中文题名: | 副鸡禽杆菌转座子突变库的构建及生物被膜形成相关基因的筛选和初步研究 |
姓名: | |
学号: | 2022107034 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 090601 |
学科名称: | 农学 - 兽医学 - 基础兽医学 |
学生类型: | 硕士 |
学位: | 农学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 动物营养代谢病与中毒病 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2025-06-10 |
答辩日期: | 2025-05-16 |
外文题名: | Construction of a Transposon Mutant Library of Avibacterium Paragallinarum and Screening and Preliminary Study of Genes Related to Biofilm Formation |
中文关键词: | |
外文关键词: | Avibacterium paragallinarum ; Transposon ; Random mutantlibrary ; Biofilm |
中文摘要: |
副鸡禽杆菌(Avibacterium paragallinarum, Apg)为革兰氏阴性短杆菌,属于巴氏杆菌科禽杆菌属,可引起鸡传染性鼻炎(infectious coryza, IC)。该病可导致育成鸡生长不良和产蛋鸡产蛋率下降(10%~40%),给养禽业带来巨大的经济损失。疫苗防控和药物防治是鸡传染性鼻炎主要的防控手段,但是由于副鸡禽杆菌各血清型之间交叉保护性较差,以及耐药问题的日益严重给副鸡禽杆菌的防控带来困难。生物被膜是许多细菌病原体的重要毒力因子,与细菌的毒力、黏附、宿主定植等密切相关,因此本研究从生物被膜的角度筛选与副鸡禽杆菌生物被膜形成相关的基因,并研究其生物学特性,以期为副鸡禽杆菌的防控提供新的研究角度。结果如下: 1 副鸡禽杆菌转座子突变文库的构建 本研究以副鸡禽杆菌JZIC-005株为受体菌,大肠杆菌S17-1λpir(pEVS170)为供体菌,大肠杆菌DH5α(pRK2013)为辅助菌,采用三亲本结合转导法将携带mini-Tn5转座子的质粒pEVS170导入JZIC-005菌株,实现转座子随机突变。通过转座子上的红霉素抗性和菌株自身的四环素抗性筛选阳性结合子,成功构建了包含3106个突变株的转座子随机突变文库,为后续功能基因研究奠定了基础。 2 副鸡禽杆菌生物被膜形成相关基因的筛选及鉴定 基于构建的转座子突变文库,本研究筛选了生物被膜形成能力发生显著变化的突变株,并鉴定了相关基因。从3106株突变株中,共筛选出188株生物被膜表型改变的突变株,其中172株形成能力增强,16株减弱。通过热不对称PCR定位转座子插入位点,剔除重复位点后,共鉴定出105个与生物被膜形成相关的基因。功能分析(GO、KEGG和KOG)表明,这些基因主要参与氨基酸代谢、纤毛组装、生物合成、群体感应系统、跨膜运输及多种代谢途径,揭示了生物被膜形成的复杂调控网络。 3 转座子插入突变株的生物学特性分析 为进一步探究生物被膜形成机制,本研究选取8个关键基因突变株(Tn-441、Tn-483、Tn-1216、Tn-1504、Tn-1706、Tn-2206、Tn-2428和Tn-2859)进行深入分析。生长曲线显示,这些突变株与野生株无显著差异。然而,部分突变株表现出显著的致病性变化:Tn-483(插入假设蛋白基因)、Tn-1504(插入TonB能量传感器基因)、Tn-2428(插入GntP家族通透酶基因)和Tn-2859(插入假设蛋白基因)对鸡胚成纤维细胞(DF-1细胞)的黏附、入侵及毒性均减弱;Tn-2206(插入自身诱导剂2激酶基因)和Tn-1216(插入菌毛外膜引来蛋白基因)黏附能力增强,但入侵和毒性减弱;Tn-441(插入假设蛋白基因)黏附能力不变,入侵和毒性减弱;Tn-1706(插入GDP-L-岩藻糖合酶基因)黏附和入侵能力增强,但毒性未变。 综上,本研究成功构建了副鸡禽杆菌mini-Tn5转座子突变文库,鉴定出105个生物被膜形成相关基因,并揭示了8个关键突变株的生物学特性。其中,Tn-1504、Tn-2428和Tn-2859在保持正常生长的同时,生物被膜形成能力和致病性显著减弱,符合“抗毒力策略”中削弱病原体毒力而不影响其生存的理念,有望成为减毒候选株。这些发现为副鸡禽杆菌的防控提供了新的理论依据和潜在靶点。 |
外文摘要: |
Avibacterium paragallinarum (Av. Paragallinarum, Apg), a Gram-negative short bacillus belonging to the genus Avibacterium within the family Pasteurellaceae, is the causative agent of infectious coryza (IC) in chickens. This disease leads to growth retardation in growing chickens and a 10%~40% decline in egg production of laying hens, resulting in significant economic losses to the poultry industry. While vaccination and antimicrobial therapy remain the primary strategies for IC control, challenges persist due to limited cross-protection among different serotypes of Av. Paragallinarum and the escalating issue of antibiotic resistance. Biofilm formation, a critical virulence factor for numerous bacterial pathogens, is closely associated with bacterial pathogenicity, adhesion, and host colonization. To address these challenges, this study aimed to screen biofilm-associated genes in Av. Paragallinarum and investigate their biological characteristics, thereby providing novel insights for developing effective control measures. The results are as follows: 1 Construction of a transposon mutant library in Avibacterium