- 无标题文档
查看论文信息

中文题名:

 绵羊胚胎干细胞培养体系的优化及向原始生殖细胞诱导分化的研究    

姓名:

 吕文莉    

学号:

 2022105005    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090501    

学科名称:

 农学 - 畜牧学 - 动物遗传育种与繁殖    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 南京农业大学    

院系:

 动物科技学院    

专业:

 动物遗传育种与繁殖    

研究方向:

 绵羊胚胎工程    

第一导师姓名:

 张艳丽    

第一导师单位:

  南京农业大学    

完成日期:

 2025-06-01    

答辩日期:

 2025-05-26    

外文题名:

 Optimization of sheep embryonic stem cell culture system and induced differentiation to primordial germ cells    

中文关键词:

 胚胎干细胞 ; 原始生殖细胞 ; 小分子化合物 ; SOX17 ; 诱导分化    

外文关键词:

 Embryionic stem cells ; Primordial germ cells ; small molecules ; SOX17 ; Induction of differentiation    

中文摘要:

传统育种方法由于代际间隔较长、选择精度和强度有限,难以满足日益增长的肉类和奶制品需求。尽管基因组选择(Genomic Selection,GS)显著缩短了代际间隔,但对于某些哺乳动物(如牛和羊),其代际间隔仍以年为单位,受到妊娠时间和性成熟周期等生物学限制。因此,提出了一种创新的育种策略——体外育种(In Vitro Breeding,IVB),旨在结合基因组选择和前沿生殖技术,加速家畜群体的遗传改良,随着基因编辑技术的不断进步,IVB逐渐更具优势。体外生产生殖细胞(体外配子重建)是IVB的关键流程,即从胚胎干细胞(Embryonic Stem Cells,ESCs)体外生成功能性生殖细胞。生殖细胞作为遗传信息的载体,在物种繁衍中发挥着关键作用,而原始生殖细胞(Primordial Germ Cells,PGCs)是所有生殖细胞的来源。ESCs是体外配子重建的起点细胞,其质量对于后续过程至关重要。然而,目前尚未建立稳定高效的绵羊胚胎干细胞体系,且其诱导分化效率较低,因此, 本研究旨在基于本实验室前期分离的绵羊ESCs,优化建立高效的绵羊ESCs培养体系,并探究其向PGCs分化的诱导条件。通过小分子化合物诱导或基因诱导,将绵羊ESCs体外诱导为原始生殖细胞样细胞,为实现绵羊配子的体外重建奠定基础。本研究不仅为IVB的应用提供了技术支持,也为加快绵羊品种改良进程提供了新的体外模型和解决方案。

本研究包括以下三部分:

试验一 绵羊ESCs稳定培养体系优化的研究

本试验旨在优化绵羊胚胎干细胞(sESCs)的培养体系,探究培养基中不同小分子组合和不同无饲养层培养方式对sESCs多能性及生长特性的影响。基于实验室前期分离的sESCs,本研究对比了去除LIF、Activin A或IWR-1,以及LCDM、FTW和CTFR体系对sESCs的多能性和生长形态的支持效果,分析了Rho激酶抑制剂Y27632对sESCs增殖和凋亡的影响,明确了Y27632在促进sESCs高效增殖的关键要作用,确定了适合sESCs的稳定培养基体系。通过在饲养层细胞(MEF)、基质胶、纤连蛋白、粘连蛋白、玻连蛋白和Geltrex基质上培养的sESCs的多能性和生长特性,发现在无饲养层培养基质中LN521对sESCs的支持效果更稳定,相比其他基质培养的sESCs具有更高的单克隆效率和更短的细胞倍增时间,并且已在体外支持sESCs传至30代仍然稳定。综上,本研究建立了稳定的sESCs无饲养层培养体系,为后续sESCs的诱导分化及应用研究提供了重要基础。

试验二 小分子化合物诱导绵羊ESCs分化为原始生殖细胞的研究

本试验旨在建立小分子化合物诱导sESCs分化为原始生殖细胞的诱导体系。在GK15培养基添加了LIF、EGF和SCF因子,以及BMP4或者BMP通路激活剂SB4,在2D或3D的培养环境中诱导sESCs向原始生殖细胞样细胞(sPGCLCs)分化。通过细胞免疫荧光、实时荧光定量PCR、蛋白免疫印迹等试验技术对诱导不同天数的sPGCLCs进行分子特征鉴定,利用SMART-seq分析BMP4和SB4诱导sPGCLCs的差异。结果表明,BMP4和SB4诱导的sPGCLCs均能表达PGC标记基因SOX17、NANOS3和PRDM1,且与甲基化相关的H3K4me3、H3K9me3、DNMT3A和DNMT3B蛋白表达下降,H3K27me3表达升高,符合PGC的甲基化重编程特征。转录组分析显示,BMP4和SB4诱导的sPGCLCs均进行了生殖细胞发育的生物过程,但BMP4组的sPGCLCs更倾向早期PGC,而SB4组的sPGCLCs则更倾向晚期PGC的特征。综上,本研究成功利用小分子化合物诱导sESCs分化为sPGCLCs,验证了诱导体系的有效性,并证实sESCs具有直接向PGCs分化的潜力,为后续通过基因激活方式诱导sESCs分化为PGCs提供了理论依据。

