中文题名: | 油菜茎基溃疡病免疫诱抗剂筛选及新疆主栽品种抗性评价 |
姓名: | |
学号: | 2022102003 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 090401 |
学科名称: | 农学 - 植物保护 - 植物病理学 |
学生类型: | 硕士 |
学位: | 农学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 植物检疫与入侵生物学 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2025-04-03 |
答辩日期: | 2025-05-27 |
外文题名: | Screening of Immune Inducers Against Phoma Stem Canker and Evaluation of Resistance in Main Cultivars of Oilseed Rape in Xinjiang |
中文关键词: | |
外文关键词: | Leptosphaeria maculans ; Plant Immune Elicitors ; Cultivar Resistance Screening ; Transcriptome Analysis |
中文摘要: |
油菜(Brassica napus L.)是我国种植面积最大的油料作物。据预测,到2025年,我国油菜的种植面积将达到1.2亿亩左右,产量预计可达1800万吨。近年来,油菜茎基溃疡病在全球范围内肆虐,导致严重的经济损失。我国长期以来对加拿大油菜籽依赖程度较高,然而,我国口岸检疫部门已多次在进口的油菜籽中检测出油菜茎基溃疡病菌,这使得该病害传入我国的风险日益加剧。此外,受中加贸易摩擦影响,自2025年起,中国对加拿大菜籽油加征100%关税,导致供应不稳定。在这一背景下,我国愈加倾向于培育和发展本地油菜品种,以确保国内油菜籽供应安全。因此,我们应积极选择和推广具有抗性的本地油菜品种,提高油菜的自给率,降低对外依赖。同时,应选用高效且低毒的新型生物农药,例如植物免疫诱抗剂,并制定综合防治策略,以保障我国油菜产业的稳定与安全。 本研究筛选了可以有效控制油菜茎基溃疡病的植物免疫诱抗剂及具有抗性的新疆主要栽培品种。对不同植物免疫诱抗剂的抗病机制进行了初步探究,为有效防治田间油菜茎基溃疡病及减少化学农药使用造成的环境污染提供了理论依据。此外,通过品种抗性筛选试验,从转录水平深入分析了油菜在病原菌侵入时的响应机制,揭示了油菜应对茎基溃疡病侵染的主要途径。这不仅为解析油菜茎基溃疡病的抗病关键通路提供了重要参考,也为挖掘油菜抗病基因、揭示抗病分子机制奠定了理论基础,最终为田间病害防控和抗病品种培育提供了有力支撑。主要研究结果如下: 1.实验结果表明,BABA和水杨酸不仅能够促使油菜自身产生对油菜茎基溃疡病的抗病性,降低病害发生的频率,还能提升油菜的生长量。采用喷雾法处理油菜的防治效果优于灌根法,且在不同的时间间隔内,BABA和水杨酸诱导的抗性均展现出良好的防治效果。抑制效果呈现出先增加后减小的趋势,其中BABA和水杨酸在第四天达到最佳防治效果。这两种物质通过激发油菜内源性超氧化物歧化酶(SOD)、过氧化物酶(POD)、苯丙氨酸解氨酶(PAL)等防御酶的反应,并调节与抗病相关的基因(如PR1、EDS1、SOD、PAL、F8)的表达,进而抑制茎基溃疡病对油菜的侵染。 2.本研究针对新疆主要油菜品种进行了抗茎基溃疡病等级鉴定,筛选出感病品种(中油杂19号)和抗病品种(新油17号)。通过观察抗感病品种接种Leptosphaeria maculans 的侵染过程,发现抗病品种新油17号在接种第四天时,菌丝才开始向叶片内部扩展,其侵染程度显著低于感病品种中油杂19号在接种第二天的情况。感病品种中油杂19号在接种第二天即开始出现叶片组织被菌丝侵入的现象,到第四天叶片组织已完全被菌丝侵入。随后,我们对病原菌侵染前后新油17号和中油杂19号油菜的生理生化指标进行动态监测,并采用转录组测序技术对两种不同抗性油菜材料在接种茎基溃疡病菌后的第0、2、3、4 d的差异表达基因进行了聚类分析。结果表明,新油17能够迅速识别病原菌的侵入,通过提高PAL、POD的活性,激活茉莉酸(JA)信号通路,迅速识别病原菌细胞壁释放的几丁质寡糖(COs),并启动防御反应,从而抑制过量活性氧(ROS)积累,削弱SA/JA通路的拮抗防御,增强气孔关闭以限制病原侵入,积极应对病原体的侵染。病菌侵染中油杂19号后的POD和PAL活性反应较弱,导致脂质过氧化或膜结构受损,为病原菌提供了碳源,促进了脂解作用,加剧了组织损伤,并表现出较慢的防御反应。PR1的过度积累导致能量耗竭或激发超敏反应,进一步加速了组织坏死,抑制了乙烯(ET)介导的防御响应,削弱了对病原的物理屏障建立及系统性抗性的诱导,使病害侵染加重。 本文初步探究了对油菜茎基溃疡病有防治效果的植物免疫诱抗剂的抗病机制,此外还通过品种抗性筛选试验,从转录水平深入分析了油菜在病原菌侵入时的响应机制,为油菜茎基溃疡病的的防控和抗病品种的培育提供了有力支持。 |
外文摘要: |
Brassica napus L.(oilseed rape) is the most widely cultivated oilseed crop in China. It is projected that by 2025, the cultivation area of oilseed rape in China will reach approximately 12 million mu, with an estimated yield of 18 million tons. In recent years, stem canker disease (caused by Leptosphaeria maculans) has caused severe economic losses globally. China has long relied heavily on rapeseed imports from Canada. However, Chinese port quarantine authorities have repeatedly detected L. maculans in imported Canadian rapeseed, significantly increasing the risk of disease introduction. Coupled with recent trade disputes between China and Canada, including the imposition of a 100% tariff on Canadian rapeseed oil scheduled for 2025, supply instability has intensified. Consequently, China is increasingly prioritizing the development of locally bred rapeseed varieties to ensure domestic supply security. Therefore, it is imperative to select and promote disease-resistant local oilseed rape varieties to enhance self-sufficiency and reduce dependency on foreign imports. Additionally, adopting high-efficacy, low-toxicity biopesticides—such as plant immunity inducers—and formulating integrated management strategies are critical to safeguarding the stability and security of China’s rapeseed industry. This study screened plant immune elicitors that can effectively control phoma stem canker and the main cultivated varieties with resistance in Xinjiang. This study conducted a preliminary exploration of the disease