paragallinarum In this study, the Av. Paragallinarum strain JZIC-005 was utilized as the recipient strain, with Escherichia coli S17-1λpir (pEVS170) serving as the donor strain and E. coli DH5α (pRK2013) as the helper strain. A tri-parental conjugation approach was employed to introduce the mini-Tn5 transposon-carrying plasmid pEVS170 into the JZIC-005 strain, achieving random transposon mutagenesis. Positive conjugants were selected through erythromycin resistance conferred by the transposon and tetracycline resistance inherent to the recipient strain. A random transposon mutant library comprising 3106 mutant strains was successfully constructed, laying the foundation for subsequent functional gene research. 2 Screening and identification of biofilm-associated genes in Avibacterium paragallinarum Based on the constructed transposon mutant library, this study screened mutants with significant alterations in biofilm-forming capacity and identified associated genes. Among 3106 mutants, 188 strains exhibited phenotypic variations in biofilm formation, including 172 strains with enhanced capacity and 16 strains with reduced capacity. Through thermal asymmetric interlaced PCR (TAIL-PCR) to localize transposon insertion sites and subsequent elimination of redundant loci, 105 biofilm-associated genes were ultimately identified. Functional analyses (GO, KEGG, and KOG) revealed that these genes predominantly participate in amino acid metabolism, cilia assembly, biosynthetic processes, quorum-sensing systems, transmembrane transport, and diverse metabolic pathways, collectively elucidating the intricate regulatory network underlying biofilm formation. 3 Biological characterization of transposon insertion mutants To further investigate the mechanisms of biofilm formation, eight key mutant strains (Tn-441, Tn-483, Tn-1216, Tn-1504, Tn-1706, Tn-2206, Tn-2428, and Tn-2859) were selected for in-depth analysis. Growth curve analysis showed no significant differences between these mutant strains and the wild-type strain. However, significant pathogenic variations were observed in some mutants: Tn-483 (inserted into a hypothetical protein gene), Tn-1504 (inserted into the energy transducer TonB gene), Tn-2428 (inserted into the GntP family permease gene), and Tn-2859 (inserted into a hypothetical protein gene) exhibited reduced adhesion, invasion, and cytotoxicity toward chicken embryo fibroblast (DF-1) cells; Tn-2206 (inserted into the autoinducer-2 kinase gene) and Tn-1216 (inserted into the fimbrial biogenesis outer membrane usher protein gene) showed enhanced adhesion but weakened invasion and cytotoxicity; Tn-441 (inserted into a hypothetical protein gene) maintained normal adhesion capacity but displayed reduced invasion and cytotoxicity; Tn-1706 (inserted into the GDP-L-fucose synthase gene) demonstrated increased adhesion and invasion capacities without changes in cytotoxicity. In summary, this study successfully constructed a mini-Tn5 transposon mutant library for Av. Paragallinarum, identifying 105 biofilm formation-associated genes and elucidating the biological characteristics