. 系统工程学报, 2015, 30(03):406-416.

[54] 魏洁, 王佳鑫. 生鲜农产品多配送中心连续选址FCM-ISA算法及应用[J]. 运筹与管理, 2019, 28(11):85-90.

[55] Liu S, Chan F T S, Chung S H. A study of distribution center location based on the rough sets and interactive multi-objective fuzzy decision theory[J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(2):426-433.

[56] 付朝晖, 刘长石. 生鲜电商配送的开放式时变车辆路径问题研究[J]. 计算机工程与应用, 2021, 57(01):271-278.

[57] Ma Z J, Wu Y, Dai Y. A combined order selection and time-dependent vehicle routing problem with time widows for perishable product delivery[J]. Computers & Industrial Engineering, 2017, 114:101-113.

[58] 邵举平, 曹倩, 沈敏燕, 等. 生鲜农产品配送中带时窗的VRP模型与算法[J]. 工业工程与管理, 2015, 20(01):122-127.

[59] Liu L, Wang H, Xing S H. Optimization of distribution planning for agricultural products in logistics based on degree of maturity[J]. Computers and Electronics in Agriculture, 2019, 160:1-7.

[60] 冀巨海, 张璇. 考虑取送作业的生鲜农产品配送路径优化模型与算法[J]. 系统科学学报, 2019, 27(01):130-135.

[61] 夏扬坤, 邓永东, 庞燕, 等. 带客户分级和需求可拆分的生鲜车辆路径问题[J]. 计算机集成制造系统, 2021:1-19.

[62] 张文峰, 梁凯豪. 生鲜农产品冷链物流网络节点和配送的优化[J]. 系统工程, 2017, 35(01):119-123.

[63] Hsiao Y H, Chen M C, Chin C L. Distribution planning for perishable foods in cold chains with quality concerns: Formulation and solution procedure[J]. Trends in Food Science & Technology, 2017, 61:80-93.

[64] 陈久梅, 周楠, 王勇. 生鲜农产品多隔室冷链配送车辆路径优化[J]. 系统工程, 2018, 36(08):106-113.

[65] Li Y, Lim M K, Tseng M L. A green vehicle routing model based on modified particle swarm optimization for cold chain logistics[J]. Industrial Management & Data Systems, 2019, 119(3):473-494.

[66] Shi Y, Zhou Y J, Ye W H, et al. A relative robust optimization for a vehicle routing problem with time-window and synchronized visits considering greenhouse gas emissions[J]. Journal of Cleaner Production, 2020, 275:124112. DOI:10.1016/j.jclepro.2020.124112.

[67] Chen J M, Dan B, Shi J. A variable neighborhood search approach for the multi-compartment vehicle routing problem with time windows considering carbon emission[J]. Journal of Cleaner Production, 2020, 277:123932. DOI:10.1016/j.jclepro.2020.123932.

[68] 宁涛, 苟涛, 刘向东. 考虑低碳约束的生鲜农产品冷链物流策略仿真研究[J]. 系统仿真学报, 2021:1-11.

[69] 丁秋雷, 姜洋, 王文娟, 等. 鲜活农产品冷链物流配送的干扰管理模型研究[J]. 系统工程理论与实践, 2017, 37(09):2320-2330.

[70] 朱佳翔, 江涛涛, 蔡建飞, 等. 考虑市场时变需求的生鲜农产品配送模糊多目标决策研究[J]. 软科学, 2015, 29(11):135-139.

[71] 姚源果, 贺盛瑜. 基于交通大数据的农产品冷链物流配送路径优化研究[J]. 管理评论, 2019, 31(04):240-253.

[72] Zhang D F, Cai S F, Ye F R, et al. A hybrid algorithm for a vehicle routing problem with realistic constraints[J]. Information Sciences, 2017, 394:167-182.

[73] 方文婷, 艾时钟, 王晴, 等. 基于混合蚁群算法的冷链物流配送路径优化研究[J]. 中国管理科学, 2019, 27(11):107-115.

[74] 陈军, 许茂增. 感观质量影响需求的生鲜农产品定价策略研究[J]. 管理学报, 2012, 9(11):1648-1652.

[75] Hsieh T P, Dye C Y. Optimal dynamic pricing for deteriorating items with reference price effects when inventories stimulate demand[J]. European Journal of Operational Research, 2017, 262(1):136-150.

[76] 陈军, 但斌. 基于降价预期的生鲜农产品定价策略研究[J]. 管理工程学报, 2011, 25(03):43-47.

[77] Wang X J, Li D. A dynamic product quality evaluation based pricing model for perishable food supply chains[J]. Omega, 2012, 40(6):906-917.