resistance mechanisms of different plant immune elicitors, which provides a theoretical basis for the effective prevention and control of phoma stem canker in the field and reducing the environmental pollution caused by the use of pesticides. In addition, through the variety resistance screening test, the response mechanism of rapeseed when invaded by pathogens was deeply analyzed at the transcriptional level, and the main pathways for rapeseed to respond to the infection of phoma stem canker were screened out. This not only provides an important reference for analyzing the key disease resistance pathways of phoma stem canker but also lays a solid theoretical foundation for mining for disease resistance genes of oilseed rape and improving its disease resistance, providing strong support for the prevention and control of phoma stem canker and the cultivation of disease-resistant varieties. The main research results are as follows: 1. The experimental results show that both BABA and salicylic acid can not only promote oilseed rape to generate its own resistance to phoma stem canker and reduce he disease incidence but also increase the growth of oilseed rape. The control effect of spraying is better than that of root irrigation. Within different time intervals, the resistance induced by BABA and salicylic acid both show good control effects. The inhibitory effect showed a trend of first increasing and then decreasing, with BABA and salicylic acid achieve the best control effect on day 4. These two substances inhibit the infection of oilseed rape by stem canker (Phoma stem canker) by stimulating the activity of endogenous defense enzymes such as superoxide dismutase (SOD), peroxidase (POD), and phenylalanine ammonia-lyase (PAL) in oilseed rape, and regulating the expression of disease resistance-related genes (such as PR1, EDS1, SOD, PAL, and F8). 2. This study identified the grades of resistance to phoma stem canker for the main rapeseed varieties in Xinjiang, and screened out the susceptible variety (China Oil Hybrid No. 19) and the resistant variety (Xinjiang oil No. 17). By observing the infection process of the resistant and susceptible varieties inoculated with L. maculans, we found that in the resistant variety Xinjiang oil No. 17, the hyphae began to expand into the leaves only on the fourth day after inoculation, and its infection degree was significantly lower than that of the susceptible variety China Oil Hybrid No. 19 on the second day after inoculation. In the susceptible variety China Oil Hybrid No. 19, the phenomenon of hyphae invading the leaf tissue began on the second day after inoculation, and by the fourth day, the leaf tissue had been completely invaded by the hyphae. Subsequently, we dynamically monitored the physiological and biochemical indexes of Xinjiang oil No. 17 and China Oil Hybrid No. 19 rapeseed before and after the pathogen infection, and used transcriptome sequencing to analyze the differentially expressed genes of the two oilseed rape materials with different resistances at 0, 2, 3, and 4 d after inoculation with the pathogen of phoma stem canker. The results show that Xinjiang oil No. 17 can quickly recognize the invasion of the pathogen. By increasing the activities of PAL and POD, it activates the jasmonic acid (JA) signaling pathway, quickly recognizes the chitin oligosaccharides (COs) released from the cell wall of the pathogen, and initiates a defense response, thereby inhibiting the accumulation of excessive reactive oxygen species (ROS), weakening the antagonistic defense of the SA/JA pathway, enhancing the stomatal closure to limit the invasion of the pathogen, and actively responding to the infection of the pathogen. After the pathogen