中文题名: | 基于超高效液相色谱—四极杆飞行时间质谱技术的沙棘油真伪鉴别研究 |
姓名: | |
学号: | 2018808128 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 095113 |
学科名称: | 农学 - 农业推广 - 食品加工与安全 |
学生类型: | 硕士 |
学位: | 农业硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 食品质量安全 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
完成日期: | 2020-07-16 |
答辩日期: | 2020-07-14 |
外文题名: | Authenticity of sea buckthorn oil based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry technology |
中文关键词: | |
外文关键词: | Sea buckthorn oil ; Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry ; Lipidomics ; Non-targeted metabolomics ; Chemometrics ; Authentication |
中文摘要: |
沙棘油含有丰富的不饱和脂肪酸、生育酚、β-类胡萝卜素和甾醇类等物质,具有良好的药理学及传统功效。故沙棘油因其营养丰富、市场价值高等原因,导致掺假售假现象日益严重。沙棘油掺假售假不仅侵犯消费者的合法权益,食用掺假沙棘油也会危害消费者的身心健康,现已报道的针对沙棘油真伪鉴别的技术有两种,但均无法实现沙棘油及其掺假油中详细组分表征,目前有关于超高效液相色谱-四极杆飞行时间质谱(Ultra-performance Liquid Chromatography Coupled with Quadrupole Time-of-flight Mass Spectrometry,UPLC-QTOF-MS)对于沙棘油真实属性研究还未有报道。UPLC-QTOF-MS具有高通量、高灵敏度等优点,可以实现食用油中大量微量化合物检测,对食用油真伪鉴别具有重要意义。因此本研究采用基于UPLC-QTOF-MS的脂质组学方法和非靶标代谢组学方法,结合主成分分析(Principal Component Analysis,PCA)及正交偏最小二乘法(Orthogonal Partial Least Squares Discrimination Analysis,OPLS-DA)等化学计量学方法,对沙棘油的真伪进行鉴别,并对沙棘油及其对照油(葵花籽油、菜籽油及大豆油)中所含有的特征化合物进行推测鉴定,以此发掘各食用油之间差异,实现沙棘油与对照油有效鉴别,并进一步对所得图谱进行验证。研究内容与主要结果如下:
采用基于UPLC-QTOF-MS的脂质组学方法对食用油样品中甘油酯进行检测,检测得甘油二酯(DAG)及甘油三酯(TAG)共92种,其中,甘油二酯为16种,甘油三酯为76种,沙棘油中存在而其对照油中不存在的甘油酯主要有:DAG32:1、TAG36:0、TAG38:0、TAG40:0、TAG42:1、TAG42:3、TAG44:5、TAG44:6、TAG46:0、TAG46:1、TAG58:6、TAG60:6和TAG60:6。根据所测甘油酯,建立模型对沙棘油及对照油聚类区分度进行表征及预测,实现沙棘油与葵花籽油、菜籽油、大豆油及其不同种类掺假油之间的真伪鉴别。结果表明,PCA、OPLS-DA图谱具有良好的区分度及解释能力,各食用油之间单独成簇,聚类区分明显,可基本实现不同种类食用油之间的有效区分;应用聚类分析利用不同颜色对沙棘油及对照油中的92甘油酯分布和相对含量进行对比,并通过层次聚类分析热图对各食用油中甘油酯相对含量进行直观反应,以此实现沙棘油及对照油的明显区分;利用观测值对比预测值的预测图对沙棘油及对照油的掺假比例进行预测,所得预测模型具有良好的线性关系,预测能力强,能够根据生成点的位置及所测数据,实现各梯度掺假沙棘油有效鉴别,为解决实际掺假浓度检测提供支持。
采用基于UPLC-QTOF-MS的非靶标代谢组学方法对食用油进行检测,结合PCA及OPLS-DA法对沙棘油及其对照油进行聚类区分,并利用MarkerView软件及SIMCA软件对食用油中的特征离子进行筛选,根据设定条件,将所得特征化合物化学方程式、一级及二级离子图谱对比线上数据库、MS-FINDER软件及文献,推测其特征化合物名称,并对食用油鉴别进行进一步验证。结果表明,基于UPLC-QTOF-MS的非靶标代谢组学方法能够实现沙棘油、葵花籽油、菜籽油及大豆油的有效区分鉴别,所建化学计量学模型可靠,OPLS-DA模型聚类区分度良好,具有良好的解释及预测能力,同种类食用油聚类及不同种类食用油区分状况明显,可对沙棘油及其对照油进行有效鉴别,通过特征化合物丰度分析可以鉴别1%沙棘油的掺假,因此基于UPLC-QTOF-MS的非靶标代谢组学技术可以作为鉴别沙棘油及其掺假油的有效手段之一,为后期应用基于UPLC-QTOF-MS的非靶标代谢组学结合化学计量学分析技术对沙棘油及其掺假食用油进行真伪鉴别研究提供经验和参考。本研究对沙棘油及其对照油中非挥发性特征代谢化合物进行推测,共推测出20种特征化合物,包括有机酸、醇类等,其中沙棘油10种,葵花籽油4种,菜籽油5种,大豆油1种。不同种类食用油中所含有的特征化合物具有较大差异,部分特征化合物仅存在与沙棘油中,例如松油醇、党参炔醇、蓖麻油醇、熊果酸/齐墩果酸等。特征化合物能够从小分子物质对4种食用油进行区分,并能探求掺假油的种类。并对图谱起到了进一步验证的效果,因此,此方法与模型鉴别相互验证,互为补充,可以作为沙棘油及其对照油的真实性鉴定的有效手段,实现对未知沙棘油样品真实性的准确判别。可为沙棘油真伪鉴别提供坚实理论和科学依据,为后期应用此方法验证沙棘油及其掺假食用油提供一定经验和参考。 |
外文摘要: |
Sea buckthorn oil is rich in unsaturated fatty acids, tocopherol, β-carotenoids and sterols and so on, and it has good pharmacological and traditional effects. Therefore, due to its rich nutrition and high market value and many other reasons, sea buckthorn oil adulterated very seriously. The adulteration of sea buckthorn oil not only infringe upon the legitimate rights and interests of consumers, but also harm the health body and mind of consumers. There are only two kinds of authenticity identification technology has been reported to identified sea buckthorn oil, and both of them cannot to achieve its characterization of sea buckthorn oil and its adulterated oil in the detailed components. So far the study about the technology