试验三 SOX17基因诱导绵羊ESCs分化为原始生殖细胞的研究

本试验旨在通过激活SOX17基因,或联合小分子化合物诱导的方式,于体外诱导sESCs分化为原始生殖细胞。首先构建了基于CRISPR/dCas9系统的SOX17基因激活工具,并采用脂质体转染、慢病毒转导及电穿孔等方法将其导入sESCs,检测SOX17基因表达水平得到最佳转染条件,比较单独激活SOX17进行诱导,单独使用小分子化合物诱导以及两种方法结合的方式进行诱导的细胞的形态变化和生殖细胞标记基因的表达水平,结果表明电转为最高效转染方法,三种诱导方法均能使PGCs标记基因表达上调,其中小分子诱导方法对细胞造成的影响最显著,本试验验证了SOX17在调控生殖细胞发育过程中的作用,为理解SOX17在绵羊生殖细胞命运调控中的分子机制提供了重要依据。同时探究了适用于sESCs的高效转染方法,为进一步在sESCs中通过基因编辑的方式挖掘更多基因的调控作用奠定基础。

外文摘要:

Conventional breeding techniques have proven ineffective in meeting the escalating demand for meat and dairy products, primarily due to the extended generation intervals and the constrained precision and intensity of selection. Genomic Selection (GS) has been shown to reduce the intergenerational interval; however, for certain mammals (e.g., cattle and sheep), the intergenerational interval is still measured in years, which is biologically limited by gestation time and sexual maturity cycle. Consequently, an innovative breeding strategy, In Vitro Breeding (IVB), has been proposed to expedite the genetic enhancement of livestock populations by integrating genomic selection and state-of-the-art reproductive technologies. Notably, IVB has emerged as a progressively advantageous approach, given the ongoing advancements in gene editing technologies. The pivotal process within the IVB framework is in vitro gamete reconstruction, which entails the generation of functional germ cells from Embryonic Stem Cells (ESCs) within a laboratory setting.Germ cells are the source of all germ cells, and primordial germ cells (PGCs) play a key role in species reproduction as carriers of genetic information.ESCs are the source cells for in vitro germ cell reconstruction, and their quality is critical for the subsequent process. However, a stable and efficient sheep embryonic stem cell system has yet to be established, and its induced differentiation efficiency remains low. The objective of this study was twofold: first, to optimize the establishment of an efficient sheep ESC culture system based on sheep ESCs isolated in our laboratory, and second, to investigate the induction conditions for their differentiation into PGCs. The induction of primordial germ cell-like cells in vitro can be achieved through the use of small molecule compounds or gene induction techniques. This study aims to establish an effective in vitro system for the reconstruction of sheep gametes, which would be a significant advancement in the field. The findings of this study offer two significant contributions. They provide technical support for the application of IVB, and establish a novel in vitro model that can expedite the process of sheep breed improvement.

This study includes the following three parts:

Experiment 1: Study on the optimization of stable culture system for sheep ESCs

The objective of this experiment was to optimize the culture system of sheep embryonic stem cells (sESCs) and to investigate the effects of different culture conditions on their pluripotency and growth characteristics. Utilizing the pre-laboratory isolation of sESCs as a foundation, this study systematically compared the effects of removing LIF, Activin A, or IWR-1, as well as LCDM, FTW, and CTFR systems, on the support of pluripotency and growth morphology of sESCs. The study also involved the screening of optimal culture medium systems. The study further investigated the impact of the Rho-kinase inhibitor Y27632 on the proliferation and autophagy of sESCs. The results demonstrated that Y27632 plays a critical role in promoting the efficient proliferation of sESCs. Furthermore, the study characterized the pluripotency and growth characteristics of sESCs cultured on feeder layer cells (MEF), matrix adhesive, fibronectin, adherensin, hyaluronan, and Geltrex matrices. The results indicated that LN521 supported sESCs more effectively in feeder layer-free medium. Furthermore, sESCs cultivated in the feeder layer medium exhibited enhanced monoclonal efficiency and diminished cell multiplication compared to those cultured in alternative matrices. The study also demonstrated that LN521 maintained sESCs in vitro, ensuring their stability up to 30 generations. In summary, the present study has established a stable and efficient sESCs culture system, which provides a significant foundation for subsequent studies on the induction and differentiation of sESCs and their applications.

Experiment 2: Study on small molecule compounds inducing differentiation of sheep ESCs into primordial germ cells

The objective of this experiment was to establish an induction system for small molecule compounds to induce the differentiation of sESCs into primordial germ cells. The sESCs were induced to differentiate into primordial germ cell-like cells (sPGCLCs) in 2D or 3D culture environments in GK15 medium supplemented with LIF, EGF, and SCF factors, as well as BMP4 or the BMP pathway activator SB4. The sPGCLCs induced for different days were molecularly characterized by a variety of techniques, including cellular immunofluorescence, real-time fluorescence quantitative PCR, protein immunoblotting, and others. The differences in sPGCLCs induced by BMP4 and SB4 were analyzed by SMART-seq. The results demonstrated that both BMP4- and SB4-induced sPGCLCs expressed the PGC marker genes SOX17, NANOS3, and PRDM1. Furthermore, the expression of methylation-related H3K4me3, H3K9me3, DNMT3A, and DNMT3B proteins was decreased, and the expression of H3K27me3 was increased. These findings were consistent with the reprogramming characteristics of methylation in PGC. A subsequent analysis of the obtained data revealed that both BMP4- and SB4-induced sPGCLCs underwent the biological process of germ cell development. However, sPGCLCs in the BMP4 group exhibited a greater propensity to become early PGCs, while those in the SB4 group demonstrated a stronger tendency to manifest characteristics of late PGCs. In summary, this study successfully induced the differentiation of sESCs into sPGCLCs using small molecule compounds, thereby validating the induction system and confirming that sESCs possess the capacity to differentiate directly into PGCs. This provides a theoretical foundation for the subsequent induction of the differentiation of sESCs into PGCs by means of gene activation.

