中文题名: | 生物硫转化在酸洗污泥有价金属提取与回收中的作用 |
姓名: | |
学号: | 2022103046 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 083002 |
学科名称: | 工学 - 环境科学与工程(可授工学、理学、农学学位) - 环境工程 |
学生类型: | 硕士 |
学位: | 工学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 固体废弃物处理与资源化 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2025-06-11 |
答辩日期: | 2025-05-23 |
外文题名: | Role of biological conversion of sulfur in extraction and recovery of valuable metals from pickling sludge |
中文关键词: | |
外文关键词: | Stainless steel pickling sludge ; Valuable metal ; Sulfur oxidation ; Sulfur disproportionation ; Resource recovery |
中文摘要: |
不锈钢酸洗污泥是不锈钢酸洗环节产生的含酸废水通过添加石灰乳中和形成的富含Fe、Cu、Zn等多种金属元素、以无机物为主的沉淀物,属于危险废物。酸洗污泥中Zn、Ni、Mn等有价金属含量高达2.67%~12.88%、1.03%~4.12%、0.12%~0.84%。现有的酸洗污泥的处置方法主要为填埋处理、固化稳定化处理、焚烧处理以及资源化利用等,其在实际应用中普遍面临处理成本高、能耗大等问题。嗜酸性氧化硫硫杆菌主要以元素硫和还原态硫化物为底物生物氧化产生硫酸;硫歧化菌是一种无机化能自养菌,同样以元素硫为底物产生硫化物,具有从废弃物中分离回收有价金属的潜力。然而,目前国内外在该技术应用于不锈钢酸洗污泥处理方面的研究报道较少,尤其是在上述生物处理过程中,浸提与回收有价金属的影响因素及形态转化规律尚不明确。为此,本论文在解析酸洗污泥的矿物相组成及其有价金属的化学赋存形态的基础上,通过序批式摇瓶培养和生物反应器实验,探究了嗜酸性氧化硫硫杆菌产酸生物浸出酸洗污泥中有价金属以及硫歧化菌产硫化物沉淀回收浸提液中有价金属的效果及其影响因素,旨在为酸洗污泥中有价金属的选择性回收提供一种新技术原理。论文获得的主要研究结果如下: (1)通过XRD图谱鉴定出酸洗污泥由白云石(CaMg(CO3)2)、蓝铁矿(Fe3(PO4)2)和锰铁橄榄石(FeMnSiO4)三种矿物相组成,含量分别为89.2%、5.6%、5.2%。污泥抛光表面的EPMA面扫图像以及断裂表面的SEM图像结合分析表明,Zn元素分布集中且含量极高,与钙镁矿物未重叠;As与Mn元素在酸洗污泥中分布比较均匀,含量较高As的分布与钙镁矿物重叠,As元素富集在钙镁矿物内部,Fe元素富集在钙镁矿物表面。改进的BCR连续提取揭示酸洗污泥中有价金属的形态:污泥中结合态的Fe、As元素占比较高(98.9%、70.1%),证实比较难浸出的金属主要结合在钙镁矿物(白云石)中,且矿相对有价金属的结合力较强;反之,结合态的Zn与Mn元素占比较低(41.5%、30.7%),其与矿相结合较弱。 (2)生物硫氧化在促进酸洗污泥中金属离子浸提方面成效显著,其促进过程受到污泥含固率及能源物质投加量的显著影响。污泥含固率越低,生物硫氧化促进酸洗污泥中有价金属浸出的效果越好,低含固率处理组(1%)反应第九天时Zn、Mn、Fe、As的浸出率(98%、85%、40%、24%)优于高含固率处理组(5%)的Zn、Mn、Fe、As的浸出率(1%、2%、0.2%、0.1%)。能源物质投加量适中(6 g/L)时,生物硫氧化促进酸洗污泥中有价金属浸出的效果最佳,反应第九天时Zn、Mn、Fe、As的浸出率分别为95%、88%、35%、23%。随后通过机械力化学二级处理球磨稳定污泥中剩余的有价金属,最佳球磨条件为:转速设定为580 rpm,球磨时长2 h,添加稳定剂硫粉的湿磨。 (3)生物硫歧化促进金属浸提液中金属离子回收受到碳源剂量的影响。最佳培养条件为添加1 g/L NaHCO3,pH 5.5时,Zn、Mn的回收率在反应第八天时可达到90%以上。生物硫歧化回收的产物经XRD表征、SEM-EDS面扫及TEM-EDS面扫分析可得该物质为纳米级ZnS,经电化学性能测试得到如下结果:纳米ZnS光电流响应效果稳定且光电流强度最高可达11 uA/cm2;在电位为0.5 V时,ZnS的电流密度可以达到6 mA/cm2。 (4)生物硫氧化耦合生物硫歧化的小试实验验证了前述生物硫氧化及生物硫歧化小体系实验在放大规模下较高的稳定性与可行性。在生物硫氧化反应器中,Zn和Mn的浸出量和浸出率均保持稳定上升状态,最高浸出率呈现批次稳定性,分别可达95%和80%以上;同时,Zn与Mn的回收率稳定且高达90%以上。SOB反应器连续运行过程中,将投入0.3 t/t DS硫粉做能源物质,总成本为120元/t DS;在SDB反应器连续运行过程中,仅需投加0.033 t/t DS硫粉作为能源物质,成本为13.2元/t DS;在金属沉淀池阶段需要投加0.05t/t DS NaHCO3调节pH,产生的成本为60元/t DS。连续运行小试验证实验所需的总药剂成本为193.2元/t DS。 |
外文摘要: |
Stainless steel pickling sludge is a kind of inorganic precipitate which is rich in Fe, Cu, Zn and other metal elements and formed by adding lime milk to acidic wastewater produced by stainless steel pickling, and belongs to hazardous waste. The content of Zn, Ni, Mn and other valuable metals in pickling sludge is as high as 2.67%~12.88%, 1.03%~4.12%, 0.12%~0.84%. The existing disposal methods of pickling sludge