- 无标题文档
查看论文信息

题名:

 六种植物的RNA乙酰化修饰图谱绘制及其促进光合作用机制初探    

作者:

 赵洁    

学号:

 2022116032    

保密级别:

 保密两年    

语种:

 chi    

学科代码:

 071001    

学科:

 理学 - 生物学 - 植物学    

学生类型:

 硕士    

学位:

 理学硕士    

学校:

 南京农业大学    

院系:

 生命科学学院    

专业:

 植物学    

研究方向:

 植物RNA生物学    

导师姓名:

 陈铭佳    

导师单位:

 南京农业大学    

完成日期:

 2025-04-07    

答辩日期:

 2025-05-15    

外文题名:

 Characterization of mRNA acetylation in six plants and function analyses of it on photosynthesis    

关键词:

 RNA乙酰化修饰(ac4C) ; 光合作用 ; 翻译效率 ; 光捕捉蛋白 ; 多组学分析    

外文关键词:

 RNA acetylation modification (ac4C) ; photosynthesis ; translation efficiency ; Light-Harvesting Complex (LHC) ; multi-omics analysis    

摘要:

真核生物信使RNA(mRNA)上存在多种化学修饰,这些修饰本身不改变RNA序列信息,但却能精准调控RNA的结构、稳定性、翻译效率等多种生物学过程。近年来,越来越多的实验证据证实了mRNA化学修饰,如m⁶A(N6-甲基腺嘌呤)、Ψ(假尿嘧啶)和m⁵C(5-甲基胞嘧啶)等,在调控高等植物基因表达,调节生长发育,逆境生理等生物过程中发挥关键作用。前期,本课题组在植物中鉴定到一种全新的广泛存在的mRNA化学修饰- N4-乙酰化胞嘧啶(ac4C)修饰,该修饰可稳定靶标转录本,调控叶片发育进程。然而,该新型化学修饰在植物进化过程中是否参与更加保守的生物学过程尚不得而知。本研究以六种代表性高等植物(拟南芥、甘菊、草莓、大豆、水稻、番茄)为研究对象,结合RNA乙酰化免疫共沉淀测序(acRIP-seq)、翻译组学(Ribo-seq)、遗传学与多种生物化学研究手段,联合分析可知ac4C修饰保守地参与高等植物光合作用过程。此外,我们还初步探索了RNA乙酰化修饰(ac4C)调控植物光合效率的分子机制,为将来人工分子育种提供理论基础和基因储备。本论文主要研究结果如下:

六种植物全转录本ac4C修饰图谱的绘制与解析

利用acRIP-seq技术,本项目绘制了拟南芥、甘菊、草莓、大豆、水稻和番茄六种植物全转录本乙酰化图谱,详细描述了该修饰在各个植物细胞核、叶绿体及线粒体编码转录本上的ac4C修饰位点。六种植物RNA乙酰化修饰位点比较分析可知:叶绿体编码转录本ac4C修饰比例显著高于其他细胞器(如拟南芥叶绿体转录本ac4C修饰占比达28.57%);并且该修饰广泛存在于光合系统相关基因转录本上。保守基序分析表明,所测序物种的ac4C修饰位点均普遍分布于富含胞嘧啶(C)的序列中,且主要富集于编码区(CDS),尤其靠近5'或3'UTR区域,提示其可能通过调控翻译起始或终止过程影响基因表达。基因本体(GO)富集分析进一步证实,ac4C修饰显著富集于“photosynthesis”,“chloroplast membrane”及“photosynthesis,light harvesting”等通路中,暗示其可能参与光合作用调控。

ACYR介导的ac4C修饰促进植物光合效率

分别检测并比较拟南芥和水稻RNA乙酰化转移酶(ACYR)缺失突变体与各自野生型植株的光合参数可知,ACYR缺失会导致植株光合速率(Fv/Fm)、电子传递效率(ETR)、单位反应中心吸收(ABS/RC)以及电子传递能力(ET0/RC)显著下降;超微结构观察显示突变体类囊体结构完完整,基粒排布整齐;但高光强刺激实验结果却表明受调控能量耗散的量子产率 (Φ(NPQ))降低,非调控能量耗散的量子产率 (Φ(NO))增加。

