题名: | 大豆油脂含量全基因组关联分析及候选基因挖掘 |
作者: | |
学号: | 2023101134 |
保密级别: | 保密两年 |
语种: | chi |
学科代码: | 090102 |
学科: | 农学 - 作物学 - 作物遗传育种 |
学生类型: | 硕士 |
学位: | 农学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 大豆遗传育种 |
导师姓名: | |
导师单位: | |
完成日期: | 2025-06-13 |
答辩日期: | 2025-05-28 |
外文题名: | Genome-Wide Association Study and Candidate Gene Identification for Soybean Oil Accumulation |
关键词: | 大豆油脂含量 ; GWAS ; CRISPR/Cas9 |
外文关键词: | |
摘要: |
大豆是世界上重要的粮油作物之一,2024年占全球油料作物产量的63%和全球植物油总消耗量的24.9%。大豆油以棕榈酸、硬脂酸、油酸、亚油酸和亚麻酸为主要组分(占比≥98%),是优质植物油脂的重要来源。提高大豆种子油脂含量是大豆品质遗传改良育种的重要目标之一。然而,油脂含量作为多基因调控的数量性状,其合成代谢的遗传网络尚未完全阐明。因此挖掘大豆中调控油脂含量的关键基因,解析其分子遗传调控机制,能够加深人们对大豆油脂合成代谢的理论认知,同时挖掘优异等位变异,能够为培育高油大豆新品种(系)提供重要的理论依据和种质资源。 本研究利用303份大豆自然种质,调查其种子油脂含量表型。结合重测序数据进行全基因组关联分析,在8号染色体上定位到一个和大豆油脂含量联系紧密的新位点,命名为Oil8。通过LD Block分析和突变体种子油份检测筛选出一个控制油脂含量的最佳候选基因GmOIL8。通过CRISPR/Cas9技术,创制了GmOIL8及其重复基因GmOIL5的大豆功能缺失突变体,为解析二者调控油脂合成的分子机制提供了材料基础。本文主要结论如下: 1.303份大豆自然种质种子油脂含量的特点及优异种质资源的鉴定 通过近红外法测定173份大豆地方品种与130份大豆栽培品种2023-2024年种子油脂含量,结果显示:303份大豆自然种质的种子油脂含量变异幅度为12.49%–25.09%,其中地方品种的种子油脂平均含量为17.93%,栽培品种的种子油脂含量为19.29%。表明经过长期的大豆改良(从地方品种到栽培品种),籽粒油脂含量在栽培品种中存在提高的趋势。本研究依据两年表型数据平均值鉴定出3份高油脂含量(≥22.5%)的大豆种质,为高油育种提供了核心亲本材料。 2. GmOIL8 是大豆中控制种子油脂含量的最佳候选基因 基于群体重测序数据(平均测序深度为10.2×),采用全基因组关联分析在8号染色体定位到与大豆种子油脂含量显著关联的新位点Oil8。连锁不平衡(LD block)分析显示,Oil8紧密连锁区间为8.191-8.623 Mb,该区域覆盖21个候选基因。借助大豆突变体库种子,比较包含各候选基因变异的突变体的种子油脂含量。发现仅有包含Glyma.08G-1(GmOIL8)基因提前终止的大豆种子在两年的田间试验中收获的种子油脂含量显著低于同期同地块的W82(P<0.05),表明GmOIL8可能为调控油脂含量的关键基因。 单倍型分析进一步显示,发现携有Chr8_8306163-G的自然群体种子含有较高的油脂含量,且在栽培品种中的比例高于地方品种,表明该位点可能在改良过程中受到选择且与籽粒油脂含量显著相关。功能注释表明,GmOIL8编码天冬氨酸激酶蛋白,参与氨基酸生物合成途径,可能通过影响氨基酸含量导致大豆种子的油脂含量和蛋白质含量发生变化,因此选择其作为大豆中控制种子油脂含量的最佳候选基因。 3. GmOIL8及其重复基因GmOIL5缺失突变体的创制 通过Phytozome v13数据库发现GmOIL8其存在一个重复基因GmOIL5。两者氨基酸序列一致性为97.82%,氨基酸序列相似性为98.47%。本研究利用CRISPR/Cas9技术和根癌农杆菌介导的大豆子叶节转化法构建了GmOIL8及其重复基因GmOIL5的功能缺失突变体,成功获得T0代编辑植株,为后续功能验证(如T1-T3代表型鉴定)奠定了材料基础。 综上,本研究系统解析了大豆籽粒油脂含量的遗传基础,为大豆油脂性状的分子设计育种提供关键基因资源与理论支持,并为高油大豆品种的选育提供种质资源。 |
外摘要要: |
Soybean is one of the world's important grain and oil crops, accounting for 63% of global oil crop production and 24.9% of global vegetable oil consumption in 2024. Soybean oil mainly consists of five fatty acids: palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid (accounting for ≥98%), serving as an important source of high-quality vegetable oil. Increasing soybean seed oil content is one of the important goals in genetic improvement and breeding for soybean quality. However, as a quantitative trait regulated by multiple genes, the genetic network of oil content anabolic metabolism has not been fully elucidated. Therefore, mining key genes regulating oil content in soybeans and analyzing their molecular genetic regulatory mechanisms can deepen theoretical understanding of soybean oil anabolic metabolism, while mining excellent allelic variations can provide important theoretical basis and germplasm resources for the cultivation of new high-oil soybean varieties (lines). This study utilized 303 natural soybean populations to investigate their seed oil content phenotypes. Combined with resequencing