mainly include landfill treatment, solidification stabilization treatment, incineration treatment and resource utilization, etc., which are generally faced with problems such as high treatment cost and high energy consumption in practical applications. Thiobacillus thiosinophilus produces sulfuric acid mainly by biological oxidation of elemental sulfur and reducing sulfide as substrates. Sulfur dismutator is a kind of inorganic chemoautotrophic bacteria, which also produces sulfide from elemental sulfur as substrate, and has the potential to separate and recover valuable metals from waste. However, at present, there are few research reports on the application of this technology in the treatment of stainless steel pickling sludge at home and abroad, especially in the biological treatment process, the influencing factors of the extraction and recovery of valuable metals and the morphological transformation law are not clear. Therefore, on the basis of analyzing the mineral phase composition of pickling sludge and the chemical occurrence forms of valuable metals, this paper explored the effect and influencing factors of the acid-producing bileach of valuable metals from pickling sludge by acidiophilic thiobacillus thiooxidans and the recovery of valuable metals from the leaching solution by sulfur dismutating bacteria through sequencing batch shaker culture and bioreactor experiments. This paper aims to provide a new technical principle for selective recovery of valuable metals from pickling sludge. The main results obtained in this paper are as follows: (1) The original pickling sludge was identified by XRD pattern as consisting of dolomite (CaMg(CO3)2), cyanite (Fe3(PO4)2) and mangano-ferromangineolivine (FeMnSiO4) with contents of 89.2%, 5.6% and 5.2%, respectively. The combined analysis of EPMA images and SEM images of the polished surface of the sludge showed that Zn was concentrated and high in content, and there was no overlap with calcium and magnesium minerals. As and Mn are evenly distributed in pickling sludge, and the distribution of As with high content overlaps with calcium-magnesium minerals. As is enriched in the interior of calcium-magnesium minerals, and Fe is enriched on the surface of calcium-magnesium minerals. The improved BCR continuous extraction revealed the form of heavy metals in the pickling sludge: the combined Fe and As elements in the sludge accounted for a relatively high proportion (98.9%, 70.1%), which confirmed that the relatively difficult metals were mainly combined in calcium magnesium minerals (dolomite), and the ore had a stronger binding force than the heavy metals. On the contrary, the proportion of Zn and Mn in the combined state is relatively low (41.5%, 30.7%), and the combination with