RNA乙酰化促进靶标转录本翻译效率提升光合相关蛋白表达量

通过翻译组学,转录组学以及表观组学联合分析显示,具有ac4C修饰的光合转录本翻译效率(TE)显著高于未修饰的转录本。在拟南芥RNA乙酰化酶缺失突变体中,光合作用相关转录本的TE显著下调,尤其值得关注的是电子传递链相关转录本(包括光捕捉蛋白家族(Light-Harvesting Complex,LHC家族)成员LHCB2、LHCB3和LHCB4)的TE显著降低。蛋白质定量检测结果显示上述靶标转录本所编码蛋白质含量显著下降。组学数据分析联合生物化学手段检测结果表明LHC家族中多个转录本(LHCA4,LHCB2.2,LHCB3和LHCB4.2)上ac4C修饰丰度在ACYR突变体中显著下降(65%~97%)。该结果表明ACYR介导的RNA乙酰化通过促进光合靶标转录本(特别是电子传递链中LHC家族)翻译效率,进而增强其蛋白表达量,提升光捕捉效率和植物光合能力。

       综上所述,本研究系统构建了六种高等植物的RNA乙酰化修饰图谱,全面揭示了ac4C修饰在不同细胞器中的分布和调控特点。研究表明ac4C修饰在调控光合作用中的普遍性和保守性,这为进一步理解表观转录组调控机制提供了有力支持。通过一系列遗传学和生物化学实验,研究证实ACYR介导的ac4C修饰能够显著提升靶标转录本的翻译效率,从而有效调控光捕捉复合体及相关电子传递链成员的蛋白表达水平。总体而言,这些发现不仅阐明了ac4C在植物光合作用调控中的核心作用,也为未来利用分子育种手段优化光合效率提供了坚实的理论基础。

外摘要要:

RNA modifications refer to chemical changes that occur on RNA molecules without altering the RNA sequence information, but they can regulate RNA structure, stability, and function. In previous studies, modifications such as m⁶A, Ψ (pseudouridine), and m⁵C have been confirmed to play key roles in biological processes including gene expression regulation and RNA splicing. In recent years, RNA acetylation modification (ac4C) has gradually been recognized as an important component of epitranscriptomic regulation. It participates in the regulation of target genes in cells by affecting mRNA stability and translation efficiency. Although the functions of ac4C in animal cells have been widely reported, its functional mechanism in higher plant photosynthesis remains unclear. This study focuses on six representative higher plants (Arabidopsis, Chrysanthemum, Strawberry, Soybean, Rice, and Tomato) and uses a comprehensive approach combining ac4C-specific RNA immunoprecipitation sequencing (acRIP-seq), ribosome profiling (Ribo-seq), genetics, and biochemical methods. The aim is to preliminarily explore the molecular mechanism by which RNA acetylation modification (ac4C) regulates photosynthetic efficiency in plants, thus providing a theoretical foundation and gene reserves for future molecular breeding. The main research findings are as follows:

Mapping and analysis of the whole-transcriptome ac4C modification in six plants

Using acRIP-seq technology, this project generated the whole-transcriptome ac4C modification profiles for Arabidopsis, Chrysanthemum, Strawberry, Soybean, Rice, and Tomato. The ac4C modification sites were detailed for nuclear, chloroplast, and mitochondrial transcripts in each species. Comparative analysis of the ac4C modification sites across these six plants revealed that the proportion of ac4C-modified transcripts encoded by chloroplast genes was significantly higher than that in other organelles (for example, Arabidopsis chloroplast transcripts showed an ac4C modification ratio of 21.05%). Moreover, ac4C modification is widely present on transcripts of genes related to the photosynthetic system. Conserved motif analysis indicated that the ac4C modification sites in the species examined are generally distributed in cytosine-rich sequences and are mainly enriched in coding sequences (CDS), particularly near the 5’ or 3’ untranslated regions, suggesting that they may influence gene expression by regulating translation initiation or termination. Gene Ontology (GO) enrichment analysis further confirmed that ac4C modifications are significantly enriched in pathways such as “photosynthesis”, “chloroplast membrane”, and “photosynthesis, light harvesting”, indicating a central regulatory role in photosynthesis.

