- 无标题文档
查看论文信息

中文题名:

 百蕊草复合苗体系建立与评价    

姓名:

 丁安萍    

学号:

 2021804301    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 105600    

学科名称:

 医学 - 中药学    

学生类型:

 硕士    

学位:

 中药学硕士    

学校:

 南京农业大学    

院系:

 园艺学院    

专业:

 中药学(专业学位)    

研究方向:

 中药资源开发与利用    

第一导师姓名:

 向增旭    

第一导师单位:

 南京农业大学    

第二导师姓名:

 郑卫兵    

完成日期:

 2024-04-06    

答辩日期:

 2024-05-28    

外文题名:

 Establishment and Evaluation of the Comprehensive Seedling System for Thesium chinense Turcz.    

中文关键词:

 百蕊草 ; 组织培养 ; 指标成分 ; 矿质元素 ; 夏枯草 ; 信息交流    

外文关键词:

 Thesium chinense ; Tissue culture ; Indicator components ; Mineral elements ; Prunella vulgaris ; Information analysis    

中文摘要:

百蕊草(Thesium chinense Turcz.)为檀香科百蕊草属多年生半寄生草本植物,又称地石榴、百乳草、九龙草、珍珠草、一棵松。干燥全草入药,性寒,味微苦、涩,素有“植物抗生素”之称。其功效为抗菌消炎、清热解毒、补肾涩精,多用于治疗急性乳腺炎、扁桃体炎、呼吸道感染及各种肺炎等症。近年来因市场需求增加,百蕊草被肆意采挖,导致其野生资源日渐枯竭。因此,探究百蕊草人工繁殖技术意义重大。本研究在前人探索的基础上,开展百蕊草组织培养技术研究,探究百蕊草阶段式培养的最佳方案,建立百蕊草寄主复合苗,实现百蕊草工厂化育苗以及规模化大田生产,保证其可持续发展。对不同药用寄主植物上百蕊草的矿质元素及指标成分含量进行测定,并探究百蕊草及其寄主之间的信息交流事件。主要研究内容和结论如下:

(1)以百蕊草茎段、叶片为外植体,MS为基础培养基,探究不同植物生长调节剂种类和浓度配比对百蕊草阶段式培养的影响。结果表明:诱导愈伤最佳培养基为:MS+0.2 mg·L-1 NAA+1.0 mg·L-1 6-BA+0.5 mg·L-1 2,4-D;诱导丛生芽最佳培养基为:MS+0.2 mg·L-1 NAA+2.0 mg·L-1 6-BA+1.5 mg·L-1 TDZ;增殖继代最佳培养基为:MS+0.2 mg·L-1 NAA+2.0 mg·L-1 6-BA;生根培养基为:DCR+0.5 mg·L-1 ABT。

(2)以百蕊草顶芽为扦插材料,设置不同浓度和时间的ABT处理,将不同的寄主植物和百蕊草扦插苗放入混合基质中共同培养,观察是否可以产生寄生关系并建立百蕊草寄主复合苗。结果表明,顶芽蘸取500 mg·L-1 ABT 10 s效果最好,百蕊草扦插苗的成活率高达83%以上。百蕊草可以与寄主夏枯草、甜叶菊在两个月内产生寄生关系,形成百蕊草寄主复合苗。其中以种子培养的夏枯草与百蕊草更容易形成扦插复合苗。

(3)设置百蕊草不同药用寄主植物(夏枯草、紫花地丁、丹参)处理,测定寄生在不同药用寄主植物上百蕊草指标成分(百蕊草素I、紫云英苷、山奈酚)的含量。结果表明:当寄主为夏枯草时,百蕊草素I含量最高。寄生在紫花地丁上百蕊草的紫云英苷含量高于寄生在夏枯草上的含量。山柰酚在百蕊草药材中含量较低,并且不同处理中山奈酚含量基本无差异。百蕊草素I、紫云英苷、山奈酚的含量范围分别为3683.6323~4636.4835 µg·g-1,794.4176~1456.5444 µg·g-1,49.4719~50.7335 µg·g-1