ore is weak. (2) Biological sulfur oxidation is effective in promoting metal ion extraction from pickling sludge, and its promotion process is significantly affected by the solid content of sludge and the amount of energy substances added. The lower the solid content of sludge, the better the effect of biological sulfur oxidation on promoting the leaching of valuable metals from pickling sludge. The leaching rates of Zn, Mn, Fe and As (98%, 85%, 40%, 24%) in the low solid content treatment group (1%) were better than those of Zn, Mn, Fe and As (1%, 2%, 0.2%, 0.1%) in the high solid content treatment group (5%). On the 9th day of the reaction, the leaching rates of Zn, Mn, Fe and As were 95%, 88%, 35% and 23%, respectively. The remaining heavy metals in the sludge were stabilized by mechanical and chemical secondary milling. The optimal milling conditions were as follows: the rotational speed was set at 580 rpm, the milling time was 2 h, and the stabilizer sulfur powder was added for wet milling. (3) The recovery of metal ions in metal leaching solution promoted by biological sulfur disproportionation was affected by the dose of carbon source. When 1 g/L NaHCO3 was added at pH 5.5, the recoveries of Zn and Mn could reach more than 90 % on the eighth day of the reaction. XRD characterization, SEM-EDS surface scan and TEM-EDS surface scan analysis of the recovered products of biological sulfur disproportionation showed that the compounds were nano-scale ZnS. The results of electrochemical performance test were as follows: The photocurrent response of nano-ZnS was stable and the photocurrent intensity was up to 11 uA/cm2. At a potential of 0.5 V, the current density of ZnS can reach 6 mA/cm2. (4) The small-scale experimental verification of the coupling of biological sulfur oxidation and biological sulfur disproportionation demonstrated the high stability and feasibility of the aforementioned small-scale biological sulfur oxidation and biological sulfur disproportionation systems when scaled up. In the biological sulfur oxidation reactor, the leaching amounts and leaching rates of Zn and Mn both maintained a stable upward trend, with the highest leaching rates showing batch stability, reaching over 95% and 80% respectively. Meanwhile, the recovery rates of Zn and Mn were stable and exceeded 90%. During the continuous operation of the SOB reactor, 0.3 t/t DS of sulfur powder was added as an energy source, with a total cost of 120 yuan/t DS. In the continuous operation of the SDB reactor, only 0.033 t/t DS of sulfur powder was added as an energy source, with a cost of 13.2 yuan/t DS. In the metal precipitation tank stage, 0.05 t/t DS of NaHCO3 was added to adjust the pH, incurring a cost of 60 yuan/t DS. The total reagent cost for the continuous operation small-scale verification experiment was 193.2 yuan/t DS. |