infects China Oil Hybrid No. 19, the activity responses of POD and PAL were weak, leading to lipid peroxidation or damage to the membrane structure, providing a carbon source for the pathogen, promoting lipolysis, exacerbating tissue damage, and showing a slow defense response. The excessive accumulation of PR1 leads to energy depletion or triggers a hypersensitive response, further accelerating tissue necrosis, inhibiting the ethylene (ET)-mediated defense response, weakening the establishment of the physical barrier against the pathogen and the induction of systemic resistance, and aggravating the disease infection. This paper explored the disease resistance mechanism of plant immune elicitors with preventive and control effects against phoma stem canker of oilseed rape. In addition, through variety resistance screening tests, this study deeply analyzed the response mechanism of oilseed rape during pathogen invasion at the transcriptional level, thereby providing strong support for the prevention and control of phoma stem canker and the breeding of disease-resistant varieties. |
参考文献: |
[1] 陈雷.新疆伊犁地区春油菜种质资源生态适应性研究及综合评价[D].阿拉尔:塔里木大学,2021. [2] 陈璐莹,郑经武,韩少杰.组学与基因编辑技术在植物-线虫互作研究中的应用与进展[J].植物保护,2024,50(06):10-19+30. [3] 陈三凤,李季伦.几丁质酶研究历史和发展前景[J].微生物学通报,1993,(03):156-160. [4] 丁志祥,姚永红,敬廷桃,易婧.植物诱导抗病性及其在果蔬上的初步应用概述[J].南方农业,2016,10(10):70-73. [5] 郭文博,李海峰,温云梦,等.新疆阿克苏地区春油菜品种鉴选及综合评价[J].干旱地区农业研究,2024,42(06):19-26+60. [6] 李芳,陈建明,陈忠其,等.植物免疫诱抗剂对番茄灰霉病和早疫病的抑菌效果[J].农药,2016,55(3):214-216. [7] 刘聪,邓宇宏,刘选明,等.过氧化氢酶在植物生长发育和胁迫响应中的功能研究进展[J].生命科学研究,2023,27(02):128-138. [8] 刘亚奇.甘蓝型油菜抗根肿病生理生化响应及差异表达基因分析[D].成都:四川农业大学,2023. [9] 刘艳潇,祝一鸣,周而勋.植物免疫诱抗剂的作用机理和应用研究进展[J].分子植物育种,2020,18(03):1020-1026. [10] 欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及其调控[J].植物生理学通讯,1988,(03):9-16. [11] 邱德文.植物免疫诱抗剂的研究进展与应用前景[J].中国农业科技导报,2014,16(01):39-45. [12] 任军荣,李殿荣.春油菜生产中的几个问题[J].种子世界,2007,(09):56-57. [13] 沙伟,任巍巍,马天意.脂氧合酶基因在植物中的研究进展[J].分子植物育种,2019,17(24):8102-8107. [14] 宋培玲,Malgorzata Jedryczka,郝丽芬,等.中国油菜对黑胫病的抗性评价及抗病基因推导研究[J].华北农学报,2015,30(04):59-65. [15] 宋培玲,燕孟娇,张键,等.不同杀菌剂对油菜黑胫病菌分生孢子萌发及菌丝生长的抑制作用[J].北方农业学报,2018,46(03):70-75. [16] 宋培玲.油菜黑胫病抗性鉴定及防治研究[D].呼和浩特:内蒙古大学,2015:69-78. [17] 万宣伍,田卉,张伟,等.植物诱导抗性的机理及应用[J].植物医学,2022,1(01):18-25. [18] 王炳楠,王双超,檀贝贝,等.大丽轮枝菌蛋白激发子PevD1诱导的烟草对烟草花叶病毒(TMV)系统获得性抗性及其分子机制[J].农业生物技术学报,2012,20(02):188-195. [19] 王汉中,殷艳.我国油料产业形势分析与发展对策建议[J].中国油料作物学报,2014,36(03):414-421. [20] 王庆彬,王洪凤,耿全政,等.植物免疫诱抗剂—ZNC(智能聪)的功效研究及应用前景分析[J].肥料与健康,2020,47(02):36-39. [21] 王振华,杨武,赵晖,等.加拿大进境油菜籽茎基溃疡病菌的检测与鉴定[J].华中农业大学学报,2011,30(01):66-69. [22] 许铜硕,刘太国,刘博,等.转录组测序及其在植物病原菌、植物与真菌互作研究中的应用与进展[J].植物保护,2020,46(05):13-17. [23] 杨波,王源超.植物免疫诱抗剂的应用研究进展[J].中国植保导刊,2019,39(02):24-32. [24] 杨普云,李萍,王战鄂,等.植物免疫诱抗剂氨基寡糖素的应用效果与前景分析[J].中国植保导刊,2013,33(03):20-21. [25] 杨永青,宋培玲,郝丽芬,等.油菜黑胫病及其防控措施综述[J].北方农业学报,2019,47(04):73-80. [26] 杨宇红,陈霄,谢丙炎.β-氨基丁酸诱导植物抗病作用及其机理[J].农药学学报,2005,(01):7-13. [27] 易建平,周国梁,印丽萍,等.进境澳大利亚油菜籽中茎基溃疡病菌的检测[J].植物病理学报,2010,40(06):628-631. [28] 张慧丽,李雪莲,陈先锋,等.进境澳大利亚大麦夹杂油菜茎基溃疡病菌的检疫鉴定[J].植物保护,2021,47(04):52-58. [29] 张薇,杨秀芬,邱德文,等.激活蛋白PeaT1诱导烟草对TMV的系统抗性[J].植物病理学报,2010,40(03):290-299. [30] 赵柳.诱抗剂诱导油菜抗菌核病的研究[D].成都:四川农业大学,2013. [31] 中华人民共和国统计局. 中国统计年鉴2023[M].北京:中国统计出版社,2023. [32] 周国梁,尚琳琳,于翠,等.进境油菜籽中黑胫病菌和茎基溃疡病菌的检测[J].植物保护学报,2010,37(04):289-294. [33] 左媛媛.桑树炭疽病抗性评价及抗病相关基因挖掘[D].武汉:华中农业大学,2023. [34] Ahn I P, Kim S, Lee Y H. Vitamin B1 functions as an activator of plant disease resistance[J]. Plant physiology, 2005, 138(3): 1505-1515. [35] Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants[J]. Journal of experimental botany, 2002, 53(372): 1331-1341. [36] Asghar U, Malik M F, Javed A. Pesticide exposure and human health: a review[J]. J Ecosys Ecograph S, 2016, 5(2). [37] Bahuguna R N, Joshi R, Shukla A, et al. Thiamine primed defense provides reliable alternative to systemic fungicide carbendazim against sheath blight disease in rice (Oryza sativa L.)