of eight key mutant strains. Among these, Tn-1504, Tn-2428, and Tn-2859 exhibited significantly attenuated biofilm-forming capacity and pathogenicity while maintaining normal growth, aligning with the "anti-virulence strategy" that aims to weaken pathogen virulence without compromising survival. These mutants are expected to become candidate attenuated strains. These findings provide new theoretical foundations and potential targets for the prevention and control of Av. Paragallinarum. |
参考文献: |
[1]曹际振.舒伯特气单胞菌Ⅳ型菌毛缺失株构建及生物学特性分析[D].广州:华南农业大学,2020. [2]陈秀芳.2019~2020年规模化蛋鸡场副鸡禽杆菌的分离鉴定、致病性研究与耐药性分析[D].扬州:扬州大学,2021. [3]冯文达.北京鸡传染性鼻炎病原菌分离及鉴定[J].微生物学通报,1987,(5):216-219. [4]宫金烁.维氏气单胞菌TH0426株Fur基因的缺失及其功能的初探[D].长春:吉林农业大学,2023. [5]龚玉梅,张培君,朱文革,等.鸡传染性鼻炎三价灭活疫苗安全性试验和效力检验初报[J].动物医学进展,2010,31(3):39-43. [6]龚玉梅,张淑琼,李淑芳,等.2012-2017年我国鸡传染性鼻炎流行态势分析[J].中国兽医杂志,2018,54(4):3-5. [7]郭月婷,郭玉茹,谢佳彤,等.影响转座子介导耐药基因传播因素的研究进展[J].动物医学进展,2023,44(05):81-85. [8]贺云霞,徐慧,叶飞,等.副猪嗜血杆菌EZ-Tn5转座子插入突变体库的构建及减毒株的筛选[J].安徽农业科学,2011,39(13):7820-7823+7831. [9]贺政新,郑玉玲,姜永强.细菌成孔毒素研究进展[J].现代生物医学进展,2009,9(15):2941-2943. [10]胡鹏程,程瑞华.鸡传染性鼻炎发病特点及其防控措施[J].家禽科学,2025,47(2):55-57. [11]冀笑明,卢婷,薛晓阳,等.2018~2019年副鸡禽杆菌病的流行病学调查[J].现代畜牧兽医,2020,(9):46-49. [12]康翠翠,陈小娇,张妹,等.鸡传染性鼻炎的流行情况及诊断要点[J].山东畜牧兽医,2023,44(07):33-35. [13]孔静雅,郭强强,邬琴,等.细菌生物被膜形成的影响因素及检测方法的研究进展[J].黑龙江畜牧兽医,2018,(3):44-48. [14]廖何斌.鸭疫里默氏杆菌TonB蛋白的功能研究[D].成都:四川农业大学,2016. [15]刘栋辉.一株减毒A型副鸡禽杆菌突变株的构建与生物学特性研究[D].扬州:扬州大学,2022. [16]刘欣.鸡传染性鼻炎流行病学、实验室诊断与防治[J].畜牧兽医科学(电子版),2020,(13):111-112. [17]马成军,刘静静,焦敏,等.大肠埃希菌生物被膜基因调控研究进展[J].微生物学报,2024,64(8):2623-2647. [18]梅晨,孙爱华,李淑芳,等.副鸡禽杆菌外膜囊泡的生物学活性分析[J].中国兽医杂志,2020,56(1):1-4+9. [19]梅晨,王琪琎,先宏,等.1例副鸡禽杆菌和鼻气管鸟杆菌混合感染的诊断[J].中国兽医杂志,2020,56(3):61-64+138. [20]裴敏.鸡传染性鼻炎的防控[J].现代农村科技,2024,(7):84-85. [21]师瑞梅.鸡传染性鼻炎流行趋势与防控[J].北方牧业,2022,(13):24-25. [22]施敏捷.A型副鸡禽杆菌Hmtp蛋白的原核表达及其对鸡的免疫原性研究[D].咸阳:西北农林科技大学,2021. [23]孙晨明,徐亚亚,朱庭芳,等.禽致病性大肠杆菌tonB基因缺失株的构建及其生物学特性研究[J].中国家禽,2023,45(3):120-124. [24]田海霞.转座子在基因组和基因进化方面的研究进展[J].安徽农业科学,2011,39(20):12018-12020. [25]王宏俊.副鸡禽杆菌免疫优势模拟表位的鉴定及免疫原性分析[D].北京:中国农业大学,2007. [26]王琪.转基因耐盐旱稻材料的鉴定及分析[D].石家庄:河北科技大学,2021. [27]王艳琳.鸡白痢沙门菌毒力相关基因缺失株的构建及免疫效力评价[D].扬州:扬州大学,2019. [28]王友,王龙,冯敬敬,等.2021-2023年我国鸡传染性鼻炎流行病学分析[J].中国家禽,2024,46(12):111-115. [29]邬琴,闫圆圆,王振,等.绵羊脑炎单增李斯特菌生物膜形成及相关基因的检测[J].动物医学进展,2016,37(07):13-16. [30]武玲玲.鸡传染性鼻炎的临床症状与诊治进展[J].中国畜牧业,2023,(10):115-116. [31]谢培凤,郭伟倩.鸡传染性鼻炎的诊治报告[J].吉林畜牧兽医,2022,43(2):52+54. [32]杨静贤,王清清,董小刚,等.副溶血性弧菌luxS缺失株的构建及其生物学特性[J].食品科学,2024,45(13):96-103. [33]尹梓瑞,胡静,梅东杰,等.副鸡禽杆菌研究现状[J].畜禽业,2024,35(08):68-73. [34]赵成全,路明华,李淑芳,等.副鸡禽杆菌外膜蛋白GcbG的表达及免疫效果研究[J].中国兽医科学,2016,46(1):58-63. [35]赵怡,李芳兵,王帅,等.2019年副鸡禽杆菌的分离鉴定和鸡传染性鼻炎流行状况分析[J].中国家禽,2020,42(6):102-106. [36]周洋.胸膜肺炎放线杆菌IV型菌毛结构蛋白ApfA功能及免疫原性研究[D].武汉:华中农业大学,2013. [37]朱寅玉.鸭疫里默氏杆菌转座子突变库的构建以及生物被膜形成相关基因的筛选[D].