参考文献: |
[1] 包丽婧, 陈东辉, 朱艳彬, 等. 废水硫自养反硝化的电子供体与功能基因研究进展[J]. 净水技术, 2024, 43(03): 7-15+28. [2] 陈恒. 硫自养固定床生物反应器去除水中锑酸盐和硝酸盐的研究[D]. 河南工业大学, 2021. [3] 陈杰. Cd1-xZnxS纳米复合材料的结构调控及其光催化性能[D]. 黑龙江大学, 2023. [4] 陈昆柏, 郭春霞. 危险废物处理与处置[M]. 河南科学技术出版社, 2017: 310-313. [5] 褚禛. 嗜酸性硫杆菌的分离纯化及其应用研究[D]. 南京理工大学, 2015. [6] 戴伟华. 镍铬酸洗污泥处理工艺的探讨[J]. 有色冶金设计与研究, 2010, 31(06): 48-51. [7] 杜根杰. 我国大宗工业固废综合利用问题及未来发展趋势解读[J]. 混凝土世界, 2018, 113(11): 14-18. [8] 段杨慧. 生物吸附法处理重金属离子废水研究进展[J]. 中国锰业, 2016, 34(05): 100-102. [9] 方斌斌. 水泥窑协同处置酸洗污泥工业试验研究[J]. 环境科技, 2016, 29(04): 35-37+40. [10] 冯琦, 王强, 彭锋. 含镍、铬不锈钢尘泥资源化利用探讨[J]. 中国冶金, 2018, 28(06): 71-74. [11] 耿源濛. 我国城市污泥重金属的赋存特征及脆弱性指数生态风险评价体系的建立与应用[D]. 河南理工大学, 2022. [12] 谷梦奇. 硫自养电渗析离子交换膜生物反应器去除水中的硝酸盐[D]. 河南工业大学, 2022. [13] 韩伟. 不锈钢生产过程中含镍废弃物的综合利用[J]. 宝钢技术, 2009, (03): 27-30. [14] 贺慧, 赵俊学, 马红周,等. 不锈钢酸洗废水处理技术分析[J]. 甘肃冶金, 2009, 31(5): 42-46. [15] 贺梦莹, 徐超, 李海霞, 等. PVDF膜生物反应器处理养殖废水的实验研究[J]. 环境科技, 2025, 38(01): 14-18. [16] 黄文娟. 重金属废水处理中膜分离技术的应用研究[J]. 皮革制作与环保科技, 2022, 3(11): 9-11. [17] 李凤, 李茹, 文静. 废水重金属处理研究进展[J]. 化学工程师, 2022, 36(01): 47-49+76. [18] 李海妃. 嗜酸性复合硫杆菌浸出城市污泥重金属及相关动力学研究[D]. 广东工业大学, 2017. [19] 李立松. 嗜酸性硫杆菌的耐氟培养及其在重金属浸出中的应用研究[D]. 南京理工大学, 2016. [20] 李鹏程, 刘成, 武海霞, 等. 城镇污水厂典型重金属去除研究进展[J]. 中国给水排水, 2024, 40(08): 40-46. [21] 李庆松. 新型高截留膜蒸馏生物反应器在污水处理中的研究与应用[J]. 工业微生物, 2024, 54(06): 53-55. [22] 李秋菊, 孙映, 张景,等. 不锈钢酸洗废液中金属氟化物的沉积机理研究[J]. 上海金属, 2016(1): 55-59. [23] 李桃, 周俊, 李伟, 等. 生物沥浸对自然干化污泥重金属去除效果研究[J]. 环境科学学报, 2016, 36(02): 569-575. [24] 李文杰, 赵青, 刘承军, 等. 不锈钢酸洗废液资源化研究现状[J]. 湿法冶金, 2022, 41(06): 484-492. [25] 李小明, 贾李锋, 邹冲, 等. 不锈钢酸洗污泥资源化利用技术进展及趋势[J]. 钢铁, 2019, 54(10): 1-11. [26] 李宇梁, 周光辉. 我国不锈钢产业发展浅析[J]. 冶金管理, 2020, 388(2): 48-52. [27] 林本盛. 金属硫化物的制备及其催化性能研究[D]. 齐鲁工业大学, 2023. [28] 刘贺琴, 王清萍, 张江山, 等.氧化硫硫杆菌浸出污泥中重金属的分析与评价[J]. 福建师范大学学报(自然科学版), 2011, 27(04): 96-101. [29] 刘平阳, 谈定生, 丁伟中. 不锈钢酸洗污泥中重金属的浸出试验研究[J]. 有色金属材料与工程, 2017, 38(03): 149-153. [30] 刘平阳, 谈定生, 丁伟中. 用P204从不锈钢酸洗污泥浸出液中萃取重金属试验研究[J]. 湿法冶金, 2018, 37(01): 50-54. [31] 刘启承, 余海. 危险废物处理处置现状调查与分析[J]. 重庆工商大学学报(自然科学版), 2013, 30(2): 56-59. [32] 刘强, 伍赠玲, 高世康, 等. 络合沉淀法—硫化沉淀法联合处理铜氰贫液试验研究[J]. 黄金, 2024, 45(02): 89-92. [33] 陆鑫涛. 污水处理中重金属的去除与回收技术研究[J]. 生态与资源, 2024, (09): 87-89. [34] 马叙叙, 顾宝澍, 宿珀诚, 等. 利用高炉熔渣处理不锈钢酸洗污泥[J]. 钢铁, 2024, 59(05): 185-193. [35] 庞江, 张烨毓, 黄毅, 等. 铁含量对白云石拉曼光谱特征的影响[J]. 岩矿测试, 2023, 42(04): 852-862. [36] 申展. 硫自养还原去除水体常见污染物效能及副反应硫歧化的发生趋势[D]. 河南工业大学, 2024. [37] 史乃元. 硫自养内循环生物反应器去除水体锑酸盐和硝酸盐复合污染的研究[D]. 河南工业大学, 2021. [38] 宋子煜, 吴丹, 董健, 等. 气体生物脱硫及硫回收研究进展[J]. 石油学报(石油加工), 2015, 31(02): 265-274. [39] 孙长江, 尹晓红, 马伟, 等. 趋磁细菌培养及用于吸附分离贵重金属离子[J]. 微生物学通报, 2010, 37(03): 394-400. [40] 王国富, 余海峰. 特种金属及合金中厚板在线酸洗技术探讨[J]. 物理测试, 2020, 38(01): 18-23. [41] 王蓉, 初正崑, 宋宁宁, 等. 电动技术去除剩余污泥中重金属[J]. 农业资源与环境学报, 2019, 36(06): 798-805. [42] 王悦, 杜小雨, 黄鑫, 等. 