ACYR-mediated ac4C modification promotes plant photosynthetic efficiency

Comparison of photosynthetic parameters between acyltransferase (ACYR) deletion mutants and their respective wild-type plants in Arabidopsis and Rice showed that the absence of ACYR led to significant decreases in photosynthetic rate (Fv/Fm), electron transport efficiency (ETR), absorption per reaction center (ABS/RC), and electron transport capacity (ETO/RC). Although ultrastructural observations revealed intact thylakoid structures and neatly arranged grana in the mutants, high light stress experiments indicated a reduction in the quantum yield of regulated energy dissipation (Φ(NPQ)) and an increase in the quantum yield of non-regulated energy dissipation (Φ(NO)).

RNA acetylation enhances target transcript translation efficiency and increases the expression of photosynthesis-associated proteins

Integrated analysis of translatomics, transcriptomics, and epitranscriptomics demonstrated that the translation efficiency (TE) of photosynthetic transcripts bearing ac4C modifications was significantly higher than those without modifications. In Arabidopsis RNA acetylation enzyme deletion mutants, the TE of photosynthesis-related transcripts was markedly downregulated, notably in transcripts related to the electron transport chain (including LHC family members LHCB2, LHCB3, and LHCB4). Protein quantification assays showed a significant decrease in the protein levels encoded by these target transcripts. Combined analysis of omics data and biochemical assays revealed that multiple transcripts of the Light-Harvesting Complex (LHC, LHCA4, LHCB2.2, LHCB3, and LHCB4.2) exhibited a significant decrease (65%–97%) in ac4C modification abundance in the ACYR mutants. These results indicate that ACYR-mediated RNA acetylation enhances the translation efficiency of photosynthetic target transcripts—especially those of the LHC family involved in the electron transport chain—thus increasing the corresponding protein expression levels, improving light capture efficiency, and ultimately enhancing plant photosynthetic capacity.

In summary, this study systematically constructed the RNA acetylation modification landscape in higher plants, comprehensively revealing the distribution and regulatory characteristics of ac4C in different organelles. The findings indicate that ac4C modification is both pervasive and conserved in the regulation of photosynthesis, providing strong support for further understanding of epitranscriptomic regulatory mechanisms. Through a series of genetic and biochemical experiments, the study confirmed that ACYR-mediated ac4C modification can significantly enhance the translation efficiency of target transcripts, thereby effectively regulating the protein expression levels of the light capture complex and related members of the electron transport chain. Overall, these discoveries not only elucidate the central role of ac4C in the regulation of photosynthesis in plants but also provide a solid theoretical foundation for optimizing photosynthetic efficiency through future molecular breeding strategies.

参考文献:

[1] 吴路遥, 张建国, 常闻谦, 等. 三种荒漠植物叶绿素荧光参数日变化特征[J]. 草业学报, 2021, 30(9): 203-213.

[2] 苏小东,李梅. 高等植物光系统复合物结构生物学研究进展[J]. 自然杂志,2021,43(3):165-175.

[3] Akhtar J, Lugoboni M, Junion G. m6A RNA modification in transcription regulation[J]. Transcription, 2021, 12(5): 266-276.

[4] Anderson S L, Kay S A. Functional dissection of circadian clock- and phytochrome-regulated transcription of the Arabidopsis CAB2 gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(5): 1500-1504.

[5] Andersson J, Walters R G, Horton P, et al. Antisense Inhibition of the Photosynthetic Antenna Proteins CP29 and CP26: Implications for the Mechanism of Protective Energy Dissipation[J]. The Plant Cell, 2001, 13(5): 1193-1204.