Experiment 3: Study on SOX17 gene induces differentiation of sheep ESCs into primordial germ cells

The objective of this experiment was to induce sESCs to differentiate into primary germ cells in vitro by activating the SOX17 gene, or in combination with small molecule compound induction. Initially, a SOX17 gene activation tool based on the CRISPR/dCas9 system was engineered and introduced into sESCs via liposome transfection, lentiviral transduction, and electroporation. The expression level of the SOX17 gene was then detected by real-time fluorescence quantitative PCR (qRT-PCR), and the optimal transfection conditions were identified to achieve efficient activation of SOX17. Subsequently, the morphological changes of cells and the expression levels of germ cell marker genes under activation of SOX17, induction by small molecule compounds, and combined induction of both were used to validate the role of SOX17 in regulating the development of germ cells. Concurrently, an efficient induction protocol was obtained, providing an important basis for understanding the molecular mechanism of SOX17 in the determination of the fate of the germ cells in sheep. This experiment explored an efficient transfection method applicable to sESCs and applied it to the activation of SOX17 gene and the induction of sESCs differentiation to primordial germ cells. This provides a reference for the efficient induction of germ cells in livestock animals in vitro and lays a foundation for further utilizing sESCs, an in vitro model, to tap the regulatory roles of more genes by means of gene editing.

参考文献:

[1] Alonso-Alonso S, Esteve-Codina A, Martin-Mur B, et al. Blastomeres of 8-cell mouse embryos differ in their ability to generate embryonic stem cells and produce lines with different transcriptional signatures[J]. Front Cell Dev Biol. 2023, 11: 1274660.

[2] Aramaki S, Hayashi K, Kurimoto K, et al. A mesodermal factor, T, specifies mouse germ cell fate by directly activating germline determinants[J]. Dev Cell. 2013, 27: 516-529.

[3] Bae Y U, Son Y, Kim C H, et al. Embryonic Stem Cell-Derived mmu-miR-291a-3p Inhibits Cellular Senescence in Human Dermal Fibroblasts Through the TGF-β Receptor 2 Pathway[J]. J Gerontol A Biol Sci Med Sci. 2019, 74: 1359-1367.

[4] Bao S, Tang W W, Wu B, et al. Derivation of hypermethylated pluripotent embryonic stem cells with high potency[J]. Cell Res. 2018, 28: 22-34.

[5] Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science. 2007, 315: 1709-1712.

[6] Beppu H, Kawabata M, Hamamoto T, et al. BMP type II receptor is required for gastrulation and early development of mouse embryos[J]. Dev Biol. 2000, 221: 249-258.

[7] Bogliotti Y S, Wu J, Vilarino M, et al. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts[J]. Proc Natl Acad Sci U S A. 2018a, 115: 2090-2095.

[8] Bogliotti Y S, Wu J, Vilarino M, et al. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts[J]. Proceedings of the National Academy of Sciences. 2018b, 115: 2090-2095.

[9] Boroviak T, Loos R, Bertone P, et al. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification[J]. Nat Cell Biol. 2014, 16: 516-528.

[10] Botigelli R C, Guiltinan C, Arcanjo R B, et al. In vitro gametogenesis from embryonic stem cells in livestock species: recent advances, opportunities, and challenges to overcome[J]. Journal of Animal Science. 2023, 101.

[11] Bradley A, Evans M, Kaufman M H, et al. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines[J]. Nature. 1984, 309: 255-256.

[12] Brons I G M, Smithers L E, Trotter M W B, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos[J]. Nature. 2007, 448: 191-195.

[13] Brouns S J, Jore M M, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes[J]. Science. 2008, 321: 960-964.

[14] Buehr M, Meek S, Blair K, et al. Capture of authentic embryonic stem cells from rat blastocysts[J]. Cell. 2008, 135: 1287-1298.

[15] Canovas S, Campos R, Aguilar E, et al. Progress towards human primordial germ cell specification in vitro[J]. Mol Hum Reprod. 2017a, 23: 4-15.

[16] Canovas S, Campos R, Aguilar E, et al. Progress towards human primordial germ cell specification in vitro[J]. Molecular Human Reproduction. 2017b, 23: 4-15.

[17] Cao F, Xie X, Gollan T, et al. Comparison of gene-transfer efficiency in human embryonic stem cells[J]. Mol Imaging Biol. 2010, 12: 15-24.

[18] Ceballos G, Ehrlich P R. Mutilation of the tree of life via mass extinction of animal genera[J]. Proc Natl Acad Sci U S A. 2023, 120: e2306987120.

[19] Chang K H, Li M. Clonal isolation of an intermediate pluripotent stem cell state[J]. Stem Cells. 2013, 31: 918-927.

[20] Chatterjee P, Cheung Y, Liew C. Transfecting and Nucleofecting Human Induced Pluripotent Stem Cells[J]. JoVE. 2011: e3110.