废水中重金属离子的处理方法及研究现状[J]. 印染, 2023, 49(09): 91-96. [43] 温丽珍. 基于ZnS构建可见光响应光催化材料及其光催化性能研究[D]. 南宁师范大学, 2023. [44] 徐艳娥. 典型有机固废热解同步还原酸洗污泥回收铁精粉技术研究[D]. 中国矿业大学(北京), 2023. [45] 许香帅, 赵峥, 张延玲. 不锈钢酸洗污泥与AOD渣协同制备硅酸盐水泥的研究[J]. 炼钢, 2022, 38(05): 82-88. [46] 杨依然. 用生物淋滤技术资源化处理不锈钢酸洗废渣[D]. 北京理工大学, 2016. [47] 张本亮, 金进文, 张超杰, 等. 菱镁石替代白云石的转炉造渣冶炼[J]. 金属世界, 2025, 1-7. [48] 赵宗锋, 刘志英, 徐炎华, 等. 萃取法分离回收不锈钢酸洗污泥硫酸浸出液中的重金属[J]. 化工环保, 2018, 38(03): 353-357. [49] 周立祥, 周顺桂, 王世梅, 等. 制革污泥中铬的生物脱除及其对污泥的调理作用[D]. 南京: 南京农业大学, 2004. [50] 周立祥, 周顺桂. 氧化亚铁硫杆菌及其去除污泥重金属的方法[P]. 中国专利:CN1155696C,2002-04-25. [51] 周娅, 买文宁, 代吉华, 等. 硫代硫酸钠联合硫铁矿自养反硝化脱氮性能[J]. 中国环境科学, 2020, 40(05): 2081-2086. [52] 朱冰. 不锈钢酸洗废水中金属离子的资源化分离回收工艺研究[D]. 重庆大学, 2018. [53] 朱明旭, 白皓, 刘德荣. 不锈钢酸洗污泥-黏土基陶粒的制备及性能研究[J]. 武汉科技大学学报, 2016, 39(03): 185-189. [54] Allioux M, Yvenou S, Slobodkina G, et al. Genomic characterization and environmental distribution of a thermophilic anaerobe Dissulfurirhabdus thermomarina SH388T involved in disproportionation of sulfur compounds in shallow sea hydrothermal vents. Microorganisms. 2020, 8(8): 1132. [55] Anguiano M, Lopez C, Luevanos M, et al. Bioleaching: an innovative biotechnology for recovery of metals from electronic wastes. CHIMICA OGGI-CHEMISTRY TODAY. 2018, 36(2): 33-36. [56] Bai H, Kang Y, Quan H, et al. Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs. Bioresource technology. 2013, 128: 818-822. [57] Bhattacharjee S, Habib F, Darwish N, et al. Iron sulfide nanoparticles prepared using date seed extract: Green synthesis, characterization and potential application for removal of ciprofloxacin and chromium. Powder technology. 2021, 380: 219-228. [58] Burns R. Mineralogical applications of crystal field theory. Cambridge university press; 1993. [59] Chan L, Gu X, Wong J. Comparison of bioleaching of heavy metals from sewage sludge using iron-and sulfur-oxidizing bacteria. Advances in Environmental Research. 2003, 7(3): 603-607. [60] Costa J, Rodriguez R. Removal sulfate and metals Fe2+, Cu2+, and Zn2+ from acid mine drainage in an anaerobic sequential batch reactor. Technology. 2010, 101: 6642-6650. [61] Da Y, Ma X, He T, et al. Uncovering the potential of titanium-bearing pickling sludge as a new supplementary cementitious material: Modification, performance and leaching safety, Journal of Building Engineering, Volume 102, 2025, 111973. [62] Gheju M, Pode R, Manea F. Comparative heavy metal chemical extraction from anaerobically digested biosolids. Hydrometallurgy. 2011, 108(1-2): 115-121. [63] HU L, WU W, LI Y, et al. Heavy metals and PAHs in sewage sludge from twelve wastewater treatment plants in Zhejiang Province. Biomedical and Environmental Sciences. 