of UPLC-QTOF-MS (Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry, UPLC-QTOF-MS) to distinguish the true nature of the sea buckthorn oil has not reported. The UPLC-QTOF-MS has the advantages of high throughput, high sensitivity, and can be used to detect a large number of trace compounds in edible oils, which has a great significance for the identification of the authenticity of edible oils. Therefore, in this study, we used the methods of lipidomics and metabolomics based on UPLC-QTOF-MS, and combined with PCA (Principal Component Analysis, PCA) and OPLS-DA (Orthogonal Partial Least Squares Discrimination Analysis, OPLS-DA) of chemometrics methods to identify the authenticity of sea buckthorn oil, and to use this methods to speculate the compounds which contained in the sea buckthorn oil and its adulterated oil (sunflower seed oil, rapeseed oil and soybean oil), and to explore the differences among various edible oils to further distinguish sea buckthorn oil and oil adulteration, and further to authenticate the map. The research contents and main results are as follows: 1. Research on identification of UPLC-QTOF-MS lipidomics of sea buckthorn oil The research based on UPLC-QTOF-MS lipidomics to test the glyceride in edible oil samples, can clearly distinguish the sea buckthorn oil and its adulterated oil. A total of 92 species of diacylglycerols (DAG) and triacylglycerols (TAG) has been detected, among them, 16 species are diacylglycerols, 76 species are triacylglycerols. The glycerides mainly in sea buckthorn but not exist in adulterated oil are: DAG32:1、TAG36:0、TAG38:0、TAG40:0、TAG42:1、TAG42:3、TAG44:5、TAG44:6、TAG46:0、TAG46:1、TAG58:6、TAG60:6 and TAG60:6. According to the measured glyceride, the model was established to characterize and predict the clustering differentiation of sea buckthorn oil and its adulterated oil. The authenticity identification of sea buckthorn oil, sunflower seed oil, rapeseed oil, soybean oil and different kinds of adulterated oil was realized. The results showed that the models of PCA and OPLS-DA had a good degree of differentiation and explain ability, and the clustering differentiation among edible oils was obvious. The various edible oils were separated in clusters. It can basically realize the effective distinction between different kinds of edible oil. The application of clustering analysis was used to compared the distribution and relative content of 92 glycerides in sea buckthorn oil and its adulterated oil by different colors, and the hierarchical clustering algorithm heatmap was used to compared the relative content of glyceride in edible oil straightly. The identification of sea buckthorn oil and its adulterated oil was predicted by using the prediction chart of observed value and predicted value, and the prediction proved that the method to detect sea buckthorn oil and its adulterated oil has good linear relationship and strong prediction ability, which can achieve the effective identification of each gradient of sea buckthorn oil and its adulterated oil rely on the production point and the measure data. It can provides support for solving the actual detection of adulteration concentration. 