[6] Aoyama H, Arae T, Yamashita Y, et al. Impact of translational regulation on diel expression revealed by time-series ribosome profiling in Arabidopsis[J]. The Plant Journal: For Cell and Molecular Biology, 2024, 118(6): 1889-1906.

[7] Arango D, Sturgill D, Alhusaini N, et al. Acetylation of Cytidine in mRNA Promotes Translation Efficiency[J]. Cell, 2018, 175(7): 1872-1886.e24.

[8] Arango D, Sturgill D, Yang R, et al. Direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine[J]. Molecular Cell, 2022, 82(15): 2797-2814.e11.

[9] Arp T B, Kistner-Morris J, Aji V, et al. Quieting a noisy antenna reproduces photosynthetic light-harvesting spectra[J]. Science, 2020, 368(6498): 1490-1495.

[10] Bird A. Perceptions of epigenetics[J]. Nature, 2007, 447(7143): 396-398.

[11] Cackett L, Luginbuehl L H, Schreier T B, et al. Chloroplast development in green plant tissues: the interplay between light, hormone, and transcriptional regulation[J]. New Phytologist, 2022, 233(5): 2000-2016.

[12] Cammas A, Herviou P, Dumas L, et al. Analysis of mRNA Translation by Polysome Profiling[M]//Dassi E. Post-Transcriptional Gene Regulation: Vol. 2404. New York, NY: Springer US, 2022: 69-81.

[13] Chandler V L. Paramutation: from maize to mice[J]. Cell, 2007, 128(4): 641-645.

[14] Chen L, Wang W J, Liu S Y, et al. NAT10-mediated mRNA N4-acetylation is essential for the translational regulation during oocyte meiotic maturation in mice[J]. Science Advances, 2025.

[15] Chen X, Hao Y, Liu Y, et al. NAT10/ac4C/FOXP1 Promotes Malignant Progression and Facilitates Immunosuppression by Reprogramming Glycolytic Metabolism in Cervical Cancer[J]. Advanced Science, 2023, 10(32): 2302705.

[16] Crick F. Central dogma of molecular biology[J]. Nature, 1970, 227(5258): 561-563.

[17] Croce R, Amerongen H van. Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy[J]. Science (New York, N.Y.), 2020, 369(6506): eaay2058.

[18] Daniell H, Lin C S, Yu M, et al. Chloroplast genomes: diversity, evolution, and applications in genetic engineering[J]. Genome Biology, 2016, 17(1): 134.

[19] Dainese P, Bassi R. Subunit stoichiometry of the chloroplast photosystem II antenna system and aggregation state of the component chlorophyll a/b binding proteins[J]. Journal of Biological Chemistry, 1991, 266(13): 8136-8142.

[20] Dobrogojski J, Adamiec M, Luciński R. The chloroplast genome: a review[J]. Acta Physiologiae Plantarum, 2020, 42(6): 98.

[21] Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA[J]. Nature, 2016, 530(7591): 441-446.

[22] Durnford D G, Price J A, McKim S M, et al. Light-harvesting complex gene expression is controlled by both transcriptional and post-transcriptional mechanisms during photoacclimation in Chlamydomonas reinhardtii[J]. Physiologia Plantarum, 2003, 118(2): 193-205.

[23] Eberhard S, Finazzi G, Wollman F A. The dynamics of photosynthesis[J]. Annual Review of Genetics, 2008, 42: 463-515.

[24] Fu Y, Luo G Z, Chen K, et al. N6-Methyldeoxyadenosine Marks Active Transcription Start Sites in Chlamydomonas[J]. Cell, 2015, 161(4): 879-892.

[25] Guo B, Wei X, Liu S, et al. Deep learning modeling of RNA ac4C deposition reveals the importance of plant alternative splicing[J]. Plant Molecular Biology, 2024, 114(6): 118.

[26] Ingolia N T, Ghaemmaghami S, Newman J R S, et al. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling[J]. Science, 2009, 324(5924): 218-223.