data, genome-wide association analysis was performed to identify a new locus closely associated with soybean oil content on chromosome 8, named Oil8. Through LD block analysis and oil content detection of mutant seeds, the best candidate gene GmOIL8 controlling oil content was screened. Using CRISPR/Cas9 technology, loss-of-function mutants of GmOIL8 and its duplicate gene GmOIL5 in soybeans were created, providing material basis for analyzing the molecular mechanism by which the two regulate oil synthesis. The main conclusions of this paper are as follows: 1. Characteristics of seed oil content and identification of excellent germplasm resources in 303 natural soybean populations 2.GmOIL8 is the best candidate gene controlling soybean seed oil content Based on population resequencing data (average sequencing depth of 10.2×), a new locus Oil8 significantly associated with soybean seed oil content was identified on chromosome 8 using genome-wide association analysis. Linkage disequilibrium (LD block) analysis showed that the tightly linked interval of Oil8 was 8.191-8.623 Mb, covering 21 candidate genes. By comparing the seed oil content of mutants containing variations in each candidate gene using soybean mutant library seeds, it was found that only soybean seeds containing premature termination of the Glyma.08G-1 (GmOIL8) gene had significantly lower seed oil content in seeds harvested from two-year field trials compared to W82 in the same plot during the same period (P<0.05), indicating that GmOIL8 may be a key gene regulating oil content. Haplotype analysis further showed that natural population seeds carrying Chr8_8306163-G had higher oil content, and their proportion in cultivars was higher than in landraces, indicating that this locus may have been selected during improvement and is significantly associated with seed oil content. Functional annotation showed that GmOIL8 encodes an aspartate kinase protein involved in the amino acid biosynthetic pathway, which may affect soybean seed oil and protein content by influencing amino acid levels, thus selecting it as the best candidate gene controlling soybean seed oil content. 3.Functional verification of GmOIL8 and its duplicate gene GmOIL5 A duplicate gene GmOIL5 of GmOIL8 was found through the Phytozome v13 database. The amino acid sequence identity and similarity between the two were 97.82% and 98.47%, respectively. In this study, loss-of-function mutants of GmOIL8 and its duplicate gene GmOIL5 were constructed using CRISPR/Cas9 technology and the Agrobacterium tumefaciens-mediated cotyledonary node transformation method, successfully obtaining T0 generation edited plants, laying a material foundation for subsequent functional verification (e.g., T1-T3 generation phenotypic identification). In summary, this study systematically elucidated the genetic basis of soybean seed oil content, providing key gene resources and theoretical support for molecular design breeding of soybean oil traits, and germplasm resources for the breeding of high-oil soybean varieties.