2008; 21(4): 345-352. [64] Iranmanesh P, Saeednia S, Nourzpoor M. Characterization of ZnS nanoparticles synthesized by co-precipitation method. Chinese Physics B. 2015, 24(4): 046104. [65] Jamal F, Rafique A, Moeen S, et al. Review of metal sulfide nanostructures and their applications. ACS Applied Nano Materials. 2023, 6(9): 7077-7106. [66] Jia Y, Tan Q, Sun H, et al. Sulfide mineral dissolution microbes: community structure and function in industrial bioleaching heaps. Green Energy Environ. 2019, 4(1): 29-37. [67] Jia Z, Li S, Liu Q, et al. Distribution and partitioning of heavy metals in water and sediments of a typical estuary (Modaomen, South China): the effect of water density stratification associated with salinity. Environmental Pollution. 2021, 287: 117277. [68] Kakumazaki J, Kato T, Sugawara K. Recovery of gold from incinerated sewage sludge ash by chlorination. ACS Sustainable Chemistry & Engineering. 2014, 2(10): 2297-2300. [69] Khomyakova M, Merkel A, Kopitsyn D, et al. Pelovirga terrestris gen. nov., sp. nov., anaerobic, alkaliphilic, fumarate-, arsenate-, Fe (III)-and sulfur-reducing bacterium isolated from a terrestrial mud volcano. Systematic and Applied Microbiology. 2022, 45(2): 126304. [70] Kumar, Sunil. Chromium and nickel migration study through fine grained soil. Journal of hazardous materials 2009, 170(2-3): 1192-1196. [71] Li G, Liang Z, Sun J, et al. A pilot-scale sulfur-based sulfidogenic system for the treatment of Cu-laden electroplating wastewater using real domestic sewage as electron donor. Water research. 2021, 195: 116999. [72] Li J, Xu X, Liu W. Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones. Waste management. 2012, 32(6): 1209-1212. [73] Li X, Lv M, Yin W, et al. Desulfurization thermodynamics experiment of stainless steel pickling sludge. Journal of Iron and Steel Research International. 2019, 26: 519-528. [74] Li X, Wang S, Zhao J, et al. A review on the treatments and minimization techniques of stainless steel pickling sludge. Advanced Materials Research. 2011; 194: 2072-2076. [75] Li Y, Yang Y, Huang Y, et al. A Sustainable Process for the Resource Utilization and Stabilization Disposal of Stainless Steel Pickling Sludge. Jom. 2022, 74(10): 3910-3920. [76] LI, X. Recycling of Sludge Generated From Stainless Steel Pickling Process[C]. J. Iron Steel Res. Int 2024, 16: 480-484. [77] Liu J, Sun S. Total concentrations and different fractions of heavy metals in sewage sludge from Guangzhou, China. Transactions of Nonferrous Metals Society of China. 2013; 23(8): 2397-2407. [78] Liu S, Li Q, Wang Z, et al. Metals droplet assembling mechanism during carbon reduction of stainless steel pickling sludge. Journal of Cleaner Production. 2020, 247: 119580. [79] Liu Z, Li L, Li Z, et al. Removal of sulfate and heavy metals by sulfate-reducing bacteria in an expanded granular sludge bed reactor. Environmental Technology. 