[J]. Plant Physiology and Biochemistry, 2012, 57: 159-167. [38] Bai W, Chern M, Ruan D, et al. Enhanced disease resistance and hypersensitivity to BTH by introduction of an NH1/OsNPR1 paralog[J]. Plant biotechnology journal, 2011, 9(2): 205-215. [39] Barrins J M, Ades P K, Salisbury P A, et al. Genetic diversity of Australian isolates of Leptosphaeria maculans, the fungus that causes blackleg of canola (Brassica napus)[J]. Australasian Plant Pathology, 2004, 33: 529-536. [40] Bockus W W, Shroyer J P. The impact of reduced tillage on soilborne plant pathogens[J]. Annual review of phytopathology, 1998, 36(1): 485-500. [41] Boubakri H, Gargouri M, Mliki A, et al. Vitamins for enhancing plant resistance[J]. Planta, 2016, 244: 529-543. [42] Boubakri H, Wahab M A, Chong J, et al. Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host–defense responses, including HR like-cell death[J]. Plant Physiology and Biochemistry, 2012, 57: 120-133. [43] Chakraborty N. Salicylic acid and nitric oxide cross-talks to improve innate immunity and plant vigor in tomato against Fusarium oxysporum stress[J]. Plant Cell Reports, 2021, 40(8): 1415-1427. [44] Che Y Z, Li Y R, Zou H S, et al. A novel antimicrobial protein for plant protection consisting of a Xanthomonas oryzae harpin and active domains of cecropin A and melittin[J]. Microbial biotechnology, 2011, 4(6): 777-793. [45] Chen H, Li M, Qi G, et al. Two interacting transcriptional coactivators cooperatively control plant immune responses[J]. Science Advances, 2021, 7(45): eabl7173. [46] Chen L, Qian J, Qu S, et al. Identification of specific fragments of HpaGXooc, a harpin from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhance growth in plants[J]. Phytopathology, 2008, 98(7): 781-791. [47] Chen M, Zeng H, Qiu D, et al. Purification and characterization of a novel hypersensitive response-inducing elicitor from Magnaporthe oryzae that triggers defense response in rice[J]. PLoS One, 2012, 7(5): e37654. [48] Chen W J, Liu J D, Jiang K X, et al. Identification and analysis of BnKNOX gene family in Brassica[J]. The Crop Journal, 2023, 49(11): 2991-3006. [49] Cohen Y, Vaknin M, Mauch-Mani B. BABA-induced resistance: milestones along a 55-year journey[J]. Phytoparasitica, 2016, 44: 513-538. [50] Costa V, Angelini C, De Feis I, et al. Uncovering the complexity of transcriptomes with RNA‐Seq[J]. BioMed Research International, 2010, 2010(1): 853916. [51] Cozijnsen A J, Howlett B J. Characterisation of the mating-type locus of the plant pathogenic ascomycete Leptosphaeria maculans[J]. Current Genetics, 2003, 43: 351-357. [52] Darpoux H, Louvet J, Ponchet J. Essais de traitement des semences de crucifères contre le Phoma lingam (Tode) Desm. et l’Alternaria brassicae (Berk.) Sacc[J]. Ann Epiphyties, 1957, 57: 545-557. [53] Dörffling K. The discovery of abscisic acid: a retrospect[J]. Journal of Plant Growth Regulation, 2015, 34: 795-808. [54] Eastmond P J. SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds[J]. The Plant Cell, 2006, 18(3): 665-675. [55] Eckert M, Gout L, Rouxel T, et al. Identification and characterization of polymorphic minisatellites in the phytopathogenic ascomycete Leptosphaeria maculans[J]. Current Genetics, 2005, 47: 37-48. [56] Fernando W G D, Chen Y, Ghanbarnia K. Breeding for blackleg resistance: the biology and epidemiology[J]. Advances in Botanical Research, 2007, 45: 271-311. [57] Fernando W G D, Parks P S, Tomm G, et al. First report of blackleg disease caused by Leptosphaeria maculans on canola in Brazil[J]. Plant disease, 2003, 87(3): 314-314. [58] Fernando W G D, Zhang X, Selin C, et al. A six-year investigation