2. Research on identification of UPLC-QTOF-MS non-target metabolomics of sea buckthorn oil We used UPLC-QTOF-MS non-targeted metabolomics to detected the edible oils, and coupled with the methods of PCA and OPLC-DA to conducted the cluster differentiation of sea buckthorn oil and its adulterated oil. The MarkerView (Ver1.3.1 AB Sciex company) software and the SIMCA (Ver15 MKS Data Analytics Solutions (the original Umetrics)) software were used to filtrate the characteristic ions. According to the conditions, we compared the chemical equation of compound, primary and secondary ion chromatogram with the online databases, MS-FINDER software and literature comparison to speculate the name of characteristic compounds, and to identify the verification of edible oil furtherly. The experimental data showed that the method which based on non-targeted metabolomics of UPLC-QTOF-MS can effectively distinguish the differentiation of sea buckthorn oil, sunflower seed oil, rapeseed oil and soybean oil. The chemical metrology model is reliable. OPLS-DA model clustering degree of differentiation is good, and it has the good explanation and prediction ability. The clustering of same kind of edible oil and the distinguish situation of different kinds of edible oil is clearly, it can effectively identify among the sea buckthorn oil and its adulteration oil. Through the analysis of characteristics of compound abundance, the 1% adulterated sea buckthorn oil can be identified, therefore on the basis of UPLC-QTOF-MS of non-target metabolomics technology can be used as the one of the effective means to identified the sea buckthorn oil and its adulteration oil. It can provide experience and reference for the application of non-target metabolomics and chemometrics analysis technology based on UPLC-QTOF-MS for the authenticity identification of sea buckthorn oil and its adulterated edible oils. In this research, the non-volatile characteristic metabolic compounds of sea buckthorn oil and its adulterated oil were speculated. Through this way 20 characteristic compounds have been detected, which include organic acids and alcohols. 10 of characteristic compounds are sea buckthorn oil, 4 of characteristic compounds are sunflower seed oil, 5 of characteristic compounds are rapeseed oil and 1 of characteristic compounds is soybean oil. Different kinds of edible oils have different characteristic compounds. Some characteristic compounds are only existing in sea buckthorn oil, such as Sclareol, Lobetyol, Ricinoleyl alcohol, Ursonic acid/Oleanonic acid and so on. Characteristic compounds can be used to distinguish 4 kinds of oil from the level of small molecules, explore the types of adulterated oil and to verify the map furtherly. Therefore, this method and model identification are mutually verified and complementary, which can be used as a good way to identify the authenticity of sea buckthorn oil and its adulterated oil and accurately determined the authenticity of unknown sea buckthorn oil samples. This way can provide solid identification theory and scientific basis for the identify of sea buckthorn oil, and provide certain experience and reference for the late application through this method to verify the sea buckthorn oil and adulterated edible oil. |
参考文献: |