扬州:扬州大学,2011. [38]Aparna M S, Yadav S. Biofilms: microbes and disease[J]. Brazilian Journal of Infectious Diseases, 2008, 12(6), 526-530. [39]Bates Utz C, Nguyen A B, Smalley D J, et al. GntP is the Escherichia coli fructuronic acid transporter and belongs to the UxuR regulon[J]. Journal of Bacteriology, 2004, 186(22): 7690-7696. [40]Bessonova T A, Fando M S, Kostareva O S, et al. Differential impact of hexuronate regulators ExuR and UxuR on the Escherichia coli proteome[J]. International Journal of Molecular Sciences, 2022, 23(15): 8379. [41]Blackall P J, Christensen H, Beckenham T, et al. Reclassification of Pasteurella gallinarum, [Haemophilus] paragallinarum, Pasteurella avium and Pasteurella volantium as Avibacterium gallinarum gen. nov., comb. nov., Avibacterium paragallinarum comb. nov., Avibacterium avium comb. nov. and Avibacterium volantium comb. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(Pt 1): 353-362. [42]Cain A K, Barquist L, Goodman A L, et al. A decade of advances in transposon-insertion sequencing[J]. Nature Reviews Genetics, 2020, 21(9): 526-540. [43]Chen L, Sun J, Hu J, et al. Identification and characterization of biosynthetic loci of lipooligosaccharide and capsular polysaccharide in Avibacterium paragallinarum[J]. Veterinary Microbiology, 2024, 299: 110317. [44]Chen L, Wu D, Cai X, et al. Electrotransformation of Haemophilus parasuis with in vitro modified DNA based on a novel shuttle vector[J]. Veterinary Microbiology, 2012, 155(2-4): 310-316. [45]Chiang Y T, Shien J H, Tan D H, et al. Identification of the lic1ABCD operon that controls the phase-variable expression of phosphorylcholine on lipopolysaccharide from Avibacterium paragallinarum[J]. Avian Pathology: Journal of the WVPA, 2013, 42(1): 72-78. [46]Chu B C, Peacock R S, Vogel H J. Bioinformatic analysis of the TonB protein family[J]. Biometals , 2007, 20(3-4): 467-483. [47]Coffey B M, Anderson G G. Biofilm formation in the 96-well microtiter plate[J]. Methods in Molecular Biology (Clifton, NJ), 2014, 1149: 631-641. [48]Crispo M, Blackall P, Khan A, et al. Characterization of an outbreak of infectious coryza (Avibacterium paragallinarum) in commercial chickens in central California[J]. Avian Diseases, 2019, 63(3): 486-494. [49]De Araujo C, Balestrino D, Roth L, et al. Quorum sensing affects biofilm formation through lipopolysaccharide synthesis in Klebsiella pneumoniae[J]. Research in Microbiology, 2010, 161(7): 595-603. [50]De B L. The treatment of coryza infectiosa gallinarum type II (Nelson) with streptomycin[J]. The Veterinary Record, 1950, 62(50): 787. [51]De Lorenzo V, Herrero M, Jakubzik U, et al. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria[J]. Journal of Bacteriology, 1990, 172(11): 6568-6572. [52]De Paula Soares C, Rodrigues E P, De Paula Ferreira J, et al. Tn5 insertion in the tonB gene promoter affects iron-related phenotypes and increases extracellular siderophore levels in Gluconacetobacter diazotrophicus[J]. Archives of Microbiology, 2015, 197(2): 223-233. [53]Donahue J P, Israel D A, Peek R M, et al. Overcoming the restriction barrier to plasmid transformation of Helicobacter pylori[J]. Molecular Microbiology, 2000, 37(5): 1066-1074. [54]Dragoš A, Kovács Á T. The Peculiar functions of the bacterial extracellular matrix[J]. Trends in Microbiology, 2017, 25(4): 257-266. [55]Dwivedi R, Nothaft H, Garber J, et al. L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni[J]. Molecular Microbiology, 2016, 101(4): 575-589. [56]Elexson N, Afsah-Hejri