[27] Ingolia N T, Lareau L F, Weissman J S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes[J]. Cell, 2011, 147(4): 789-802.

[28] Ito S, Akamatsu Y, Noma A, et al. A single acetylation of 18 S rRNA is essential for biogenesis of the small ribosomal subunit in Saccharomyces cerevisiae[J]. The Journal of Biological Chemistry, 2014a, 289(38): 26201-26212.

[29] Ito S, Horikawa S, Suzuki Tateki, et al. Human NAT10 Is an ATP-dependent RNA Acetyltransferase Responsible for N4-Acetylcytidine Formation in 18 S Ribosomal RNA (rRNA)[J]. Journal of Biological Chemistry, 2014b, 289(52): 35724-35730.

[30] Jansson S. The light-harvesting chlorophyll ab-binding proteins[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1994, 1184(1): 1-19.

[31] Jansson S. A guide to the Lhc genes and their relatives in Arabidopsis[J]. Trends in Plant Science, 1999, 4(6): 236-240.

[32] Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nature Chemical Biology, 2011, 7(12): 885-887.

[33] Jiang J, Song B, Tang Y, et al. m5UPred: A Web Server for the Prediction of RNA 5-Methyluridine Sites from Sequences[J]. Molecular Therapy - Nucleic Acids, 2020, 22: 742-747.

[34] Jiang Z Y, Wu Y K, Deng Z Q, et al. PCBP1/2 and TDP43 Function as NAT10 Adaptors to Mediate mRNA ac4C Formation in Mammalian Cells[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2024, 11(47): e2400133.

[35] Jin G, Xu M, Zou M, et al. The Processing, Gene Regulation, Biological Functions, and Clinical Relevance of N4-Acetylcytidine on RNA: A Systematic Review[J]. Molecular Therapy Nucleic Acids, 2020, 20: 13-24.

[36] Karlin-Neumann G A, Sun L, Tobin E M. Expression of Light-Harvesting Chlorophyll a/b-Protein Genes Is Phytochrome-Regulated in Etiolated Arabidopsis thaliana Seedlings[J]. Plant Physiology, 1988, 88(4): 1323-1331.

[37] Kawai G, Hashizume T, Miyazawa T, et al. Conformational characteristics of 4-acetylcytidine found in tRNA[J]. Nucleic Acids Symposium Series, 1989(21): 61-62.

[38] Kozak M. Nucleotide sequences of 5’-terminal ribosome-protected initiation regions from two reovirus messages[J]. Nature, 1977, 269(5627): 391-394.

[39] Kramer D M, Johnson G, Kiirats O, et al. New Fluorescence Parameters for the Determination of QA Redox State and Excitation Energy Fluxes[J]. Photosynthesis Research, 2004a, 79(2): 209-218.

[40] Kretschmer J, Rao H, Hackert P, et al. The m6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5’-3’ exoribonuclease XRN1[J]. RNA, 2018, 24(10): 1339-1350.

[41] Lazarowitz S G, Robertson H D. Initiator regions from the small size class of reovirus messenger RNA protected by rabbit reticulocyte ribosomes[J]. The Journal of Biological Chemistry, 1977, 252(21): 7842-7849.

[42] Lei L, Shi J, Chen J, et al. Ribosome profiling reveals dynamic translational landscape in maize seedlings under drought stress[J]. The Plant Journal: For Cell and Molecular Biology, 2015, 84(6): 1206-1218.

[43] Lei Y, Lu L, Liu H Y, et al. CRISPR-P: A Web Tool for Synthetic Single-Guide RNA Design of CRISPR-System in Plants[J]. Molecular Plant, 2014, 7(9): 1494-1496.

[44] Li B, Li 788, Cai L, et al. Transcriptome-wide profiling of RNA N4-cytidine acetylation in Arabidopsis thaliana and Oryza sativa[J]. Molecular Plant, 2023, 16(6): 1082-1098.