[1] 付媛, 李金梅, 张霞, 等. 沙棘的化学成分及其保健功能研究进展[J]. 内蒙古石油化工, 2008, 34(23): 13-14. [2] 李芳亮, 王锐, 张红梅. 沙棘茶水溶性多糖抗氧化活性的研究[J]. 天然产物研究与开发, 2010, 22(4): 671-673. [3] 何士敏, 袁小娟, 汪建华. 中国沙棘属植物资源及其开发利用现状[J]. 现代农业科学, 2008, 15(11): 87-92. [4] 卢顺光, 卢健, 温秀凤. 沙棘植物资源分布与营养学应用综述[J]. 中国水土保持, 2019, (7): 45-49. [5] 邢伟. 沙棘油产品的加工技术及市场前景[J]. 山西农业科学, 2009(10): 66-67+73. [6] 鲁长征, 山永凯, 杨莉华, 等. 沙棘的研究及其开发应用[J]. 中国食物与营养, 2010(3): 26-28. [7] 张荣. ICP-MS法测定沙棘果油中13种微量元素含量[J]. 水资源开发与管理, 2014(3): 11-14. [8] 郭红丽. 沙棘产品的生产技术现状及其发展[J]. 内蒙古石油化工, 2011(19): 106-107. [9] 侯海英. 浅谈沙棘资源的综合利用[J]. 山西林业, 2017(3): 26-27. [10] 沈琪, 王梅. 沙棘籽油中维生素E含量的CGC法测定[J]. 中国药物应用与监测, 2017, 14(3): 154-156. [11] M.Bal L, Meda V, Naik S N, et al. Sea buckthorn berries: a potential source of valuable nutrients for nutraceuticals and cosmoceuticals[J]. Food Research International, 2011, 44(7): 1718-1727. [12] 臧茜茜, 邓乾春, 从仁怀. 沙棘油功效成分及药理功能研究进展[J]. 中国油脂, 2015, 40 (5): 76-81. [13] S?dergren E, Cederberg J, Vessby B, et al. Vitamin E reduces lipid peroxidation in experimental hepatotoxicity in rats[J]. European Journal of Nutrition, 2001, 40(1): 10-16. [14] Olas B. The beneficial health aspects of sea buckthorn ( Elaeagnus rhamnoides (L.) A.Nelson) oil[J]. Journal of Ethnopharmacology, 2017, 213: 183-190. [15] Yeh Y-H, Hsieh Y-L, Lee Y-T, et al. Dietary seabuckthorn (Hippophae rhamnoides L.) reduces toxicity of oxidized cholesterol in rats[J]. e-SPEN Journal, 2012, 7(2): e69-e77. [16] Larmo P S, Jarvinen R L, Setala N L, et al. Oral sea buckthorn oil attenuates tear film osmolarity and symptoms in individuals with dry eye[J]. Journal of Nutritional Biochemistry, 2010, 140(8): 1462-1468. [17] 赵二劳, 徐芬, 尹爱萍, 等. 沙棘果油与沙棘籽油脂肪酸组成及其抗氧化活性[J]. 中国油脂, 2017, 42(12): 120-123. [18] 郭红丽. 沙棘产品的生产技术现状及其发展[J]. 内蒙古石油化工, 2011(19): 106-107. [19] 向殷丰, 刘睿杰, 金青哲, 等. 沙棘籽油微胶囊制备及其特性研究[J]. 中国油脂, 2020, 45(1): 12-16. [20] Larmo P, J?rvinen R, Laihia J, et al. Effects of a sea buckthorn oil spray emulsion on dry eye[J]. Contact Lens Anterior Eye, 2018, 42(4): 428-433. [21] 赵文法, 杜攀. 沙棘油番茄红素软胶囊对大鼠的辅助降血脂实验研究[J]. 山东化工, 2019, 048(007): 39-40,42. [22] Xu Y J, Kaur M, Dhillon R S, et al. Health benefits of sea buckthorn for the prevention of cardiovascular diseases[J]. Journal of Functional Foods, 2011, 3(1): 2-12. [23] 李立芬, 陈敏珊, 王真史, 等. 含沙棘油牙膏的抗炎、止血及修复功效研究[J]. 日用化学品科学, 2018, 041(001): 28-31. [24] 郑宏伟, 苏海建, 张帅, 等. 沙棘果油的超临界CO2萃取及其在卷烟中的应用研究[J]. 安徽农业科学, 2015, 43(04): 286-288. [25] 高雅磬, 李晓倩, 于有强, 等. 沙棘籽油凝胶的制备及流变特性[J]. 食品与发酵工业, 2020: 1-13. [26] Yang B, Kallio H. Composition and physiological effects of sea buckthorn (Hippophae) lipids[J]. Trends in Food Science & Technology, 2002, 13(5): 160-167. [27] 管文轲, 阮成江, 吴天忠, 等. 沙棘半家系及果实不同成熟期果肉含油量变化[J]. 湖北农业科学, 2016(16): 4187-4189. [28] Hurkova K, Rubert J, Stranska-Zachariasova M, et al. Strategies to document adulteration of food supplement based on sea buckthorn oil: a case study[J]. Food Analytical Methods, 2016: 1-11. [29] 李宗朋, 王健, 张晓磊, 等. 基于近红外光谱技术的沙棘籽油鉴伪方法研究[J]. 中国油脂, 2014, 39(2): 57-62. [30] Alonso-Rebollo A, Ramos-Gómez S, Busto M D, et al. Development and optimization of an efficient qPCR system for olive authentication in edible oils[J]. Food Chemistry, 2017, 232(OCT.1): 827-835. [31] Uncu A T, Uncu A O, Frary A, et al. Barcode DNA length polymorphisms vs fatty acid profiling for adulteration detection in olive oil[J]. Food Chemistry, 2017, 221: 1026-1033. [32] Ng T-T, So P-K, Zheng B, et al. Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry[J]. Analytica Chimica Acta, 2015, 884: 70-76. [33] Wei-Feng L, Qiu-Xia Y, Ze-Peng L, et al. Rapid characterization of triacylglycerols in edible oils by matrix-assisted laser desorption/ionization fourier transform ion cyclotron resonance mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(3): 393-399. [34] Li Z, Wang J, Xiong Y, et al. The determination of the fatty acid content of sea buckthorn seed oil using near infrared spectroscopy and variable selection methods for multivariate calibration[J]. Vibrational Spectroscopy, 2016, 84: 24-29. [35] Rhayanna P.Gon?alves, Paulo H.Mar?o, Valderrama P. Thermal edible oil evaluation by UV–Vis spectroscopy and chemometrics[J]. Food Chemistry, 2014, 163(NOV.15): 83-86. [36] Melomilanez K D T, Araújonóbrega T C, Silvanascimento D, et al. Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV-Vis spectroscopies: a preliminary approach[J]. Lwt Food Science & Technology, 2017, 85: 9-15. [37] Armenta S, Garrigues S, Guardia M D L. Determination of edible oil parameters by near infrared spectrometry[J]. Analytica Chimica Acta, 2007, 596(2): 330-337. [38] Yuan Z, Zhang L, Wang D, et al. Detection of flaxseed oil multiple adulteration by near-infrared spectroscopy and nonlinear one class partial least squares discriminant analysis[J]. LWT, 2020, 125: 109247. [39] Pereira C G, Leite A I N, Andrade J, et al. Evaluation of butter oil adulteration with soybean oil by FT-MIR and FT-NIR spectroscopies and multivariate analyses[J]. LWT, 2019, 107: 1-8. [40] 雷金仙. 傅里叶变换光谱在食用油分析上的应用[J]. 云南化工, 2018, 45(6): 134-135. [41] Yang H, Irudayaraj J, M.Paradkar M. Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy[J]. Food Chemistry, 2005, 93(1): 25-32. [42] Hu R, He T, Zhang Z, et al. Safety analysis of edible oil products via Raman spectroscopy[J]. Talanta, 2019, 191: 324-332. [43] 张宇, 周金池. 拉曼光谱在食用油鉴别及检测领域的最新研究进展[J]. 粮食与油脂, 2018, 31(4): 10-11. [44] 张慧. 食用油掺假检测方法[J]. 现代食品, 2018(16): 87-89. [45] 刘燕德, 靳昙昙. 食用油质量检测研究进展[J]. 食品与机械, 2014, 30(1):235-238.. [46] 邓鹏, 杜方岭, 王守经, 等. 电导法在食用油质量检测中的应用研究[J]. 农产品加工, 2008(7): 210-211. [47] Oliveri P, Baldo M A, Daniele S, et al. Development of a voltammetric electronic tongue for discrimination of edible oils[J]. Analytical and Bioanalytical Chemistry, 2009, 395(4): 1135-1143. [48] Yu X, Yang C, Du S, et al. A new method for determining free fatty acid content in edible oils by using electrical conductivity[J]. Food Analytical Methods, 2012, 5(6): 1453-1458. [49] 张婧, 单慧勇, 杨仁杰, 等. 基于近-中红外相关谱融合判定掺伪芝麻油[J]. 光子学报, 2019, 48(06): 62-68. [50] Christy A A, Egeberg P K. Quantitative determination of saturated and unsaturated fatty acids in edible oils by infrared spectroscopy and chemometrics[J]. Chemometrics & Intelligent Laboratory Systems, 2006, 82(1-2): 130-136. [51] Muika B, Lendl B, Molina-Diaza A, et al. Direct, reagent-free determination of free fatty acid content in olive oil and olives by Fourier transform Raman spectrometry[J]. Analytica Chimica Acta, 2003, 487(2): 211-220. [52] Zhang X F, Zou M-Q, Qi X-H, et al. Quantitative detection of adulterated olive oil by Raman spectroscopy and chemometrics[J]. Journal of Raman Spectroscopy, 2011, 42(9): 1784-1788. [53] Poulli K I, Mousdis G A, Georgiou C A. Rapid synchronous ?uorescence method for virgin olive oil adulteration assessment[J]. Food Chemistry, 2007, 105(1): 369-375. [54] Tan J, Li R, Jiang Z T, et al. Synchronous front-face fluorescence spectroscopy for authentication