of the dynamics of avirulence allele profiles, blackleg incidence, and mating type alleles of Leptosphaeria maculans populations associated with canola crops in Manitoba, Canada[J]. Plant Disease, 2018, 102(4): 790-798. [59] Fitt B D L, Brun H, Barbetti M J, et al. World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus)[J]. European Journal of Plant Pathology, 2006, 114(1): 3-15. [60] Fitt B D L, Differentiating A and B groups of Leptosphaeria maculans, causal agent of stem canker (blackleg) of oilseed rape[J]. Plant Pathology, 1999, 48(2): 161-175. [61] Fitt B D L, Hu B C, Li Z Q, et al. Strategies to prevent spread of Leptosphaeria maculans (phoma stem canker) onto oilseed rape crops in China; costs and benefits[J]. Plant pathology, 2008, 57(4): 652-664. [62] Gugel R K, Petrie G A. History, occurrence, impact, and control of blackleg of rapeseed[J]. Canadian Journal of Plant Pathology, 1992, 14(1): 36-45. [63] Gugel R K, Séguin-Swartz G, Petrie G A. Pathogenicity of three isolates of Leptosphaeria maculans on Brassica species and other crucifers[J]. Canadian Journal of Plant Pathology, 1990, 12(1): 75-82. [64] Guo X W, Fernando W G D, Entz M. Effects of crop rotation and tillage on blackleg disease of canola[J]. Canadian Journal of Plant Pathology, 2005, 27(1): 53-57. [65] Hall R, Chigogora J L, Phillips L G. Role of seedborne inoculum of Leptosphaeria maculans in development of blackleg on oilseed rape[J]. Canadian Journal of Plant Pathology, 1996, 18(1): 35-42. [66] Hall R, Peters R D, Assabgui R A. Occurrence and impact of blackleg on oilseed rape in Ontario[J]. Canadian Journal of Plant Pathology, 1993, 15(4): 305-313. [67] Hall R. Epidemiology of blackleg of oilseed rape[J]. Canadian journal of plant pathology, 1992, 14(1): 46-55. [68] Hammond KE, Lewis BG, Musa TM.Asystemic pathway in the infection of oilseed rape plants by Leptosphaeria maculans[J]. Plant Pathology, 1985, 34: 557-565. [69] Henderson MP. The black-leg disease of cabbage caused by Phoma lingam (Tode) Desmaz[J]. Phytopathology, 1918, 8: 379-431. [70] Hu T, Zeng H, Hu Z, et al. Overexpression of the tomato 13-lipoxygenase gene TomloxD increases generation of endogenous jasmonic acid and resistance to Cladosporium fulvum and high temperature[J]. Plant Molecular Biology Reporter, 2013, 31: 1141-1149. [71] Huang W K, Ji H L, Gheysen G, et al. Thiamine‐induced priming against root‐knot nematode infection in rice involves lignification and hydrogen peroxide generation[J]. Molecular plant pathology, 2016, 17(4): 614-624. [72] Huang Y J, Hood J R, Eckert M R, et al. Effects of fungicide on growth of Leptosphaeria maculans and L. biglobosa in relation to development of phoma stem canker on oilseed rape (Brassica napus)[J]. Plant Pathology, 2011, 60(4): 607-620. [73] Humpherson‐Jones F M. The occurrence of virulent pathotypes of Leptosphaeria maculans in brassica seed crops in England[J]. Plant Pathology, 1986, 35(2): 224-231. [74] Ji Y, Guo H. From endoplasmic reticulum (ER) to nucleus: EIN2 bridges the gap in ethylene signaling[J]. Molecular plant, 2013, 6(1): 11-14. [75] Johnson RD, Lewis BG. Variation in host range, systemic infection and epidemiology of Leptosphaeria maculans[J]. Plant Pathology, 1994, 43: 269-277. [76] Juska A, Busch L, Tanaka K. The blackleg epidemic in Canadian rapeseed as a “normal agricultural accident”[J]. Ecological Applications, 1997, 7(4): 1350-1356. [77] Kakar K U, Nawaz Z, Cui Z, et al. Rhizosphere‐associated Alcaligenes and Bacillus strains that induce resistance against blast and sheath blight diseases, enhance plant growth and improve mineral content in rice[J]. Journal of Applied Microbiology, 2018, 124(3): 779-796. [78] Kanyuka K, Rudd J J. Cell surface immune receptors: the guardians of the plant’s extracellular spaces[J]. Current opinion in plant biology, 2019, 50: 1-8. [79] Kawano T. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction[J]. Plant cell reports, 2003, 21: 829-837. [80] Kelly A A, van Erp H, Quettier A L, et al. The sugar-dependent1 lipase limits triacylglycerol accumulation in vegetative tissues of Arabidopsis[J]. Plant Physiology, 2013, 162(3): 1282-1289. [81] Khangura R K, Barbetti M J. Chemical control of blackleg disease of canola in Western Australia[C]//Proceedings of the 10th International Rapeseed Congress. 1999: 26-29. [82] Khangura R K, Barbetti M J. Efficacy of Impact® to manage blackleg (Leptosphaeria maculans) in canola[J]. Australian Journal of Agricultural Research, 2002, 53(3): 311-321. [83] Kharbanda P D, Tewari J P. Integrated management of canola diseases using cultural methods[J]. Canadian Journal of Plant Pathology, 1996, 18(2): 168-175. [84] Klarzynski O, Plesse B, Joubert J M, et al. Linear β-1, 3 glucans are elicitors of defense responses in tobacco[J]. Plant physiology, 2000, 124(3): 1027-1038. [85] Kobayashi Y, Fukuzawa N, Hyodo A, et al. Role of salicylic acid glucosyltransferase in balancing growth and defence for optimum plant fitness[J]. Molecular Plant Pathology, 2020, 21(3): 429-442. [86] Koby S, Schickler H, Ilan C, et al. The chitinase encoding Tn7-based chiA gene endows Pseudomonas fluorescens with the capacity to control plant pathogens in soil[J]. Gene, 1994, 147(1): 81-83. [87] Lacoste L, Louvet J, Anselme C, et al. Rôle de Phoma lingam (Tode) Desm. et de sa forme parfaite, Leptosphaeria maculans (Desm.) Ces. et de Not. dans les épidémies de nécrose du collet de colza (Brassica napus L. var. oleifera Metzer)[J]. CR Acad Agric Fr, 1969, 55: 981-987. [88] Lamey H A, Hershman D E. Black leg of canola (Brassica napus) caused by Leptosphaeria maculans in North Dakota[J]. 1993. [89] Li J, Kolbasov V G, Pang Z, et al. Evaluation of the control effect of SAR inducers against citrus Huanglongbing applied by foliar spray, soil drench or trunk injection[J]. Phytopathology Research, 2021, 3: 1-15. [90] Li T, Huang Y, Xu Z S, et al. Salicylic acid-induced differential resistance to the Tomato yellow leaf curl virus among resistant and susceptible tomato cultivars[J]. BMC plant biology, 2019, 19: 1-14. [91] Liban S H, Cross D J, Kutcher H R, et al. Race structure and frequency of avirulence genes in the western Canadian Leptosphaeria maculans pathogen population, the causal agent of blackleg in brassica species[J]. Plant Pathology, 2016, 65(7): 1161-1169. [92] Liu C. Evaluation of fungicides for management of blackleg disease on canola and QoI-fungicide resistance in Leptosphaeria maculans in western Canada[J]. 2014. [93] Luna E, Van Hulten M, Zhang Y, et al. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase[J]. Nature chemical biology, 2014, 10(6): 450-456. [94] Magyar D, Barasits T, Fischl G, et al. First report of the natural occurrence of the teleomorph of Leptosphaeria maculans on oilseed rape and airborne dispersal of ascospores in Hungary[J]. Journal of Phytopathology, 2006, 154(7‐8): 428-431. [95] Marcroft S J, Potter T D. The fungicide fluquinconazole applied as a seed dressing to canola reduces Leptosphaeria maculans (blackleg) severity in south-eastern Australia[J]. Australasian Plant Pathology, 2008, 37: 396-401. [96] Mohammadi M, Zamani A, Karimi K. Determination of glucosamine in fungal cell walls by high-performance liquid chromatography (HPLC)[J]. Journal of agricultural and food chemistry, 2012, 60(42): 10511-10515. [97] Nakahara K S, Masuta C. Interaction between viral RNA silencing suppressors and host factors in plant immunity[J]. Current opinion in plant biology, 