|
参考文献: |
1. 曹彦蕾.我国大豆产业发展和育种研究现状启示[J].黑龙江农业科学,2025,(1):86-93. 2. 陈赛艳,陈蕴智.大豆油及其衍生物的新用途[J].大豆科技,2009,(1):40-42. 3. 李志香,沈翠平.多不饱和脂肪酸对人体的作用[J].生物学通报,1998,(1):11-12. 4. 刘军, 徐瑞新, 石垒,等. 中国国审大豆品种(2003-2016 年)主要性状变化趋势分析[J].安徽 农学通报, 2017,23(11):60-66. 5. 罗萌萌.大豆子叶节遗传转化体系的构建[D].扬州大学,2024. 6. 苗龙.大豆籽粒油脂性状相关基因的自然变异与功能解析[D].南京农业大学,2020. 7. 邵弘.大豆油脂制备绿色润滑油前景分析[J].大豆通报,2008,(3):40-42. 8. 王骥腾,姜宇栋,杨云霞,等.豆油替代鱼油对赤点石斑鱼(Epinephelus akaara)生长、体组成及体脂肪酸组成的影响[J].海洋与湖沼,2016,47(3):640-646. 9. 王文月,姚志鹏,于洋,等.我国大豆种业科技创新发展现状及对策建议[J].中国农业科技导报,2024,26(3):1-6. 10. 徐先超.不同生态类型大豆资源农艺性状的评价及优异种质遴选[D].南京农业大学,2021. 11. 薛红.主要气象因子对大豆脂肪和蛋白质含量影响的相关性研究[J].农业科技通讯,2009,(04):81-83. 12. 赵艳飞,王继永.我国主要植物油料油脂供需现状、问题及发展对策[J].作物杂志,2024,(3):8-12. 13. 赵宇慧,李秀秀,陈倬,等.生物信息学分析方法Ⅰ:全基因组关联分析概述[J].植物学报,2020,55(06):715-732. 14. Arondel V, Lemieux B, Hwang I, et al. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis[J]. Science, 1992, 258(5086):1353-1355. 15. Asmamaw M, Zawdie B. Mechanism and applications of CRISPR/Cas-9-mediated genome editing[J]. Biologics: Targets and Therapy, 2021, 15: 353-361. 16. Barron E J, Stumpf P K. Fat metabolism in higher plants. XIX. The biosynthesis of triglycerides by avocado-mesocarp enzymes[J]. Biochimica et Biophysica Acta, 1962, 60:329-337. 17. Bates D P, Stymne S, Ohlrogge J. Biochemical pathways in seed oil synthesis[J]. Current Opinion in Plant Biology, 2013, 16(3):358-364. 18. Bates D P, Browse J. The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering[J]. Frontiers in Plant Science, 2012, 3:147. 19. Baud S, Wuilleme S, To A, et al. Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis[J]. Plant Journal, 2009, 60(6):933-947. 20. Bai M, Yuan J, Kuang H, et al. Generation of a multiplex mutagenesis population via pooled CRISPR‐Cas9 in soya bean[J]. Plant Biotechnology Journal, 2020, 18(3): 721-731. 21. Browning B L, Zhou Y, Browning S R. A One-Penny Imputed Genome from Next-Generation Reference Panels[J]. The American Journal of Human Genetics, 2018,103(3):338-348. 22. Bonaventure G, Salas J, Pollard M, et al. Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth[J]. Plant Cell, 2003, 15(4):1020-1033. 23. Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis[J]. Plant Journal, 2004, 40(4):575-585. 24. Carlsson A, Labrie S, Kinney A, et al. A KAS2 cDNA complements the phenotypes of the Arabidopsis fab1 mutant that differs in a single residue bordering the substrate binding pocket[J]. Plant Journal, 2002, 29(6):761-770. 25. Cardinal AJ, Whetten R, Wang S, et al. Mapping the low palmitate fap1 mutation and validation of its effects in soybean oil and agronomic traits in three soybean populations[J]. Theoretical and Applied Genetics, 2014, 127(1):97-111. 26. Chen L, Zheng Y, Dong Z M, et al. Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation[J]. Molecular Genetics and Genomics, 2018, 293(2):401-415. 27. Chapman K, Trelease R. Acquisition of membrane-lipids by differentiating glyoxysomes role of lipid bodies [J]. Journal of Cell Biology, 1991, 115(4):995007. 28. Chu D, Zhang Z, Hu Y, et al. Genome-wide scan for oil quality reveals a coregulation mechanism of tocopherols and fatty acids in soybean seeds [J]. Plant Commun. 2023 ,11;4(5):100598. 29. Dan Z, Jiang Z, Yang B, et al.Research advance in triacylglycerol synthesis, metabolism,and regulation in plants[J].Journal of Nanjing Agricultural University,2012,35(5):77-86. 30. Dörmann P, VOELKER T, Ohlrogge J. Cloning and Expression in Escherichia Coli of a Novel Thioesterase from Arabidopsis Thaliana Specific for Long Chain Acyl-Acyl Carrier Proteins[J]. Archives of Biochemistry and Biophysics, 1995, 316(1):612-618. 31. Di Q, Dong L, Jiang L, et al. Genome-wide association study and RNA-seq identifies GmWRI1-like transcription factor related to the seed weight in soybean[J]. Frontiers in plant science,2023, 14:1268511. 32. Do P, Nguyen C, Bui H, et al. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean[J]. BMC plant biology, 2019, 19(1):311. 33. Franca M, Matos A, D'arcy-Lameta A, et al. Cloning and characterization of drought-stimulated phosphatidic acid phosphatase genes from Vigna unguiculata[J]. Plant Physiology Biochemistry, 2008, 46:1093-1100. 34. Fan K, Christopher J, Colin L, et al. The activity of acetyl-CoA carboxylase is not correlated with the rate of lipid synthesis during development of oilseed rape (Brassica napus L.) embryos[J].Planta,1994, 193:320-325. 