L, Rukayadi Y, et al. Effect of detergents as antibacterial agents on biofilm of antibiotics-resistant Vibrio parahaemolyticus isolates[J]. Food Control, 2014, 35(1): 378-385. [57]Frey J. RTX Toxins of animal pathogens and their role as antigens in vaccines and diagnostics[J]. Toxins, 2019, 11(12): 719. [58]Gallagher L A, Shendure J, Manoil C. Genome-scale identification of resistance functions in Pseudomonas aeruginosa using Tn-seq[J]. mBio, 2011, 2(1): e00315-10. [59]Gatta V, Ilina P, Porter A, et al. Targeting quorum sensing: high-throughput screening to identify novel LsrK inhibitors[J]. International Journal of Molecular Sciences, 2019, 20(12): 3112. [60]Goel N, Fatima S W, Kumar S, et al. Antimicrobial resistance in biofilms: Exploring marine actinobacteria as a potential source of antibiotics and biofilm inhibitors[J]. Biotechnol Rep (Amst), 2021, 30: e00613. [61]Gong J S, Wang Y D, Jiang Y L, et al. Ferric uptake regulator (fur) affects the pathogenicity of Aeromonas veronii TH0426 by regulating flagellar assembly and biofilm formation[J]. Aquaculture, 2024, 580: 740361. [62]Gong Y, Zhang P, Wang H, et al. Safety and efficacy studies on trivalent inactivated vaccines against infectious coryza[J]. Veterinary Immunology and Immunopathology, 2014, 158(1-2): 3-7. [63]Gonzales A E, Glisson J R, Jackwood M W. Transposon mutagenesis of Haemophilus paragallinarum with Tn916[J]. Veterinary Microbiology, 1996, 48(3-4): 283-291. [64]Green B, Bouchier C, Fairhead C, et al. Insertion site preference of Mu, Tn5, and Tn7 transposons[J]. Mobile DNA, 2012, 3(1): 3. [65]Guo M, Wang H, Zhang H, et al. Identifcation of the genes involved in biofilm formation of Avibacterium paragallinarum using random transposon mutagenesis[J]. Veterinary Microbiology, 2025, 302: 110410. [66]Gütgemann F, Müller A, Churin Y, et al. Proposal of a method for harmonized broth microdilution antimicrobial susceptibility testing of Avibacterium gallinarum[J]. Journal of Clinical Microbiology, 2022, 60(8): e0041922. [67]Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections[J]. Cellular Microbiology, 2009, 11(7): 1034-1043. [68]Han X, Bai H, Liu L, et al. The luxS gene functions in the pathogenesis of avian pathogenic Escherichia coli[J]. Microbial Pathogenesis, 2013, 55: 21-27. [69]Hathroubi S, Loera-Muro A, Guerrero-Barrera A L, et al. Actinobacillus pleuropneumoniae biofilms: Role in pathogenicity and potential impact for vaccination development[J]. Animal Health Research Reviews, 2018, 19(1): 17-30. [70]Høiby N, Bjarnsholt T, Givskov M, et al. Antibiotic resistance of bacterial biofilms[J]. International Journal of Antimicrobial Agents, 2010, 35(4): 322-332. [71]Hu J, Gu Y, Lu H, et al. Identification of novel biofilm genes in avian pathogenic Escherichia coli by Tn5 transposon mutant library[J]. World Journal of Microbiology & Biotechnology, 2022, 38(8): 130. [72]Islam R, Brown S, Taheri A, et al. The gene encoding NAD-dependent epimerase/dehydratase, wcaG, affects cell surface properties, virulence, and extracellular enzyme production in the soft rot phytopathogen, Pectobacterium carotovorum[J]. Microorganisms, 2019, 7(6): 172. [73]Jaskula J C, Letain T E, Roof S K, et al. Role of the TonB amino terminus in energy transduction between membranes[J]. Journal of Bacteriology, 1994, 176(8): 2326-2338. [74]Karygianni L, Ren Z, Koo H, et al. Biofilm matrixome: extracellular components in structured microbial communities[J]. Trends in Microbiology, 2020, 28(8): 668-681. [75]Khatoon Z, Mctiernan C D, Suuronen E J, et al. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention[J]. Heliyon, 2018, 4(12): e01067. [76]Kilian M, Husby S, Andersen J, et al. Induction of susceptibility to disseminated infection with IgA1 protease-Producing encapsulated pathogens Streptococcus pneumoniae, Haemophilus influenzae type b, and Neisseria meningitidis[J]. mBio, 2022, 13(3): e0055022. [77]Kilic T, Bali E B. Biofilm control strategies in the light of biofilm-forming microorganisms[J]. World Journal of Microbiology & Biotechnology, 2023, 39(5): 131. [78]Kume K, Sawata A, Nakai T, et al. Serological classification of Haemophilus paragallinarum with a hemagglutinin system[J]. Journal of Clinical Microbiology, 1983, 17(6): 958-964. [79]Kume K, Sawata A, Nakai T. Serologic and immunologic studies on three types of hemagglutinin of Haemophilus paragallinarum serotype 1 organisms[J]. The Japanese Journal of Veterinary Science, 1983, 45(6): 783-792. [80]Küng E, Frey J. AvxA, a composite serine-protease-RTX toxin of Avibacterium paragallinarum[J]. Veterinary Microbiology, 2013, 163(3-4): 290-298. [81]Li J, Attila C, Wang L, et al. Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture[J]. Journal of Bacteriology, 2007, 189(16): 6011-6020. [82]Liao H, Cheng X, Zhu D, et al. TonB energy transduction systems of riemerella anatipestifer are required for iron and hemin utilization[J]. PloS one, 2015, 10(5): e0127506. [83]Liu C C, Ou S C, Tan D H, et al. The fimbrial protein is a virulence factor and potential vaccine antigen of Avibacterium paragallinarum[J]. Avian Diseases, 2016, 60(3): 649-655. [84]Liu H Y, Prentice E L, Webber M A. Mechanisms of antimicrobial resistance in biofilms[J]. NPJ Antimicrobials and Resistance, 2024, 2(1): 27. [85]Liu Y G, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences[J]. BioTechniques, 2007, 43(5): 649-650, 652, 654 passim. [86]Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking[J]. Genomics, 1995, 25(3): 674-681. [87]Luna-Castrejón L P, Buter R, Pantoja-Nuñez G I, et al. Identification, HPG2 sequence analysis, and antimicrobial susceptibility of Avibacterium paragallinarum isolates obtained from outbreaks of infectious coryza in commercial layers in Sonora State, Mexico[J]. Avian Diseases, 2021, 65(1): 95-101. [88]Luna-Galaz G A, Morales-Erasto V, Peñuelas-Rivas C, et al. Antimicrobial sensitivity of Avibacterium paragallinarum isolates from four Latin American Countries[J]. Avian Diseases, 2016, 60(3): 673-676. [89]Medhora M M, Macpeek A H, Hartl D L. Excision of the drosophila transposable element mariner: identification and characterization of the Mos factor[J]. The EMBO Journal, 1988, 7(7): 2185-2189. [90]Mei C, Sun A