[21] Chen D, Liu W, Lukianchikov A, et al. Germline competency of human embryonic stem cells depends on eomesodermin[J]. Biol Reprod. 2017, 97: 850-861.

[22] Chen D, Sun N, Hou L, et al. Human Primordial Germ Cells Are Specified from Lineage-Primed Progenitors[J]. Cell Rep. 2019, 29: 4568-4582.e4565.

[23] Cheng H, Shang D, Zhou R. Germline stem cells in human[J]. Signal Transduct Target Ther. 2022, 7: 345.

[24] Choi K-H, Lee D-K, Kim S W, et al. Chemically Defined Media Can Maintain Pig Pluripotency Network In Vitro[J]. Stem Cell Reports. 2019a, 13: 221-234.

[25] Choi K H, Lee D K, Kim S W, et al. Chemically Defined Media Can Maintain Pig Pluripotency Network In Vitro[J]. Stem Cell Reports. 2019b, 13: 221-234.

[26] Christodoulou N, Kyprianou C, Weberling A, et al. Sequential formation and resolution of multiple rosettes drive embryo remodelling after implantation[J]. Nat Cell Biol. 2018, 20: 1278-1289.

[27] Chugh R M, Chaturvedi M, Yerneni L K. An evaluation of the choice of feeder cell growth arrest for the production of cultured epidermis[J]. Burns. 2015, 41: 1788-1795.

[28] De Sousa Lopes S M, Roelen B A, Monteiro R M, et al. BMP signaling mediated by ALK2 in the visceral endoderm is necessary for the generation of primordial germ cells in the mouse embryo[J]. Genes Dev. 2004, 18: 1838-1849.

[29] De Souza F S, Gawantka V, Gómez A P, et al. The zinc finger gene Xblimp1 controls anterior endomesodermal cell fate in Spemann's organizer[J]. Embo j. 1999, 18: 6062-6072.

[30] Derricott H, Luu L, Fong W Y, et al. Developing a 3D intestinal epithelium model for livestock species[J]. Cell Tissue Res. 2019, 375: 409-424.

[31] Du P, Wu J. Hallmarks of totipotent and pluripotent stem cell states[J]. Cell Stem Cell. 2024, 31: 312-333.

[32] Eckert D, Biermann K, Nettersheim D, et al. Expression of BLIMP1/PRMT5 and concurrent histone H2A/H4 arginine 3 dimethylation in fetal germ cells, CIS/IGCNU and germ cell tumors[J]. BMC Dev Biol. 2008, 8: 106.

[33] Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature. 1981, 292: 154-156.

[34] Fontes A, Lakshmipathy U. Advances in genetic modification of pluripotent stem cells[J]. Biotechnology Advances. 2013, 31: 994-1001.

[35] Fujimoto T, Miyayama Y, Fuyuta M. The origin, migration and fine morphology of human primordial germ cells[J]. Anat Rec. 1977, 188: 315-330.

[36] Gafni O, Weinberger L, Mansour A A, et al. Derivation of novel human ground state naive pluripotent stem cells[J]. Nature. 2013, 504: 282-286.

[37] Gao X, Nowak-Imialek M, Chen X, et al. Establishment of porcine and human expanded potential stem cells[J]. Nature Cell Biology. 2019, 21: 687-699.

[38] Geijsen N, Horoschak M, Kim K, et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells[J]. Nature. 2004, 427: 148-154.

[39] Gilbert L A, Horlbeck M A, Adamson B, et al. Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation[J]. Cell. 2014, 159: 647-661.

[40] Gilbert L A, Larson M H, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell. 2013, 154: 442-451.

[41] Gkountela S, Zhang K X, Shafiq T A, et al. DNA Demethylation Dynamics in the Human Prenatal Germline[J]. Cell. 2015, 161: 1425-1436.

[42] Griffith B P, Goerlich C E, Singh A K, et al. Genetically modified porcine-to-human cardiac xenotransplantation[J]. New England Journal of Medicine. 2022, 387: 35-44.

[43] Guo F, Yan L, Guo H, et al. The Transcriptome and DNA Methylome Landscapes of Human Primordial Germ Cells[J]. Cell. 2015, 161: 1437-1452.

[44] Hancock G V, Wamaitha S E, Peretz L, et al. Mammalian primordial germ cell specification[J]. Development. 2021, 148.

[45] Hara K, Kanai-Azuma M, Uemura M, et al. Evidence for crucial role of hindgut expansion in directing proper migration of primordial germ cells in mouse early embryogenesis[J]. Dev Biol. 2009, 330: 427-439.

[46] Harb N, Archer T K, Sato N. The Rho-Rock-Myosin Signaling Axis Determines Cell-Cell Integrity of Self-Renewing Pluripotent Stem Cells[J]. PLOS ONE. 2008, 3: e3001.

[47] Hayashi K, Kobayashi T, Umino T, et al. SMAD1 signaling is critical for initial commitment of germ cell lineage from mouse epiblast[J]. Mech Dev. 2002, 118: 99-109.

[48] Hayashi K, Ogushi S, Kurimoto K, et al. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice[J]. Science. 2012, 338: 971-975.

[49] Hayashi K, Ohta H, Kurimoto K, et al. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells[J]. Cell. 2011, 146: 519-532.

[50] Hayashi K, Surani M A. Self-renewing epiblast stem cells exhibit continual delineation of germ cells with epigenetic reprogramming in vitro[J]. Development. 2009, 136: 3549-3556.