[78] 杨磊, 肖小翠, 张智勇. 需求依赖努力水平的生鲜农产品供应链最优定价策略[J]. 系统管理学报, 2017, 26(01):142-153.

[79] 岳柳青, 刘咏梅, 朱桂菊. 零售商主导的生鲜双渠道供应链协调契约研究[J]. 软科学, 2016, 30(08):123-128.

[80] 刘洋, 王利艳. 果蔬生鲜类农产品O2O、单一线上、单一线下3种运作模式的定价策略对比研究[J]. 世界农业, 2017(08):217-226.

[81] Ye T F, Sun H. Price-setting newsvendor with strategic consumers[J]. Omega, 2016, 63:103-110.

[82] 王磊, 但斌. 考虑零售商保鲜和消费者效用的生鲜农产品供应链协调[J]. 运筹与管理, 2015, 24(05):44-51.

[83] 王磊, 但斌. 基于消费者选择行为的生鲜农产品保鲜和定价策略研究[J]. 管理学报, 2014, 11(03):449-454.

[84] 朱桂阳, 贾涛, 林峰. 考虑产品新鲜度及策略型消费的供应链两阶段模型及策略研究[J]. 工业工程与管理, 2019, 24(01):87-95.

[85] 徐兵, 邱芳. 基于消费者选择和产品平均新鲜度的生鲜农产品两阶段定价研究[J]. 工业工程与管理, 2020:1-10.

[86] Fan T J, Xu C, Tao F. Dynamic pricing and replenishment policy for fresh produce[J]. Computers & Industrial Engineering, 2020, 139:106127. DOI:10.1016/j.cie.2019.106127.

[87] Feng L, Chan Y L, Cárdenas-Barrón L E. Pricing and lot-sizing polices for perishable goods when the demand depends on selling price, displayed stocks, and expiration date[J]. International Journal of Production Economics, 2017, 185:11-20. DOI:10.1016/j.ijpe.2016.12.017.

[88] 王宪杰, 刘朋辉, 王淑云. 具有Weibull生存死亡特征的冷链品库存补货定价策略研究[J]. 运筹与管理, 2017, 26(01):45-52.

[89] Rabbani M, Zia N P, Rafiei H. Joint optimal dynamic pricing and replenishment policies for items with simultaneous quality and physical quantity deterioration[J]. Applied Mathematics and Computation, 2016, 287-288:149-160.

[90] Qin Y Y, Wang J J, Wei C M. Joint pricing and inventory control for fresh produce and foods with quality and physical quantity deteriorating simultaneously[J]. International Journal of Production Economics, 2014, 152:42-48.

[91] 王淑云, 姜樱梅, 牟进进. 基于新鲜度的冷链一体化库存与定价联合决策[J]. 中国管理科学, 2018, 26(07):132-141.

[92] Yan B, Chen X X, Cai C Y, et al. Supply chain coordination of fresh agricultural products based on consumer behavior[J]. Computers & Operations Research, 2020, 123:105038. DOI:10.1016/j.cor.2020.105038.

[93] 唐跃武, 范体军, 刘莎. 考虑策略性消费者的生鲜农产品定价和库存决策[J]. 中国管理科学, 2018, 26(11):105-113.

[94] Fang Y, Jiang Y P, Han X X. Bundle pricing decisions for fresh products with quality deterioration[J]. Journal of Food Quality, 2018:1595807. DOI:10.1155/2018/1595807.

[95] Li R H, Teng J T. Pricing and lot-sizing decisions for perishable goods when demand depends on selling price, reference price, product freshness, and displayed stocks[J]. European Journal of Operational Research, 2018, 270(3):1099-1108.

[96] 梁喜, 何荣双. 不同直销渠道下生鲜农产品双渠道供应链定价策略[J]. 世界农业, 2019(09):69-81.

[97] Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.

[98] Schr?der T, Krüger K, Kümmerlen F. Image processing based deflagration detection using fuzzy logic classification[J]. Fire Safety Journal, 2014, 65:1-10.

[99] Shankar B U, Meher S K, Ghosh A. Wavelet-fuzzy hybridization: Feature-extraction and land-cover classification of remote sensing images[J]. Applied Soft Computing, 2011, 11(3):2999-3011.

[100] Caesarendra W, Wijaya T, Tjahjowidodo T, et al. Adaptive neuro-fuzzy inference system for deburring stage classification and prediction for indirect quality monitoring[J]. Applied Soft Computing, 2018, 72:565-578.

[101] Kundu S, Chen J. Fuzzy logic or Lukasiewicz logic: A clarification[J]. Fuzzy Sets and Systems, 1998, 95(3):369-379.