[45] Li Q M, Liu B B, Wu Y, et al. Interactive Effects of Drought Stresses and Elevated CO2 Concentration on Photochemistry Efficiency of Cucumber Seedlings[J]. Journal of Integrative Plant Biology, 2008, 50(10): 1307-1317.

[46] Li X, Wang Y, Zhang S, et al. Nanopore Identification of N-Acetylation by Hydroxylamine Deacetylation (NINAHD)[J]. ACS Sensors, 2024, 9(3): 1359-1371.

[47] Liu M J, Wu Szu-Hsien, Wu J F, et al. Translational Landscape of Photomorphogenic Arabidopsis[J]. The Plant Cell, 2013, 25(10): 3699-3710.

[48] Liu R, Wubulikasimu Z, Cai R, et al. NAT10-mediated N4-acetylcytidine mRNA modification regulates self-renewal in human embryonic stem cells[J]. Nucleic Acids Research, 2023, 51(16): 8514-8531.

[49] Lokstein H, Renger G, Götze J P. Photosynthetic Light-Harvesting (Antenna) Complexes—Structures and Functions[J]. Molecules, 2021, 26(11): 3378.

[50] Lu X, He Y, Guo J Q, et al. Dynamics of epitranscriptomes uncover translational reprogramming directed by ac4C in rice during pathogen infection[J]. Nature Plants, 2024, 10(10): 1548-1561.

[51] Ma L, Zheng Y, Zhou Z, et al. Dissection of mRNA ac4C acetylation modifications in AC and Nr fruits: insights into the regulation of fruit ripening by ethylene[J]. Molecular Horticulture, 2024, 4: 5.

[52] Neupane P, Bhuju S, Thapa N, et al. ATP Synthase: Structure, Function and Inhibition[J]. Biomolecular Concepts, 2019, 10(1): 1-10.

[53] Niwa S, Yu L J, Takeda K, et al. Structure of the LH1–RC complex from Thermochromatium tepidum at 3.0 Å[J]. Nature, 2014, 508(7495): 228-232.

[54] Ohashi Z, Murao K, Yahagi T, et al. Characterization of C+ located in the first position of the anticodon of Escherichia coli tRNAMet as N4-acetylcytidine[J]. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 1972, 262(2): 209-213.

[55] Otani T, Kato Y, Shikanai T. Specific substitutions of light-harvesting complex I proteins associated with photosystem I are required for supercomplex formation with chloroplast NADH dehydrogenase-like complex[J]. The Plant Journal, 2018, 94(1): 122-130.

[56] Papageorgiou G C, Govindjee. The Non-Photochemical Quenching of the Electronically Excited State of Chlorophyll a in Plants: Definitions, Timelines, Viewpoints, Open Questions[M]//Demmig-Adams B, Garab G, Adams III W, et al. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Dordrecht: Springer Netherlands, 2014: 1-44.

[57] Popov L D. Mitochondrial biogenesis: An update[J]. Journal of Cellular and Molecular Medicine, 2020, 24(9): 4892-4899.

[58] Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development[J]. Nature, 2007, 447(7143): 425-432.

[59] Robinson M, Shah P, Cui Y H, et al. The Role of Dynamic m6A RNA Methylation in Photobiology[J]. Photochemistry and photobiology, 2019, 95(1): 95-104.

[60] Rochaix J D. Regulation and Dynamics of the Light-Harvesting System[J]. Annual Review of Plant Biology, 2014, 65: 287-309.

[61] Ruban A V, Mullineaux C W. Non-Photochemical Fluorescence Quenching and the Dynamics of Photosystem II Structure[M]//Demmig-Adams B, Garab G, Adams III W, et al. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Dordrecht: Springer Netherlands, 2014: 373-386.

[62] Sas-Chen A, Thomas J M, Matzov D, et al. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping[J]. Nature, 2020, 583(7817): 638-643.

[63] Shao Y, Ma J, Zhang S, et al. NERD-dependent m6A modification of the nascent FLC transcript regulates flowering time in Arabidopsis[J]. Nature Plants, 2025, 11(3): 468-482.