[51] Hayashi M, Zywitza V, Naitou Y, et al. Robust induction of primordial germ cells of white rhinoceros on the brink of extinction[J]. Sci Adv. 2022, 8: eabp9683.

[52] Hikabe O, Hamazaki N, Nagamatsu G, et al. Reconstitution in vitro of the entire cycle of the mouse female germ line[J]. Nature. 2016, 539: 299-303.

[53] Hildebrandt T B, Hermes R, Goeritz F, et al. The ART of bringing extinction to a freeze - History and future of species conservation, exemplified by rhinos[J]. Theriogenology. 2021, 169: 76-88.

[54] Hiller M, Liu C, Blumenthal P D, et al. Bone morphogenetic protein 4 mediates human embryonic germ cell derivation[J]. Stem Cells Dev. 2011, 20: 351-361.

[55] Hou Z, An L, Han J, et al. Revolutionize livestock breeding in the future: an animal embryo-stem cell breeding system in a dish[J]. J Anim Sci Biotechnol. 2018, 9: 90.

[56] Hsu P D, Lander E S, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell. 2014, 157: 1262-1278.

[57] Irie N, Irie N, Irie N, et al. SOX17 Is a Critical Specifier of Human Primordial Germ Cell Fate[J]. Cell. 2015a, 160: 253-268.

[58] Irie N, Weinberger L, Tang W W, et al. SOX17 is a critical specifier of human primordial germ cell fate[J]. Cell. 2015b, 160: 253-268.

[59] Isaja L, Ferriol-Laffouillere S L, Mucci S, et al. Embryoid Bodies-Based Multilineage Differentiation of Human Embryonic Stem Cells Grown on Feeder-Free Conditions[J]. Methods Mol Biol. 2022, 2520: 189-198.

[60] Ishikura Y, Ohta H, Sato T, et al. In vitro reconstitution of the whole male germ-cell development from mouse pluripotent stem cells[J]. Cell Stem Cell. 2021, 28: 2167-2179.e2169.

[61] Ishikura Y, Yabuta Y, Ohta H, et al. In Vitro Derivation and Propagation of Spermatogonial Stem Cell Activity from Mouse Pluripotent Stem Cells[J]. Cell Rep. 2016, 17: 2789-2804.

[62] Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology. 1987, 169: 5429-5433.

[63] Jasin M, Rothstein R. Repair of strand breaks by homologous recombination[J]. Cold Spring Harb Perspect Biol. 2013, 5: a012740.

[64] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science. 2012, 337: 816-821.

[65] Jo K, Teague S, Chen B, et al. Efficient differentiation of human primordial germ cells through geometric control reveals a key role for Nodal signaling[J]. eLife. 2022, 11.

[66] Kalkan T, Smith A. Mapping the route from naive pluripotency to lineage specification[J]. Philos Trans R Soc Lond B Biol Sci. 2014, 369.

[67] Kanai-Azuma M, Kanai Y, Gad J M, et al. Depletion of definitive gut endoderm in Sox17-null mutant mice[J]. Development. 2002, 129: 2367-2379.

[68] Kanninen L K, Harjumäki R, Peltoniemi P, et al. Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells[J]. Biomaterials. 2016, 103: 86-100.

[69] Kinoshita M, Barber M, Mansfield W, et al. Capture of Mouse and Human Stem Cells with Features of Formative Pluripotency[J]. Cell Stem Cell. 2021, 28: 453-471.e458.

[70] Knott G J, Doudna J A. CRISPR-Cas guides the future of genetic engineering[J]. Science. 2018, 361: 866-869.

[71] Kobayashi T, Zhang H, Tang W W C, et al. Principles of early human development and germ cell program from conserved model systems[J]. Nature. 2017, 546: 416-420.

[72] Kojima Y, Sasaki K, Yokobayashi S, et al. Evolutionarily Distinctive Transcriptional and Signaling Programs Drive Human Germ Cell Lineage Specification from Pluripotent Stem Cells[J]. Cell Stem Cell. 2017, 21: 517-532.e515.

[73] Kojima Y, Yamashiro C, Murase Y, et al. GATA transcription factors, SOX17 and TFAP2C, drive the human germ-cell specification program[J]. Life Sci Alliance. 2021, 4.

[74] Komor A C, Kim Y B, Packer M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature. 2016, 533: 420-424.

[75] Kurlovich J, Rodriguez Polo I, Dovgusha O, et al. Generation of marmoset primordial germ cell-like cells under chemically defined conditions[J]. Life Sci Alliance. 2024, 7.

[76] Lakshmipathy U, Pelacho B, Sudo K, et al. Efficient transfection of embryonic and adult stem cells[J]. Stem Cells. 2004, 22: 531-543.

[77] Lawson K A, Dunn N R, Roelen B A, et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo[J]. Genes Dev. 1999, 13: 424-436.

[78] Lázaro J, Costanzo M, Sanaki-Matsumiya M, et al. A stem cell zoo uncovers intracellular scaling of developmental tempo across mammals[J]. Cell Stem Cell. 2023, 30: 938-949.e937.

[79] Li N, Ma W, Shen Q, et al. Reconstitution of male germline cell specification from mouse embryonic stem cells using defined factors in vitro[J]. Cell Death Differ. 2019, 26: 2115-2124.

[80] Li W, Wei W, Zhu S, et al. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors[J]. Cell Stem Cell. 2009a, 4: 16-19.