2014, 20: 88-95. [98] Nelson N J. Microarrays have arrived: gene expression tool matures[J]. Journal of the National Cancer Institute, 2001, 93(7): 492-494. [99] Nishad R, Ahmed T, Rahman V J, et al. Modulation of plant defense system in response to microbial interactions[J]. Frontiers in Microbiology, 2020, 11: 1298. [100] Palma J M, Sandauo L M, Del Río L A. Manganese superoxide dismutase and higher plant chloroplasts: a reappraisal of a controverted cellular localization[J]. Journal of Plant Physiology, 1986, 125(5): 427-439. [101] Peng G, Fernando W G D, Kirkham C L, et al. Mitigating the risk of blackleg disease of canola using fungicide strategies[C]. Soils and Crops Workshop. 2012. [102] Petrie G A. VARIABILITY IN LEPTOSPHAERIA MACULANS (DESM.) CES. & DE NOT., THE CAUSE OF BLACKLEG OF RAPE[J]. 1970. [103] Petriel G A. Long-term survival and sporulation of Leptosphaeria rnaculans (blackleg) on natural ly-i nfected rapeseedkanola stubble in Saskatchewan[J]. Canadian Plant Disease Survey, 1995, 75(1). [104] Petutschnig E K, Jones A M E, Serazetdinova L, et al. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation[J]. Journal of Biological Chemistry, 2010, 285(37): 28902-28911. [105] Porta H, Rocha-Sosa M. Plant lipoxygenases. Physiological and molecular features[J]. Plant physiology, 2002, 130(1): 15-21. [106] Pusztahelyi T. Chitin and chitin-related compounds in plant–fungal interactions[J]. Mycology, 2018, 9(3): 189-201. [107] Qiao H, Shen Z, Huang S C, et al. Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas[J]. Science, 2012, 338(6105): 390-393. [108] Rashid M H, Liban S, Zhang X, et al. Impact of Brassica napus–Leptosphaeria maculans interaction on the emergence of virulent isolates of L. maculans, causal agent of blackleg disease in canola[J]. Plant Pathology, 2021, 70(2): 459-474. [109] Rimmer S R, Van den Berg C G J. Resistance of oilseed Brassica spp. to blackleg caused by Leptosphaeria maculans[J]. Canadian Journal of Plant Pathology, 1992, 14(1): 56-66. [110] Rimmer S R, Van den Berg C G J. Resistance of oilseed Brassica spp. to blackleg caused by Leptosphaeria maculans[J]. Canadian Journal of Plant Pathology, 1992, 14(1): 56-66. [111] Robin A H K, Saha G, Park J I, et al. In silico analysis and expression profiling revealed Rlm1′ blackleg disease-resistant genes in Chromosome 6 of Brassica oleracea[J]. Horticulture, Environment, and Biotechnology, 2021, 62: 969-983. [112] Rouxel T, Peng G, Van de Wouw A, et al. Strategic genetic insights and integrated approaches for successful management of blackleg in canola/rapeseed farming[J]. Plant Pathology, 2024, 73(9): 2260-2280. [113] Rouxel, T. and Balesdent, M. H. The stem canker (blackleg) fungus, Leptosphaeria maculans, enters the genomic era[J]. Molecular Plant Pathology , 2005, 6: 225–241. [114] Roy N. Wesreo-a blackleg resistant rapeseed[J]. Journal of the Department of Agriculture of Western Australia, 1978. [115] Sah S K, Reddy K R, Li J. Abscisic acid and abiotic stress tolerance in crop plants[J]. Frontiers in plant science, 2016, 7: 571. [116] Shailasree S, Sarosh B R, Vasanthi N S, et al. Seed treatment with β‐aminobutyric acid protects Pennisetum glaucum systemically from Sclerospora graminicola[J]. Pest Management Science: formerly Pesticide Science, 2001, 57(8): 721-728. [117] Shoemaker R A, Brun H. The teleomorph of the weakly aggressive segregate of Leptosphaeria maculans[J]. Canadian Journal of Botany, 2001, 79(4): 412-419. [118] Steed J M, Baierl A, Fitt B D L. Relating plant and pathogen development to optimise fungicide control of phoma stem canker (Leptosphaeria maculans) on winter oilseed rape (Brassica napus)[J]. European Journal of Plant Pathology, 2007, 118: 359-373. [119] Stonard