[102] Mon D L, Cheng C H. Fuzzy system reliability analysis for components with different membership functions[J]. Fuzzy Sets and Systems, 1994, 64(2):145-157.

[103] Irion A. Fuzzy rules and fuzzy functions: A combination of logic and arithmetic operations for fuzzy numbers[J]. Fuzzy Sets and Systems, 1998, 99(1):49-56.

[104] White W W, Bomberault A M. A network algorithm for empty freight car allocation[J]. IBM Systems Journal, 1969, 8(2):147-169.

[105] Glowinski, R., Marroco, A. Sur l’approximation, par éléments finis d’ordre un, et la résolution, par Pénalisation-Dualité d’une classe de problèmes de Dirichlet non linéaires[J]. Revue Fran?aise d'automatique, informatique, recherche opérationnelle. Analyse Numérique, 1975, 9(R2):41-76.

[106] Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation[J]. Computers & Mathematics with Applications, 1976, 2(1):17-40.

[107] Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[M]. Boston: Now Publishers Inc, 2011:1-128.

[108] Huang S, Li P Y, Wu Q W, et al. ADMM-based distributed optimal reactive power control for loss minimization of DFIG-based wind farms[J]. International Journal of Electrical Power & Energy Systems, 2020, 118:105827. DOI:10.1016/j.ijepes.2020.105827.

[109] Zhang Q, Lusby R M, Shang P, et al. Simultaneously re-optimizing timetables and platform schedules under planned track maintenance for a high-speed railway network[J]. Transportation Research Part C: Emerging Technologies, 2020, 121:102823. DOI:10.1016/j.trc.2020.102823.

[110] Luan X J, De Schutter B, Meng L Y, et al. Decomposition and distributed optimization of real-time traffic management for large-scale railway networks[J]. Transportation Research Part B: Methodological, 2020, 141:72-97.

[111] Liu B, Li Y M, Xu Z L. Manifold regularized matrix completion for multi-label learning with ADMM[J]. Neural Networks, 2018, 101:57-67.

[112] Guan L, Yang Z H, Li D S, et al. pdlADMM: An ADMM-based framework for parallel deep learning training with efficiency[J]. Neurocomputing, 2021, 435:264-272.

[113] Rahman T, Qu Z H, Namerikawa T. Improving rate of convergence via gain adaptation in multi-agent distributed ADMM framework[J]. IEEE Access, 2020, 8:80480-80489.

[114] Liu Q H, Shen X Y, Gu Y T. Linearized ADMM for nonconvex nonsmooth optimization with convergence analysis[J]. IEEE Access, 2019, 7:76131-76144.

[115] Chen C C, Chen C W, Tung Y C. Exploring the consumer behavior of intention to purchase green products in belt and road countries: An empirical analysis[J]. Sustainability, 2018, 10(3). DOI:10.3390/su10030854.

[116] Zhao J, Xue F, Khan S, et al. Consumer behaviour analysis for business development[J]. Aggression and Violent Behavior, 2021:101591. DOI:10.1016/j.avb.2021.101591.

[117] 种晓丽, 张金隆, 满青珊, 等. 基于消费者效用的移动服务定价策略研究[J]. 管理学报, 2011, 8(12):1823-1830.

[118] 周姝君. 基于消费者效用的生鲜电商农产品定价策略研究[D]. 西安:西安电子科技大学, 2019.

[119] Liu Q, van Ryzin G J. Strategic capacity rationing to induce early purchases[J]. Management Science, 2008, 54(6):1115-1131.

[120] 李宗活, 杨文胜, 司银元, 等. 短视型与策略型消费者并存的双渠道两阶段动态定价策略[J]. 系统工程理论与实践, 2019, 39(08):2080-2090.

[121] Spadaro D, Droby S. Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists[J]. Trends in Food Science & Technology, 2016, 47:39-49.

[122] Goel N, Sehgal P. Fuzzy classification of pre-harvest tomatoes for ripeness estimation-An approach based on automatic rule learning using decision tree[J]. Applied Soft Computing, 2015, 36:45-56.

[123] Ruan J H, Shi Y. Monitoring and assessing fruit freshness in IOT-based e-commerce delivery using scenario analysis and interval number approaches[J]. Information Sciences, 2016, 373:557-570.

[124] 高新会. 考虑模糊时间和成熟度的跨区域鲜果配送路径优化研究[D]. 杨凌:西北农林科技大学, 2020.

[125] 中华人民共和国商业部. SB/T 10090-1992 鲜桃[S]. 北京:中国标准出版社, 1992.

[126] 徐惠荣, 李青青. 皇冠梨糖度可见/近红外光谱在线检测模型传递研究[J]. 农业机械学报, 2017, 48(09):312-317.