[81] Li X Y, Krawetz R, Liu S Y, et al. ROCK inhibitor improves survival of cryopreserved serum/feeder-free single human embryonic stem cells[J]. Human Reproduction. 2009b, 24: 580-589.

[82] Li Z, Fang F, Long Y, et al. The balance between NANOG and SOX17 mediated by TET proteins regulates specification of human primordial germ cell fate[J]. Cell Biosci. 2022, 12: 181.

[83] Liu B, Chen S, Xu Y, et al. Chemically defined and xeno-free culture condition for human extended pluripotent stem cells[J]. Nature Communications. 2021a, 12: 3017.

[84] Liu H, Ren C, Zhu B, et al. High-Efficient Transfection of Human Embryonic Stem Cells by Single-Cell Plating and Starvation[J]. Stem Cells Dev. 2016, 25: 477-491.

[85] Liu M, Zhao L, Wang Z, et al. Generation of Sheep Induced Pluripotent Stem Cells With Defined DOX-Inducible Transcription Factors via piggyBac Transposition[J]. Front Cell Dev Biol. 2021b, 9: 785055.

[86] Lunney J K, Van Goor A, Walker K E, et al. Importance of the pig as a human biomedical model[J]. Sci Transl Med. 2021, 13: eabd5758.

[87] Magnúsdóttir E, Dietmann S, Murakami K, et al. A tripartite transcription factor network regulates primordial germ cell specification in mice[J]. Nat Cell Biol. 2013, 15: 905-915.

[88] Malaver-Ortega L F, Sumer H, Jain K, et al. Bone morphogenetic protein 4 and retinoic acid trigger bovine VASA homolog expression in differentiating bovine induced pluripotent stem cells[J]. Mol Reprod Dev. 2016, 83: 149-161.

[89] Martin G R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells[J]. Proc Natl Acad Sci U S A. 1981, 78: 7634-7638.

[90] Mcdonald A C, Biechele S, Rossant J, et al. Sox17-mediated XEN cell conversion identifies dynamic networks controlling cell-fate decisions in embryo-derived stem cells[J]. Cell Rep. 2014, 9: 780-793.

[91] Mesquita F C P, Leite E S, Morrissey J, et al. Polymerized Laminin-521: A Feasible Substrate for Expanding Induced Pluripotent Stem Cells at a Low Protein Concentration[J]. Cells. 2022, 11: 3955.

[92] Molotkov A, Mazot P, Brewer J R, et al. Distinct Requirements for FGFR1 and FGFR2 in Primitive Endoderm Development and Exit from Pluripotency[J]. Dev Cell. 2017, 41: 511-526.e514.

[93] Moore J C, Atze K, Yeung P L, et al. Efficient, high-throughput transfection of human embryonic stem cells[J]. Stem Cell Res Ther. 2010, 1: 23.

[94] Mulas C, Kalkan T, Smith A. NODAL Secures Pluripotency upon Embryonic Stem Cell Progression from the Ground State[J]. Stem Cell Reports. 2017, 9: 77-91.

[95] Neal J T, Li X, Zhu J, et al. Organoid Modeling of the Tumor Immune Microenvironment[J]. Cell. 2018, 175: 1972-1988.e1916.

[96] Nichols J, Smith A. Naive and primed pluripotent states[J]. Cell Stem Cell. 2009, 4: 487-492.

[97] Ohinata Y, Ohta H, Shigeta M, et al. A signaling principle for the specification of the germ cell lineage in mice[J]. Cell. 2009, 137: 571-584.

[98] Ohinata Y, Payer B, O'carroll D, et al. Blimp1 is a critical determinant of the germ cell lineage in mice[J]. Nature. 2005, 436: 207-213.

[99] Osnato A, Brown S, Krueger C, et al. Tgfβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells[J]. eLife. 2021, 10.

[100] Panek M, Grabacka M, Pierzchalska M. The formation of intestinal organoids in a hanging drop culture[J]. Cytotechnology. 2018, 70: 1085-1095.

[101] Pauklin S, Vallier L. Activin/Nodal signalling in stem cells[J]. Development. 2015, 142: 607-619.

[102] Pawelczak K S, Gavande N S, Vandervere-Carozza P S, et al. Modulating DNA Repair Pathways to Improve Precision Genome Engineering[J]. ACS Chem Biol. 2018, 13: 389-396.

[103] Penton C M, Badarinarayana V, Prisco J, et al. Laminin 521 maintains differentiation potential of mouse and human satellite cell-derived myoblasts during long-term culture expansion[J]. Skelet Muscle. 2016, 6: 44.

[104] Perrett R M, Turnpenny L, Eckert J J, et al. The early human germ cell lineage does not express SOX2 during in vivo development or upon in vitro culture[J]. Biol Reprod. 2008, 78: 852-858.

[105] Powell R H, Behnke M S. WRN conditioned media is sufficient for in vitro propagation of intestinal organoids from large farm and small companion animals[J]. Biol Open. 2017, 6: 698-705.

[106] Qi L S, Larson M H, Gilbert L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell. 2013, 152: 1173-1183.

[107] Rapti K, Stillitano F, Karakikes I, et al. Effectiveness of gene delivery systems for pluripotent and differentiated cells[J]. Molecular Therapy Methods & Clinical Development. 2015, 2.

[108] Roode M, Blair K, Snell P, et al. Human hypoblast formation is not dependent on FGF signalling[J]. Developmental Biology. 2012, 361: 358-363.