(4)设置百蕊草不同药用寄主植物(夏枯草、紫花地丁、丹参)处理,测定寄生在不同药用寄主植物上百蕊草不同部位(根、茎、叶)矿质元素(大量元素:Mg、P、K、Ca,微量元素:Al、Fe、Ni、Mn、Sc,重金属元素:Cr、Cu、Zn)的含量。结果表明,百蕊草叶片中P元素的含量高于茎。寄生在夏枯草和丹参上百蕊草叶片K元素含量较多。微量元素在百蕊草中的积累量为Sc>Al>Fe>Mn>Ni。重金属元素大部分积累在根部。不同药用寄主植物上百蕊草矿质元素的含量也存在差异。综合来看,寄主为夏枯草时,百蕊草对于Mg元素的积累量是最高的。百蕊草植株对于P元素的吸收,为紫花地丁>夏枯草>丹参。从微量元素的角度来看,优势寄主为紫花地丁。当寄主为夏枯草和紫花地丁时,百蕊草对于重金属元素的积累小于寄主为丹参。

(5)转录组和代谢组联合分析百蕊草及其寄主夏枯草之间的信息交流。共鉴定出百蕊草与夏枯草之间5个转移代谢物(水杨酸乙酯、圣草酚-7-O-葡萄糖苷、香橙素-7-O-葡萄糖苷、夏枯草苷 B和2-乙基吡嗪)和50个可移动基因以及吸器形成相关的56个代谢物和44个基因。其中有4个代谢物(水杨酸乙酯、圣草酚-7-O-葡萄糖苷、香橙素-7-O-葡萄糖苷和夏枯草苷 B)从夏枯草转移到百蕊草中,而2-乙基吡嗪则以相反的方向转移。44个基因被鉴定为从百蕊草转移到夏枯草中,6个基因是从夏枯草向百蕊草方向转移。通过吸器形成相关的代谢物-基因网络图,发现三种代谢产物(N,N′-二甲基精氨酸/SDMA、NG,NG-二甲基-L-精氨酸和2-乙酰氧基甲基蒽醌)与大多数吸器形成相关基因呈显著正相关。

外文摘要:

Thesium chinense Turcz. is a perennial semi-parasitic herb belonging to Thesium, Sandalwood. The dried whole grass can be used as medicine. It is slightly bitter and astringent. It is known as a "plant antibiotic". It has the functions of antibacterial and anti-inflammatory, clearing heat and detoxifying, nourishing kidney and astringent essence. It finds application treat acute mastitis, tonsillitis, various pneumonia, and respiratory infections. In recent years, due to the increase in market demand and artificial over-excavation, its wild resources have been gradually depleted. Consequently, exploring the artificial propagation technology of T. chinense holds great significance. Drawing upon previous research, we conducted research on the tissue culture technology of T. chinense, explored the optimal plan for staged cultivation of T. chinense, established the comprehensive seeding of T. chinense and its host, achieved industrialized seedling cultivation and field production, and ensured its sustainable development. The content of mineral elements and indicator components of T. chinense on different medicinal host plants was measured, and the information exchange between T. chinense and its host were explored. The main results and conclusions of the study are as follows:

(1) The effects of different types and concentration ratios of plant growth regulators (PGRs) on staged cultivation of T. chinense using stem segments and leaves as explants, and MS as the basal medium. The results showed that the optimal medium for inducing callus was MS+0.2 mg·L-1 NAA+1.0 mg·L-1 6-BA+0.5 mg·L-1 2,4-D. The optimal medium for inducing clustered buds is MS+0.2 mg·L-1 NAA+2.0 mg·L-1 6-BA+1.5 mg·L-1 TDZ. The optimal medium for proliferation and subculture is MS+0.2 mg·L-1 NAA+2.0 mg·L-1 6-BA. The rooting medium is DCR+0.5 mg·L-1 ABT.