of the adulteration of edible vegetable oil with refined used frying oil[J]. Food Chemistry, 2017, 217: 274-280. [55] Elmas K A, Arslan ? N, Akin F N, et al. Synchronous fluorescence spectroscopy combined with chemometrics for rapid assessment of cold-pressed grape seed oil adulteration: qualitative and quantitative study[J]. Talanta, 2019, 196: 22-31. [56] Zeiner M, Steffan I, Cindric I J. Determination of trace elements in olive oil by ICP-AES and ETA-AAS: A pilot study on the geographical characterization[J]. Microchemical Journal, 2005, 81(2): 171-176. [57] Mendil D, Uluoezlue O D, Tuezen M, et al. Investigation of the levels of some element in edible oil samples produced in Turkey by atomic absorption spectrometry[J]. Journal of Hazardous Materials, 2009, 165(1-3): 724-728. [58] Zhuravlev A, Zacharia A, Gucer S, et al. Direct atomic absorption spectrometry determination of arsenic, cadmium, copper, manganese, lead and zinc in vegetable oil and fat samples with graphite filter furnace atomizer[J]. Journal of Food Composition Analysis, 2015, 38: 62-68. [59] 陈丽花, 郝德兰, 朱楚楚, 等. 地沟油的分析鉴别方法研究[J]. 食品工业, 2017(8): 169-173. [60] 常颖萃. 基于气相色谱法的福建油茶籽油真伪鉴别[J]. 福建林业科技, 2019, 46(02): 30-34. [61] Jiménez-Carvelo M A, González-Casado A, Cuadros-Rodríguez L. A new analytical method for quantification of olive and palm oil in blends with other vegetable edible oils based on the chromatographic fingerprints from the methyl-transesterified fraction[J]. Talanta, 2017, 164: 540-547. [62] 陆湘婷, 张世鼎, 龚灿, 等. 多孔石墨碳柱和正辛烷-异丙醇流动相分离高效液相色谱法分析食用油中的甘油三酯[J]. 化学分析, 2020: 1-14. [63] Halim H, Abdullah R, Jailani Mohd nor M, et al. Comparison between measured traffic noise in klang valley, malaysia and existing prediction models[J]. Engineering Heritage Journal /Galeri Warisan Kejuruteraan, 2017, 1(2): 10-14. [64] Cheng X, Yang T, Wang Y, et al. New method for effective identification of adulterated Camellia oil basing on Camellia oleifera-specific DNA[J]. Arabian Journal of Chemistry, 2018, 11(6): 815-826. [65] Zhang H, Wu Y, Li Y, et al. PCR-CE-SSCP used to authenticate edible oils[J]. Food Control, 2012, 27(2): 0-329. [66] Alonso-Rebollo A, Ramos-Gómez S, Busto M D, et al. Development and optimization of an efficient qPCR system for olive authentication in edible oils[J]. Food Chemistry, 2017, 232: 827-835. [67] Lucchetti S, Pastore G, Leoni G, et al. A simple microsatellite-based method for hazelnut oil DNA analysis[J]. Food Chemistry, 2018, 245(apr.15): 812-819. [68] Su T, Wei P, Wu L, et al. Development of nucleic acid isolation by non-silica-based nanoparticles and real-time PCR kit for edible vegetable oil traceability[J]. Food Chemistry, 2019, 300: 125205. [69] Qu S, Du Z, Zhang Y. Direct detection of free fatty acids in edible oils using supercritical ?uid chromatography coupled with mass spectrometry[J]. Food Chemistry, 2015, 170: 463-469. [70] 张素敏, 隋韶奕, 王雪松, 等. “中阳”等3个品种沙棘油脂肪酸组成研究[J]. 食品研究与开发, 2015, 036(024): 149-154. [71] Ruiz-Samblás C, Marini F, Cuadros-Rodríguez L, et al. Quantification of blending of olive oils and edible vegetable oils by triacylglycerol fingerprint gas chromatography and chemometric tools[J]. Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences, 2012, 910(none): 71-77. [72] Da Silveira R, Vagula J M, Figueiredo I D L, et al. Rapid methodology via mass spectrometry to quantify addition of soybean oil in extra virgin olive oil: a comparison with traditional methods adopted by food industry to identify fraud[J]. Food research international, 2017, 102(dec.): 43-50. [73] Zhao Y Y, Wu S-P, Liu S, et al. Ultra-performance liquid chromatography–mass spectrometry as a sensitive and powerful technology in lipidomic applications[J]. Chemico Biological Interactions, 2014, 220: 181-192. [74] Wei W, Sun C, Jiang W, et al. Triacylglycerols ?ngerprint of edible vegetable oils by ultra-performance liquid chromatography-Q-ToF-MS[J]. LWT, 2019, 112: 108261. [75] Yan Z, Zhao Y, Shen G, et al. NMR spectroscopy in conjugation with multivariate statistical analysis for distinguishing plant origin of edible oils[J]. Journal of Food Composition& Analysis, 2018, 69: 140-148. [76] Santos J S, Escher G B, Pereira J M D S, et al. H-1 NMR combined with chemometrics tools for rapid characterization of edible oils and their biological properties[J]. Industrial Crops & Products, 2018, 116: 191-200. [77] Siudem P, Wawer I, Paradowska K. Rapid evaluation of edible hemp oil quality using NMR and FT-IR spectroscopy[J]. Journal of Molecular Structure, 2019, 1177: 204-208. [78] Gouilleux B, Marchand J, Charrier B, et al. High-throughput authentication of edible oils with benchtop ultrafast 2D NMR[J]. Food Chemistry, 2018, 244(APR.1): 153-158. [79] 孟明翔. 食品快速筛查中无损检测技术的应用现状[J]. 化工管理, 2019, 35: 48-49. [80] 赵海英. 无损检测技术在食品安全快速筛查中的应用[J]. 食品安全导刊, 2018, 218(27): 149. [81] 岳静. 仿生传感智能感官检测技术在食品感官评价中的应用及研究进展[J]. 中国调味品, 2013(12): 60-63. [82] Escuderos M E, García M, Jiménez A, et al. Edible and non-edible olive oils discrimination by the application of a sensory olfactory system based on tin dioxide sensors[J]. Food Chemistry, 2013, 136(3-4): 1154-1159. [83] Campos I, Alca?iz M, Aguado D, et al. A voltammetric electronic tongue as tool for water quality monitoring in wastewater treatment plants[J]. Water Research, 2012, 46(8): 2605-2614. [84] Oliveri P, Baldo M A, Daniele S, et al. Development of a voltammetric electronic tongue for discrimination of edible oils[J]. Analytical Bioanalytical Chemistry, 2009, 395(4): 1135-1143. [85] 张航, 赵松林, 陈卫军, 等. 电子舌传感器快速检测油茶籽油中掺杂棕榈油[J]. 食品科学, 2013, 34(14): 218-222. [86] 惠延波, 王瞧, 王莉, 等. 电子舌对不同食用植物油区分识别研究[J]. 中国油脂, 2013(6): 54-59. [87] Strashnov I, Gilmour J D, Cannavan A, et al. Atmospheric pressure chemical ionisation (APCI) and photoionisation (APPI) mass spectrometry for detection of unsaturated fatty acids: potential for rapid detection of adulteration of vegetable oils[J]. Analytical Methods, 2019, 11: 1-10. [88] 田潇潇, 方学智, 孙汉洲, 等. 不同油茶物种及品种果实中甘油三酯成分分析[J]. 林业科学研究, 2018, 31(02): 41-47. [89] ZEB A. Triacylglycerols composition, oxidation and oxidation compounds in camellia oil using liquid chromatography-mass spectrometry[J]. Chen Phys Lipids,2012,165(5):608-614. [90] 胡谦, 张九凯, 韩建勋, 等, 基于UPLC-QTOF-MS技术的压榨和浸出油茶籽油甘油酯组成比较分析[J]. 食品科学,2020, [91 张东, 薛雅琳, 朱琳, 等. 反相高效液相色谱-飞行时间质谱法测定椰子油甘油三酯[J]. 中国油脂, 2016(11):93-96. [92] 张东, 薛雅琳, 朱琳, 等. 高效液相色谱-四极杆飞行时间质谱法测定棕榈油和动物脂肪甘油三酯[J]. 粮油食品科技, 2015, 23(05):72-76. [93] Fasciotti M, Netto A D P. Optimization and application of methods of triacylglycerol evaluation for characterization of olive oil adulteration by soybean oil with HPLC–APCI-MS–MS[J]. Talanta, 2010, 81(3): 0-1125. [94] 冯西娅, 黄威, 索化夷, 等. 牡丹籽油甘油三酯结构及理化特性分析[J]. 