[109] Saitou M, Barton S C, Surani M A. A molecular programme for the specification of germ cell fate in mice[J]. Nature. 2002, 418: 293-300.

[110] Sasaki K, Nakamura T, Okamoto I, et al. The Germ Cell Fate of Cynomolgus Monkeys Is Specified in the Nascent Amnion[J]. Dev Cell. 2016, 39: 169-185.

[111] Sasaki K, Yokobayashi S, Nakamura T, et al. Robust In Vitro Induction of Human Germ Cell Fate from Pluripotent Stem Cells[J]. Cell Stem Cell. 2015, 17: 178-194.

[112] Schemmer J, Araúzo-Bravo M J, Haas N, et al. Transcription factor TFAP2C regulates major programs required for murine fetal germ cell maintenance and haploinsufficiency predisposes to teratomas in male mice[J]. PLOS ONE. 2013, 8: e71113.

[113] Séguin C A, Draper J S, Nagy A, et al. Establishment of endoderm progenitors by SOX transcription factor expression in human embryonic stem cells[J]. Cell Stem Cell. 2008, 3: 182-195.

[114] Seki Y, Hayashi K, Itoh K, et al. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice[J]. Dev Biol. 2005, 278: 440-458.

[115] Shah S M, Singla S K, Palta P, et al. Retinoic acid induces differentiation of buffalo (Bubalus bubalis) embryonic stem cells into germ cells[J]. Gene. 2017, 626: 358-366.

[116] Shimoda M, Kanai-Azuma M, Hara K, et al. Sox17 plays a substantial role in late-stage differentiation of the extraembryonic endoderm in vitro[J]. J Cell Sci. 2007, 120: 3859-3869.

[117] Shirasawa A, Hayashi M, Shono M, et al. Efficient derivation of embryonic stem cells and primordial germ cell-like cells in cattle[J]. J Reprod Dev. 2024, 70: 82-95.

[118] Smith A. Formative pluripotency: the executive phase in a developmental continuum[J]. Development. 2017, 144: 365-373.

[119] Soto D A, Navarro M, Zheng C, et al. Simplification of culture conditions and feeder-free expansion of bovine embryonic stem cells[J]. Sci Rep. 2021, 11: 11045.

[120] Souralova T, Hulinova D, Jeseta M, et al. Truncated vitronectin with E-cadherin enables the xeno-free derivation of human embryonic stem cells[J]. Sci Rep. 2023, 13: 15062.

[121] Sybirna A, Tang W W C, Pierson Smela M, et al. A critical role of PRDM14 in human primordial germ cell fate revealed by inducible degrons[J]. Nat Commun. 2020, 11: 1282.

[122] Takashima Y, Guo G, Loos R, et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human[J]. Cell. 2014, 158: 1254-1269.

[123] Takayama K, Inamura M, Kawabata K, et al. Efficient and directive generation of two distinct endoderm lineages from human ESCs and iPSCs by differentiation stage-specific SOX17 transduction[J]. PLOS ONE. 2011, 6: e21780.

[124] Tam P P, Zhou S X. The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo[J]. Dev Biol. 1996, 178: 124-132.

[125] Tang W W, Dietmann S, Irie N, et al. A Unique Gene Regulatory Network Resets the Human Germline Epigenome for Development[J]. Cell. 2015, 161: 1453-1467.

[126] Tang W W C, Castillo-Venzor A, Gruhn W H, et al. Sequential enhancer state remodelling defines human germline competence and specification[J]. Nat Cell Biol. 2022, 24: 448-460.

[127] Thakore P I, D'ippolito A M, Song L, et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements[J]. Nat Methods. 2015, 12: 1143-1149.

[128] Theunissen Thorold w, Powell Benjamin e, Wang H, et al. Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency[J]. Cell Stem Cell. 2014, 15: 471-487.

[129] Thomson J A, Itskovitz-Eldor J, Shapiro S S, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science. 1998, 282: 1145-1147.

[130] Toyooka Y, Shimosato D, Murakami K, et al. Identification and characterization of subpopulations in undifferentiated ES cell culture[J]. Development. 2008, 135: 909-918.

[131] Tsukiyama T, Ohinata Y. A modified EpiSC culture condition containing a GSK3 inhibitor can support germline-competent pluripotency in mice[J]. PLOS ONE. 2014, 9: e95329.

[132] Tyser R C V, Srinivas S. Recent advances in understanding cell types during human gastrulation[J]. Semin Cell Dev Biol. 2022, 131: 35-43.

[133] Van Der Hee B, Loonen L M P, Taverne N, et al. Optimized procedures for generating an enhanced, near physiological 2D culture system from porcine intestinal organoids[J]. Stem Cell Research. 2018, 28: 165-171.

[134] Vilarino M, Alba Soto D, Soledad Bogliotti Y, et al. Derivation of sheep embryonic stem cells under optimized conditions[J]. Reproduction. 2020, 160: 761-772.

[135] Vojta A, Dobrinić P, Tadić V, et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation[J]. Nucleic Acids Res. 2016, 44: 5615-5628.

[136] Wang H, Xiang J, Zhang W, et al. Induction of Germ Cell-like Cells from Porcine Induced Pluripotent Stem Cells[J]. Sci Rep. 2016, 6: 27256.