(2) The top buds of T. chinense as the cutting material, different concentrations and times of ABT treatment were set up. Different host plants and T. chinense cutting seedlings were co cultured in a mixed substrate to observe the emergence of parasitic relationships and establish the comprehensive seeding of T. chinense and its host. The results showed that dipping the top buds in 500 mg·L-1 ABT for 10 seconds had the best effect, with the survival rate exceeding 83% for the cutting seedlings of T. chinense. T. chinense successfully established the parasitic relationship with its hosts, Prunella vulgaris and Stevia rebaudiana within two months, forming the comprehensive seeding of T. chinense. Notably, P. vulgaris from seeds and T. chinense exhibited a higher likelihood of achieving comprehensive seeding.

(3) Set up treatments with different medicinal host plants (P. vulgaris, Viola phillipina, Salvia miltiorrhiza) of T. chinense, and determined the content of indicator components (kaempferol 3-glucorhamnoside, astragalin, kaempferol) parasitizing on different medicinal host plants. The results showed that when P. vulgaris served as the host, the content of kaempferol 3-glucorhamnoside was the highest. Notably, the content of astragalin in T. chinense parasitized on V. phillipina is higher than that parasitized on P. vulgaris. On the other hand, the content of kaempferol was relatively low in T. chinense, and there was basically no difference in the content of kaempferol among different treatments. The contents of kaempferol 3-glucorhamnoside, astragalin and kaempferol were 3683.6323-4636.4835µg·g-1, 794.4176-1456.5444 µg·g-1, 49.4719-50.7335µg·g-1, respectively.

(4) Set up treatments with different medicinal host plants (P. vulgaris, V. phillipina, S. miltiorrhiza) of T. chinense, and determined the content of mineral elements (Mg, P, K, Ca, Al, Fe, Mn, Ni, Sc, Cr, Cu, Zn) in different parts (root, stem, leaf) of T. chinense parasitized on different medicinal host plants. The results showed that the content of P in the leaves of T. chinense was higher than that in its stems. When parasitized on P. vulgaris and S. miltiorrhiza, the leaves of T. chinense contained more K. The accumulation amount of trace elements in T. chinense was Sc>Al>Fe>Mn>Ni. Heavy metal elements were mostly accumulated in the roots. Furthermore, there were also differences in the content of mineral elements on different medicinal host plants of T. chinense. Overall, when P. vulgaris served as the host, the accumulation of Mg in T. chinense was the highest. The absorption of P by T. chinense was as follows, V. phillipina>P. vulgaris>S. miltiorrhiza. From the perspective of trace elements, the excellent host was V. phillipina. When the host was P. vulgaris or V. phillipina, the accumulation of heavy metal elements in T. chinense was lower compared to that in S. miltiorrhiza.

(5) The wide-target metabolomic and transcriptomic analysis identified 5 transferred metabolites (ethylsalicylate, eriodictyol-7-O-glucoside, aromadendrin-7-O-glucoside, pruvuloside B, 2-ethylpyrazine) and 50 mobile genes between T. chinense and P. vulgaris, as well as haustoria formation related 56 metabolites and 44 genes. There were 4 metabolites (ethylsalicylate, eriodictyol-7-O-glucoside, aromadendrin-7-O-glucoside and pruvuloside B) that are transferred from P. vulgaris to T. chinense, whereas 2-ethylpyrazine was transferred in the opposite direction. Furthermore, we inferred a regulatory network potentially involved in haustoria formation, where three metabolites (N,N′-Dimethylarginine/SDMA, NG,NG-Dimethyl-L-arginine, 2-Acetoxymethyl-anthraquinone) showed significant positive correlations with the majority of haustoria formation-related genes.

中图分类号:

 R28    

开放日期:

 2024-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式