2018, 39(14): 1814-1822. [80] Marais T, Huddy R, Harrison S, et al. Demonstration of simultaneous biological sulphate reduction and partial sulphide oxidation in a hybrid linear flow channel reactor. Journal of Water Process Engineering. 2020, 34: 101143. [81] Oyetibo G, Enahoro J, Ikwubuzo C, et al. Microbiome of highly polluted coal mine drainage from Onyeama, Nigeria, and its potential for sequestrating toxic heavy metals. Scientific Reports. 2021, 11(1): 17496. [82] Park H, Kang S, Kim Y. A study on the recycling of the waste pickling sludge of stainless steel[J]. Journal of the Korean Institute of Metals and Materials, 1995, 33(9): 1191-1196. [83] Perederiy I, Papangelakis V. Why amorphous FeO-SiO2 slags do not acid-leach at high temperatures. Journal of Hazardous Materials. 2017, 321: 737-744. [84] Rodrigues C, Núñez-Gómez D, Follmann H, et al. Biostimulation of sulfate-reducing bacteria and metallic ions removal from coal mine-impacted water (MIW) using shrimp shell as treatment agent. Journal of Hazardous Materials. 2020, 398: 122893. [85] RoGener F, Sartor M, Bán A, et al. Metal recovery from spent stainless steel pickling solutions[J]. Resources Conservation & Recycling, 2024, 60: 72-77. [86] Shevchenko M, Jak E. Experimental liquidus studies of the Pb-Fe-Si-O system in equilibrium with metallic Pb. Metallurgical and Materials Transactions B. 2018, 49: 159-180. [87] Singhal L, Rai N. Conversion of entire dusts and sludges generated during manufacture of stainless steels into value added products. Transactions of the Indian Institute of Metals. 2016, 69(7): 1319-1325. [88] Slobodkin A, Reysenbach A, Slobodkina G, et al. Dissulfuribacter thermophilus gen. nov., sp. nov., a thermophilic, autotrophic, sulfur-disproportionating, deeply branching deltaproteobacterium from a deep-sea hydrothermal vent. International journal of systematic and evolutionary microbiology. 2013, 63(Pt_6): 1967-1971. [89] Slobodkin A, Slobodkina G. Diversity of sulfur-disproportionating microorganisms. Microbiology. 2019, 88: 509-522. [90] Thomas M, Ullah A, Pham R, et al. Morphology control in the hydrothermal synthesis of FeS nanoplatelets. Crystal Growth & Design. 2020, 20(9): 5728-5735. [91] Tiwari P, Malik G, Chandra R. Phase-dependent structural and electrochemical properties of single crystalline MnS thin films deposited by DC reactive sputtering. Journal of Applied Physics. 2018, 124(19). [92] Umezawa K, Kojima H, Kato Y, et al. Disproportionation of inorganic sulfur compounds by a novel autotrophic bacterium belonging to Nitrospirota. Systematic and Applied Microbiology. 2020, 43(5): 126110. [93] Wei C, Chen Q, Cheng C, et al. Mesoporous nickel cobalt manganese sulfide yolk–shell hollow spheres for high-performance electrochemical energy storage. Inorganic Chemistry Frontiers. 