[137] Wang J, Xie W, Li N, et al. Generation of a humanized mesonephros in pigs from induced pluripotent stem cells via embryo complementation[J]. Cell Stem Cell. 2023a, 30: 1235-1245. e1236.

[138] Wang L, Duan E, Sung L-Y, et al. Generation and Characterization of Pluripotent Stem Cells from Cloned Bovine Embryos1[J]. Biology of Reproduction. 2005a, 73: 149-155.

[139] Wang L, Duan E, Sung L Y, et al. Generation and characterization of pluripotent stem cells from cloned bovine embryos[J]. Biol Reprod. 2005b, 73: 149-155.

[140] Wang M, Li Y, Wang H, et al. Corneal regeneration strategies: From stem cell therapy to tissue engineered stem cell scaffolds[J]. Biomedicine & Pharmacotherapy. 2023b, 165: 115206.

[141] Wang X, Wu Q. The Divergent Pluripotent States in Mouse and Human Cells[J]. Genes (Basel). 2022, 13.

[142] Watanabe K, Ueno M, Kamiya D, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells[J]. Nature Biotechnology. 2007, 25: 681-686.

[143] Weinberger L, Ayyash M, Novershtern N, et al. Dynamic stem cell states: naive to primed pluripotency in rodents and humans[J]. Nat Rev Mol Cell Biol. 2016, 17: 155-169.

[144] Wu J, Okamura D, Li M, et al. An alternative pluripotent state confers interspecies chimaeric competency[J]. Nature. 2015, 521: 316-321.

[145] Xiao Y, Wang Y, Zhang M, et al. Tankyrase inhibitor IWR-1 modulates HIPPO and Transforming Growth Factor β signaling in primed bovine embryonic stem cells cultured on mouse embryonic fibroblasts[J]. Theriogenology. 2025, 233: 100-111.

[146] Yamaji M, Seki Y, Kurimoto K, et al. Critical function of Prdm14 for the establishment of the germ cell lineage in mice[J]. Nat Genet. 2008, 40: 1016-1022.

[147] Yamashiro C, Sasaki K, Yabuta Y, et al. Generation of human oogonia from induced pluripotent stem cells in vitro[J]. Science. 2018, 362: 356-360.

[148] Yang H 2022. Isolation and Identification of Sheep Embryonic StemCells and study on its ability to Differentiate into Germ Cells [M], College of Animal Techonology & Scicnece. Nanjing Agricultural University.

[149] Yang Y, Liu B, Xu J, et al. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency[J]. Cell. 2017, 169: 243-257.e225.

[150] Ying Q L, Wray J, Nichols J, et al. The ground state of embryonic stem cell self-renewal[J]. Nature. 2008, 453: 519-523.

[151] Ying Y, Liu X M, Marble A, et al. Requirement of Bmp8b for the generation of primordial germ cells in the mouse[J]. Mol Endocrinol. 2000, 14: 1053-1063.

[152] Ying Y, Zhao G Q. Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse[J]. Dev Biol. 2001, 232: 484-492.

[153] Yu L, Wei Y, Sun H X, et al. Derivation of Intermediate Pluripotent Stem Cells Amenable to Primordial Germ Cell Specification[J]. Cell Stem Cell. 2021, 28: 550-567.e512.

[154] Yue Y, Xu W, Kan Y, et al. Extensive germline genome engineering in pigs[J]. Nature Biomedical Engineering. 2021, 5: 134-143.

[155] Zhang J, Zhi M, Gao D, et al. Research progress and application prospects of stable porcine pluripotent stem cells†[J]. Biol Reprod. 2022, 107: 226-236.

[156] Zhang Y, Xu J, Liu S, et al. Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells[J]. Theranostics. 2019, 9: 6976-6990.

[157] Zhao G Q. Consequences of knocking out BMP signaling in the mouse[J]. Genesis. 2003, 35: 43-56.

[158] Zhao L, Gao X, Zheng Y, et al. Establishment of bovine expanded potential stem cells[J]. Proc Natl Acad Sci U S A. 2021a, 118.

[159] Zhao L, Gao X, Zheng Y, et al. Establishment of bovine expanded potential stem cells[J]. Proceedings of the National Academy of Sciences of the United States of America. 2021b, 118.

[160] Zhi M, Gao D, Yao Y, et al. Elucidation of the pluripotent potential of bovine embryonic lineages facilitates the establishment of formative stem cell lines[J]. Cellular and Molecular Life Sciences. 2024, 81: 427.

[161] Zhi M, Zhang J, Tang Q, et al. Generation and characterization of stable pig pregastrulation epiblast stem cell lines[J]. Cell Research. 2022, 32: 383-400.

[162] Zhou Q, Wang M, Yuan Y, et al. Complete Meiosis from Embryonic Stem Cell-Derived Germ Cells In Vitro[J]. Cell Stem Cell. 2016, 18: 330-340.

[163] Zhou X, Gao C, Zhao W, et al. Advances in the Study of Pluripotent Stem Cells in Livestock[J]. Cell Prolif. 2025: e70008.

[164] Zhu H, Kimura T, Swami S, et al. Pluripotent stem cells as a source of osteoblasts for bone tissue regeneration[J]. Biomaterials. 2019, 196: 31-45.

[165] 贾振伟 高, 张永春,张显华. TET蛋白的去甲基化机制及其在调控小鼠发育过程中的作用[J]. 遗传. 2015, 37(01): 34-40

中图分类号:

 S81    

开放日期:

 2025-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式