H, Blackall P J, et al. Component identification and functional analysis of outer membrane vesicles released by Avibacterium paragallinarum[J]. Frontiers in Microbiology, 2020, 11: 518060. [91]Morales-Erasto V, García-Sánchez A, Salgado-Miranda C, et al. ERIC-PCR genotyping of emergent serovar C-1 isolates of Avibacterium paragallinarum from Mexico[J]. Avian Diseases, 2011, 55(4): 686-688. [92]Moumène A, Gonzalez-Rizzo S, Lefrançois T, et al. Iron starvation conditions upregulate Ehrlichia ruminantium type IV secretion system, tr1 transcription factor and map1 genes family through the master regulatory protein ErxR[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7: 535. [93]Nazareno E S, Acharya B, Dumenyo C K. A mini-Tn5-derived transposon with reportable and selectable markers enables rapid generation and screening of insertional mutants in gram-negative bacteria[J]. Letters in Applied Microbiology, 2021, 72(3): 283-291. [94]Nsengimana O, Habarugira G, Ojok L, et al. Infectious coryza in a grey crowned crane (Balearica regulorum) recovered from captivity[J]. Veterinary Medicine and Science, 2022, 8(2): 822-826. [95]Olsen I. Biofilm-specific antibiotic tolerance and resistance[J]. Eur J Clin Microbiol Infect Dis, 2015, 34(5): 877-886. [96]Page L A. Haemophilus infections in chickens. I. Characteristics of 12 haemophilus isolates recovered from diseased chickens[J]. American Journal of Veterinary Research, 1962, 23: 85-95. [97]Parker A C, Seals N L, Baccanale C L, et al. Analysis of six tonB gene homologs in bacteroides fragilis revealed that tonB3 is essential for survival in experimental intestinal colonization and intra-abdominal infection[J]. Infection and Immunity, 2022, 90(1): e0046921. [98]Ramón Rocha M O, García-González O, Pérez-Méndez A, et al. Membrane vesicles released by Avibacterium paragallinarum contain putative virulence factors[J]. FEMS Microbiology Letters, 2006, 257(1): 63-68. [99]Sakamoto R, Baba S, Ushijima T, et al. Development of a recombinant vaccine against infectious coryza in chickens[J]. Research in Veterinary Science, 2013, 94(3): 504-509. [100]Schmitz M, Querques I. DNA on the move: mechanisms, functions and applications of transposable elements[J]. FEBS Open Bio, 2024, 14(1): 13-22. [101]Shapiro J A. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements[J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(4): 1933-1937. [102]Soriano V E, Téllez G, Hargis B M, et al. Typing of Haemophilus paragallinarum strains by using enterobacterial repetitive intergenic consensus-based polymerase chain reaction[J]. Avian Diseases, 2004, 48(4): 890-895. [103]Stępień-Pyśniak D, Dec M, Hauschild T, et al. Case reports involving coinfection with Avibacterium paragallinarum and Ornithobacterium rhinotracheale in broiler chickens and Avibacterium endocarditis in broiler breeding hens in Poland[J]. Avian Pathology: Journal of the WVPA, 2024, 53(4): 291-302. [104]Stoodley P, Sauer K, Davies D G, et al. Biofilms as complex differentiated communities[J]. Annual Review of Microbiology, 2002, 56: 187-209. [105]Sweeney N J, Klemm P, Mccormick B A, et