食品与发酵工业, 2019: 258-263. [95] 高蓓, 章晴, 杨悠悠. 食用植物油鉴伪研究进展[J]. 食品安全质量检测学报, 2015(7): 2789-2794. [96] Saunders D G O, Joe W, M. C L, et al. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi[J]. Plos One, 2012, 7(1): e29847. [97] Eriksson L, Trygg J, Wold S. CV-ANOVA for signi?cance testing of PLS and OPLS? models[J]. Journal of Chemometrics, 2008, 22(11-12): 594-600. [98] Westerhuis J, Hoefsloot H, Smit S, et al. Assessment of PLSDA cross validation[J]. Metabolomics, 2008, 4(1): 81-89. [99] 邢常瑞, 袁翔宇, 章铖,等. Triple-TOF-MS/MS法检测植物油中甘油三酯[J]. 中国油脂, 2019(7):135-139. [100] 张世鼎. 液相色谱质谱联用使用多孔石墨碳柱与甲苯流动相分离分析食用油中的甘油三酯[D]. 上海:上海应用技术大学, 2018. [101] Berrueta L A, Alonso-Salces R M, Héberger K. Supervised pattern recognition in food analysis[J]. Journal of Chromatography A, 2007, 1158(1-2): 196-214. [102] Tsugawa H, Kind T, Nakabayashi R, et al. Hydrogen rearrangement rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER software[J]. Analytical Chemistry, 2016, 88(16): 7946-7958. [103] Lai Z, Tsugawa H, Wohlgemuth G, et al. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics[J]. Nature Methods, 2018, 15: 53-56. [104] 董诗婷, 陈云, 高群玉. 沙棘果生物活性成分及其功能的研究进展[J]. 中国酿造, 2020, 39(02): 26-32. [105] 黄蕊, 盛文军, 李霁昕, 等. 超高压及热处理对中国沙棘原浆挥发性成分影响的比较[J]. 食品科学, 2018, 039(018): 204-208. [106] 陈皖宁. 乳香提取物的提取方式及抗氧化功效研究[D]. 上海:上海交通大学, 2018. [107] 付亚玲, 高琳, 张东旭, 等. 齐墩果酸和熊果酸提取、分离与测定方法研究进展[J]. 食品研究与开发, 2020, 41(02):196-199. [108] ZIBEMA L, SAMEC D, MOCAN A, et al. Oleanolic acid alters multiple cell signaling pathways:Implication in cancer prevention and therapy[J]. Internation Journal of Molecular Sciences, 2017, 18(3):643-655. [109] LIU J. Oleanolic acid and ursolic acid:Research perspectives[J].Journal ofEthnopharmacology, 2005, 100(1/2):92-94. [110] 顾锦华, 黄华, 薛华, 等.齐墩果酸对糖尿病小鼠胰岛损伤的保护作用[J]. 中草药, 2010, 41(11):1866-1870. [111] WANG X, Ye X L, LIU R, et al. Antioxidant activities of oleanolic in vitro:Possible role of Nrf2 and MAP kinases[J]. Chemico-Biological Interactions, 2010, 184(3):328-337. [112] 陈宝龙, 冯坤, 郑朝华, 等. 山楂中齐墩果酸和熊果酸的测定[J]. 中国实验方剂学杂志, 2010, 16(5): 73-75. [113] 于雪妮, 冯小刚, 张建民, 等. 人参化学成分与药理作用研究新进展[J]. 人参研究, 2019, 31(01): 49-53. [114] 李雅芬, 白音夫. HPLC法测定蒙药材沙棘果实中熊果酸的含量[J]. 中国民族医药杂志, 2015(4): 42-43. [115] 滕晓萍, 王宏昊, 花圣卓, 等. HPLC法测定沙棘叶、果实、枝条中齐墩果酸和熊果酸的含量[J]. 水资源开发与管理, 2013(4): 1-3. [116] 高山, 王晶, 刘暄, 等. 沙棘果油中棕榈油酸分离方法的研究[J]. 食品研究与开发, 2018,39(2):40-45. [117] 刘平. 棕榈油酸功能的研究进展[J]. 粮食与油脂, 2020, 33(03):4-6. [118] 秦翠林. 丹参酚酮制备工艺和质量标准研究[D]. 成都:成都中医药大学, 2015. [119] Kermasha S, Goetghebeur M, Dumont J. Determination of phenolic compound profiles in maple products by high-performance liquid chromatography[J]. Journal of Agricultural and Food Chemistry, 1995, 43(3): 708-716. [120] Paisan L, Thitiporn M. Inheritance of erucic acid, glucosinolate, and oleic acid contents in rapeseed (Brassica napus L.) [J]. Journal of Northeast Agricultural University(English Edition), 2012, 19(2): 1-8. [121] Tian E, Liang H, Wang J, et al. Variation and correlation of erucic acid,oleic acid and glucosinolate contents in brassica rapa seeds[J]. Asian Agricultural Research(English Edition), 2018, 10(06): 57-60. [122] 王晓波, 熊小伟, 朱玉华, 等.大豆苷元及其苯磺酸酯衍生物对肺癌细胞增殖和凋亡的影响[J]. 大豆科学, 2019, 38(06):934-942. [123] Dou X, Mao J, Zhang L, et al. Multispecies adulteration detection of camellia oil by chemical markers[J]. Molecules, 2018, 23(2): 241-250. |
中图分类号: | TS2 |
开放日期: | 2020-07-22 |