[64] Sharma S, Langhendries J L, Watzinger P, et al. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1[J]. Nucleic Acids Research, 2015, 43(4): 2242-2258.

[65] Shi J, Yang C, Zhang J, et al. NAT10 Is Involved in Cardiac Remodeling Through ac4C-Mediated Transcriptomic Regulation[J]. Circulation Research, 2023, 133(12): 989-1002.

[66] Silverthorne J, Tobin E M. Demonstration of transcriptional regulation of specific genes by phytochrome action[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(4): 1112-1116.

[67] Suga M, Akita F, Sugahara M, et al. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL[J]. Nature, 2017, 543(7643): 131-135.

[68] Suga M, Akita F, Yamashita K, et al. An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an x-ray free-electron laser[J]. Science (New York, N.Y.), 2019, 366(6463): 334-338.

[69] Tang J, Chen S, Jia G. Detection, regulation, and functions of RNA N6-methyladenosine modification in plants[J]. Plant Communications, 2023, 4(3).

[70] Umena Y, Kawakami K, Shen J R, et al. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å[J]. Nature, 2011, 473(7345): 55-60.

[71] von Sydow L, Schwenkert S, Meurer J, et al. The PsbY protein of Arabidopsis Photosystem II is important for the redox control of cytochrome b559[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2016, 1857(9): 1524-1533.

[72] Wang M, Cheng R, He H, et al. N4-acetylcytidine of Nop2 mRNA is required for the transition of morula-to-blastocyst[J]. Cellular and molecular life sciences: CMLS, 2023, 80(10): 307.

[73] Wang W, Liu H, Wang F, et al. N4-acetylation of cytidine in mRNA plays essential roles in plants[J]. The Plant Cell, 2023, 35(10): 3739-3756.

[74] Wang W J, Wu Y K, Liu S Y, et al. NAT10-mediated mRNA N4-acetylcytidine modifications in mouse oocytes constitute a checkpoint of ovarian follicle development[J]. Science Bulletin, 2025, 70(6): 837-841.

[75] Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481): 117-120.

[76] Wei Z, Zhang H, Fang M, et al. The Dof transcription factor COG1 acts as a key regulator of plant biomass by promoting photosynthesis and starch accumulation[J]. Molecular Plant, 2023, 16(11): 1759-1772.

[77] Wu H Y L, Hsu P Y. A custom library construction method for super-resolution ribosome profiling in Arabidopsis[J]. Plant Methods, 2022, 18(1): 115.

[78] Wu Y, Shao W, Liu S, et al. Simultaneous profiling of ac4C and m5C modifications from nanopore direct RNA sequencing[J]. International Journal of Biological Macromolecules, 2025: 140863.

[79] Yang W, Meng J, Liu J, et al. The N1-Methyladenosine Methylome of Petunia mRNA[J]. Plant Physiology, 2020, 183(4): 1710-1724.

[80] Ye Z P, Suggett D J, Robakowski P, et al. A mechanistic model for the photosynthesis–light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species[J]. New Phytologist, 2013, 199(1): 110-120.

[81] Jenny A, Mark W, Robin G. W, et al. Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II – effects on photosynthesis, grana stacking and fitness[J]. The Plant Journal, 2003, 35(3): 350-361.

[82] Zhang C, Fu J, Zhou Y. A Review in Research Progress Concerning m6A Methylation and Immunoregulation[J]. Frontiers in Immunology, 2019, 10.

[83] Zhang S, Liu Y, Ma X, et al. Recent advances in the potential role of RNA N4-acetylcytidine in cancer progression[J]. Cell Communication and Signaling, 2024, 22(1): 49.

[84] Zhu X, Xu C, Jiang X, et al. NAT10 primes a post-transcriptional repertoire essential for the maintenance of spermatogonial homeostasis[J]. Science Bulletin, 2025, 70(6): 842-846.

中图分类号:

 Q945    

开放日期:

 2027-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式