JF, Latunde-Dada AO, Huang YJ, et al. Geographic variation in severity of phoma stem canker and Leptosphaeria maculans/L. biglobosa populations on UK winter oilseed rape (Brassica napus)[J]. European Journal of Plant Pathology, 2010, 126: 97-109. [120] Stressmann M, Kitao S, Griffith M, et al. Calcium interacts with antifreeze proteins and chitinase from cold-acclimated winter rye[J]. Plant Physiology, 2004, 135(1): 364-376. [121] Thevenet D, Pastor V, Baccelli I, et al. The priming molecule β‐aminobutyric acid is naturally present in plants and is induced by stress[J]. New Phytologist, 2017, 213(2): 552-559. [122] Ton J, Jakab G, Toquin V, et al. Dissecting the β-aminobutyric acid–induced priming phenomenon in Arabidopsis[J]. The Plant Cell, 2005, 17(3): 987-999. [123] van Wersch S, Tian L, Hoy R, et al. Plant NLRs: the whistleblowers of plant immunity[J]. Plant Communications, 2020, 1(1). [124] Varden F A, De la Concepcion J C, Maidment J H R, et al. Taking the stage: effectors in the spotlight[J]. Current Opinion in Plant Biology, 2017, 38: 25-33. [125] Vinale F, Ghisalberti EL, Sivasithamparam K, et al. Factors affecting the production of Trichoderma harzianum secondary metabolitesduring the interaction with different plant pathogens[J]. Letters in Applied Microbiology,2009, 48(6): 705-711. [126] Wang D, Wang B, Wang J, et al. Exogenous application of harpin protein Hpa1 onto Pinellia ternata induces systemic resistance against tobacco mosaic virus[J]. Phytopathology, 2020, 110(6): 1189-1198. [127] Wang W, Feng B, Zhou J M, et al. Plant immune signaling: Advancing on two frontiers[J]. Journal of integrative plant biology, 2020, 62(1): 2-24. [128] Wei Z M, Laby R J, Zumoff C H, et al. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora[J]. Science, 1992, 257(5066): 85-88. [129] West J S, Kharbanda P D, Barbetti M J, et al. Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe[J]. Plant pathology, 2001, 50(1): 10-27. [130] William, R H. and Fitt, B. D. L. DiVerentiating A and B groups of Leptosphaeria maculans, causal agent of stem canker (blackleg) of oilseed rape[J]. Plant Pathology, 1999, 48(2), 161–175. [131] Williams P H. Biology of Leptosphaeria maculans[J]. Can J Plant Pathol, 1992, 14: 30-35 [132] Wubben M J E, Baum T J. Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid (SA) and elicits uncoupled SA-independent pathogenesis-related gene expression in roots[J]. Molecular Plant-Microbe Interactions, 2008, 21(4): 424-432. [133] Wubben M J E, Jin J, Baum T J. Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid (SA) and elicits uncoupled SA-independent pathogenesis-related gene expression in roots[J]. Molecular Plant-Microbe Interactions, 2008, 21(4): 424-432. [134] Xie L, Liu Y, Wang H, et al. Characterization of harpin Xoo induced hypersensitive responses in non host plant, tobacco[J]. Journal of Plant Biochemistry and Biotechnology, 2017, 26: 73-79. [135] Ye N, Jia L, Zhang J. ABA signal in rice under stress conditions[J]. Rice, 2012, 5: 1-9. [136] Yuan P, Qian W, Jiang L, et al. A secreted catalase contributes to Puccinia striiformis resistance to host-derived oxidative stress[J]. Stress Biology, 2021, 1(1): 22. [137] Zhang X, Fernando WGD. Insights into fighting against blackleg disease of Brassica napus in Canada[J]. Crop and Pasture Science, 2018, 69: 40-47. [138] Zhu F, Cao M Y, Zhang Q P, et al. Join the green team: Inducers of plant immunity in the plant disease sustainable control toolbox[J]. Journal of Advanced Research, 2024, 57: 15-42. [139] Zhu W, MaGbanua M M, White F F. Identification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv. oryzae[J]. Journal of bacteriology, 2000, 182(7): 1844-1853. |
中图分类号: | S43 |
开放日期: | 2025-06-13 |