2019, 6(7):1851-1860. [94] Wen Y, Wang Q, Tang C, et al. Bioleaching of heavy metals from sewage sludge by Acidithiobacillus thiooxidans—a comparative study. Journal of Soils and Sediments. 2012, 12: 900-908. [95] Westerhoff P, Lee S, Yang Y, et al. Characterization, recovery opportunities, and valuation of metals in municipal sludges from US wastewater treatment plants nationwide. Environmental science & technology. 2015; 49(16): 9479-9488. [96] Westerhoff P, Lee S, Yang Y, et al. Characterization, recovery opportunities, and valuation of metals in municipal sludges from US wastewater treatment plants nationwide. Environmental science & technology. 2015, 49(16): 9479-9488. [97] Wong J, Xiang L, Gu X, et al. Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source. Chemosphere. 2004, 55(1): 101-107. [98] Wu C, Jiang M, Hsieh L, et al. Feasibility of bioleaching of heavy metals from sediment with indigenous bacteria using agricultural sulfur soil conditioners. Science of the total environment. 2020, 703: 134812. [99] Wu C, Zhu X, Wang Z, et al. Specific recovery and in situ reduction of precious metals from waste to create MOF composites with immobilized nanoclusters. Industrial & Engineering Chemistry Research. 2017, 56(47): 13975-13982. [100] Wu M, Li Y, Guo Q, et al. Harmless treatment and resource utilization of stainless steel pickling sludge via direct reduction and magnetic separation. Journal of Cleaner Production. 2019, 240: 118187. [101] Xin J, Wang H, Wu Q, et al. Multifunctional Role of the Biological Sulfur Cycle in Wastewater Treatment: Sulfur Oxidation, Sulfur Reduction, and Sulfur Disproportionation. Desalination and Water Treatment. 2025, 101100. [102] Žemberyová M, Bartekova J, Hagarova I. The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins. Talanta. 2006, 70(5): 973-978. [103] Žemberyová M, Bartekova J, Hagarova I. The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins. Talanta. 2006, 70(5): 973-978. [104] Zhang S, Yang J, Liu B, et al One-step crystallization kinetic parameters of the glass-ceramics prepared from stainless steel slag and pickling sludge. Journal of Iron and Steel Research International. 2016, 23(3): 220-224. [105] Zhang S, Zhu N, Shen W, et al. Relationship between mineralogical phase and bound heavy metals in copper smelting slags. Resources, Conservation and Recycling. 2022, 178: 106098. [106] Zhao D, Xu H, Leng H, et al. Research Development of Metals Recycling in the Biotreatment of Waste Batteries. 2017. [107] Zou J, Qiu Y, Li H, et al. Sulfur disproportionation realizes an organic-free sulfidogenic process for sustainable treatment of acid mine drainage. Water Research. 2023, 232: 119647. |
中图分类号: | X70 |
开放日期: | 2025-06-11 |