al. The Escherichia coli K-12 gntP gene allows E. coli F-18 to occupy a distinct nutritional niche in the streptomycin-treated mouse large intestine[J]. Infection and Immunity, 1996, 64(9): 3497-3503. [106]Takagi M, Hirayama N, Simazaki T, et al. Purification of hemagglutinin from Haemophilus paragallinarum using monoclonal antibody[J]. Veterinary Microbiology, 1993, 34(2): 191-197. [107]Tan D H, Ou S C, Shien J H, et al. Serotypes and hemagglutinin gene sequences of Avibacterium paragallinarum isolated in Taiwan[J]. Avian Diseases, 2020, 64(2): 197-202. [108]Terraf M C, Juárez Tomás M S, Nader-Macías M E, et al. Screening of biofilm formation by beneficial vaginal lactobacilli and influence of culture media components[J]. Journal of Applied Microbiology, 2012, 113(6): 1517-1529. [109]Tu T Y, Hsieh M K, Tan D H, et al. Loss of the capsule increases the adherence activity but decreases the virulence of Avibacterium paragallinarum[J]. Avian Diseases, 2015, 59(1): 87-93. [110]Upadhyay A, Jaiswal N, Kumar A. Biofilm battle: new transformative tactics to tackle the bacterial biofilm infections[J]. Microbial Pathogenesis, 2025, 199: 107277. [111]Upadhyay A, Pal D, Kumar A. Deciphering target protein cascade in Salmonella typhi biofilm using genomic data mining, and protein-protein interaction[J]. Current Genomics, 2023, 24(2): 100-109. [112]Van Opijnen T, Bodi K L, Camilli A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms[J]. Nature Methods, 2009, 6(10): 767-772. [113]Vestby L K, Grønseth T, Simm R, et al. Bacterial biofilm and its role in the pathogenesis of disease[J]. Antibiotics (Basel), 2020, 9(2): 59. [114]Wang D, Fletcher G C, On S L W, et al. Biofilm formation, sodium hypochlorite susceptibility and genetic diversity of Vibrio parahaemolyticus[J]. International Journal of Food Microbiology, 2023, 385: 110011. [115]Wang Y P, Hsieh M K, Tan D H, et al. The haemagglutinin of Avibacterium paragallinarum is a trimeric autotransporter adhesin that confers haemagglutination, cell adherence and biofilm formation activities[J]. Veterinary Microbiology, 2014, 174(3-4): 474-482. [116]Xu Y, Zhou H, Song F, et al. Tn5 transposase: a key tool to decrypt random transposition[J]. Biotechnology and Bioprocess Engineering, 2024, 29(5): 779-791. [117]Yang R, Lai B, Liao K, et al. Overexpression of BIT33_RS14560 enhances the biofilm formation and virulence of Acinetobacter baumannii[J]. Frontiers in Microbiology, 2022, 13: 867770. [118]Yu H, Ding X, Shang L, et al. Protective ability of biogenic antimicrobial peptide microcin J25 against enterotoxigenic Escherichia Coli-induced intestinal epithelial dysfunction and inflammatory responses IPEC-J2 cells[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8: 242. [119]Zhao X, Yu Z, Ding T. Quorum-sensing regulation of antimicrobial resistance in bacteria[J]. Microorganisms, 2020, 8(3): 425. [120]Zhou Y, Lepp D, Carere J, et al. A novel PilR/PilS two-component system regulates necrotic enteritis pilus production in Clostridium perfringens[J]. Journal of Bacteriology, 2021, 203(17): e0009621. |
中图分类号: | S85 |
开放日期: | 2025-06-11 |