[127] Sanaeifar A, Bakhshipour A, de la Guardia M. Prediction of banana quality indices from color features using support vector regression[J]. Talanta, 2016, 148:54-61.

[128] 马常阳, 张小栓, 朱志强, 等. 基于多元回归的鲜食葡萄保鲜技术效果评估[J]. 农业机械学报, 2015, 46(01):216-223.

[129] 卢中山, 张楠, 杜世伟, 等. 基于模糊理论的猪胴体喷淋作业参数优选[J]. 南京农业大学学报, 2017, 40(04):750-757.

[130] 林致通, 张东霞, 雷雯, 等. 基于模糊数学与感官质构分析建立鲜凉皮食用品质评价标准[J]. 食品与发酵工业, 2020, 46(07):225-233.

[131] 刘思峰, 张红阳, 杨英杰. “最大值准则”决策悖论及其求解模型[J]. 系统工程理论与实践, 2018, 38(07):1830-1835.

[132] 孟祥忍, 王恒鹏, 吴鹏, 等. 低温蒸煮牛肉品质评价模型的构建与分析[J]. 食品科学技术学报, 2020, 38(01):88-96.

[133] Khojastehnazhand M, Mohammadi V, Minaei S. Maturity detection and volume estimation of apricot using image processing technique[J]. Scientia Horticulturae, 2019, 251:247-251.

[134] Kecman V. Learning and soft computing, support vector machines, neural networks, and fuzzy logic models[M]. Cambridge: MIT Press, 2001.

[135] Gon?alves R G, Couto J, Almeida D P F. On-tree maturity control of peach cultivars: Comparison between destructive and nondestructive harvest indices[J]. Scientia Horticulturae, 2016, 209:293-299.

[136] van Boekel M A J S. Kinetic aspects of the Maillard reaction: A critical review[J]. Nahrung-Food, 2001, 45(3):150-159.

[137] Zhang W, Lv Z Z, Shi B, et al. Evaluation of quality changes and elasticity index of kiwifruit in shelf life by a nondestructive acoustic vibration method[J]. Postharvest Biology and Technology, 2021, 173:111398. DOI:10.1016/j.postharvbio.2020.111398.

[138] Koulamas C. Common due date assignment with generalized earliness/tardiness penalties[J]. Computers & Industrial Engineering, 2017, 109:79-83.

[139] Zhang W Y, Chen Z X, Zhang S, et al. Composite multi-objective optimization on a new collaborative vehicle routing problem with shared carriers and depots[J]. Journal of Cleaner Production, 2020, 274:122593. DOI:10.1016/j.jclepro.2020.122593

[140] Kaddani S, Vanderpooten D, Vanpeperstraete J M, et al. Weighted sum model with partial preference information: Application to multi-objective optimization[J]. European Journal of Operational Research, 2017, 260(2):665-679.

[141] Sheu J B. An emergency logistics distribution approach for quick response to urgent relief demand in disasters[J]. Transportation Research Part E: Logistics and Transportation Review, 2007, 43(6):687-709.

[142] Yao Y, Zhu X N, Dong H Y, et al. ADMM-based problem decomposition scheme for vehicle routing problem with time windows[J]. Transportation Research Part B: Methodological, 2019, 129:156-174.

[143] Paul G W, Guiltinan J P. Marketing management: Strategies and programs[M]. New York: McGraw-Hill, 1988:427.

[144] 周慧娟. 水蜜桃采后生理及贮藏保鲜技术研究[D]. 南京:南京农业大学, 2009.

[145] Liu Y D, Zhang Y, Jiang X G, et al. Detection of the quality of juicy peach during storage by visible/near infrared spectroscopy[J]. Vibrational Spectroscopy, 2020, 111:103152. DOI:10.1016/j.vibspec.2020.103152.

[146] 罗湖桥. 基于温度管理的农超对接生鲜农产品定价研究[D]. 广州: 广州大学, 2020.

[147] Fang Y, Jiang Y P, Han X X. Bundle pricing decisions for fresh products with quality deterioration[J]. Journal of Food Quality, 2018:1595807. DOI:10.1155/2018/1595807.

[148] Hua G W, Wang S Y, Cheng T C E. Price and lead time decisions in dual-channel supply chains[J]. European Journal of Operational Research, 2010, 205(1):113-126.

[149] Wu S Y, Hitt L M, Chen P Y, et al. Customized bundle pricing for information goods: A nonlinear mixed-integer programming approach[J]. Management Science, 2008, 54(3):608-622.

[150] Mccardle K F, Rajaram K, Tang C S. Bundling retail products: Models and analysis[J]. European Journal of Operational Research, 2007, 177(2):1197-1217.

中图分类号:

 F32    

开放日期:

 2021-06-11    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式