35. Gibellini F, Smith T. The Kennedy pathway-De novo synthesis of phosphatidylethanolamine and phosphatidylcholine[J]. IUBMB Life, 2010, 62(6):414-428. 36. Guo W, Chen L, Chen H, et al. Overexpression of GmWRI1b in soybean stably improves plant architecture and associated yield parameters, and increases total seed oil production under field conditions[J]. Plant Biotechnology Journal, 2020, 18(8):1639-1641. 37. Herbert D, Walker K, Price L, et al. Acetyl-CoA carboxylase-a graminicide target Site[J]. Pesticide Science, 1999, 50(1):67-71. 38. He J, Meng S, Zhao T, et al. An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding[J]. Theoretical and Applied Genetics, 2017,130(11):2327-2343. 39. Hassan M, Yuan G, Liu Y, et al. (2022). Precision genome editing in plants using gene targeting and prime editing: existing and emerging strategies. Biotechnology journal, 2022, 17(10):100673. 40. Hayashi Y, Hayashi M, Hayashi H, et al. Direct interaction between glyoxysomes and lipid bodies in cotyledons of the Arabidopsis thaliana ped1 mutant[J]. Protoplasma, 2001, 218(1-2):83-94. 41. Mao H, Sun S, Yao J, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proc. Natl Acad Sci,2010,107 (45): 19579-19584. 42. Jha K, Maiti K, Bhattacharjee A, et al. Cloning and functional expression of an acyl-ACP thioesterase FatB type from Diploknema (Madhuca) butyracea seeds in Escherichia coli[J]. Plant Physiology and Biochemistry, 2006, 44(11-12):645-655. 43. Jiao W, Wang M, Guan Y, et al. Transcriptional regulatory network reveals key transcription factors for regulating agronomic traits in soybean[J]. Genome biology, 2024, 25(1):313. 44. Jako C, Kumar A, Wei Y, et al. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight[J]. Plant Physiology, 2001, 126(2):861-874. 45. Katayama K, Sakurai I, Wada H. Identification of an Arabidopsis thaliana gene for cardiolipin synthase located in mitochondria[J]. FEBS Letters, 2004, 577(1-2):193-198. 46. Khan M A, Tong F, Wang W, et al. Analysis of QTL–allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean (Glycine max ) Merr. using a novel GWAS procedure[J]. Planta, 2018,248(4):947-962. 47. Kachroo A, Shanklin J, Whittle E, et al. The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis[J]. Plant Molecular Biology, 2007, 63(2):257-271. 48. Knutzon D, Thompson G, Radke S, et al. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(7):2624-2628. 49. Kubis S, Pike M, Hill L, et al. The import of phosphoenolpyruvate by plastids from developing embryos of oilseed rape, Brassica napus (L.), and its potential as a substrate for fatty acid synthesis[J]. Journal of Experimental Botany, 2004, 55(402):1455462. 50. L Jo, J.M. Pelletier, R.B. Goldberg , et al. Genome-wide profiling of soybean WRINKLED1 transcription factor binding sites provides insight into seed storage lipid biosynthesis[J], Proceedings of the National Academy of Sciences of the United States of America, 2004,121 (45) :2415224121. 51. Liu X, Liu L, Qu Q. Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds[J]. Theoretical and Applied Genetics, 2013, 126(9):2289-2297. 52. Lin L, Tai S, Peng C, et al. Steroleosin, a sterol-binding dehydrogenase in seed oil bodies[J]. Plant Physiology, 2002, 128(4):1200-1211. 53. Li H, Zhou R, Liu P, et al. Design of high-monounsaturated fatty acid soybean seed oil using GmPDCTs knockout via a CRISPR-Cas9 system[J]. Plant biotechnology journal, 2023, 21(7):1317–1319. 54. Li S, Lin D, Zhang Y, et al. Genome-edited powdery mildew resistance in wheat without growth penalties[J]. Nature, 2022,602(7897):455–460. 55. Lifang Z, Tegan M, Annika S, et al. Functional Overlap of Long-Chain Acyl-CoA Synthetases in Arabidopsis[J], Plant and Cell Physiology, 2019,60:1041–1054. 56. Li C, Guan H, Jing X, et al. Genomic insights into historical improvement of heterotic groups during modern hybrid maize breeding[J]. Nature plants, ,2022,8(7):750–763. 57. Maisonneuve S, Bessoule J, Lessire R, et al. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis[J]. Plant Physiology, 2010, 152(2):670-684. 58. Ma X, Zhu Q, Chen Y, et al. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications[J]. Molecular Plant, 2016, 9(7): 961-974. 59. Moche M, Dehesh K, Edwards P, et al. The crystal structure of β-ketoacyl-acyl carrier protein synthase II from Synechocystis sp. at 1.54 Å resolution and its relationship to other condensing enzymes[J]. Journal of Molecular Biology, 2001, 305:491-503. 60. Naested H, Frandsen G, Jauh G, et al. Caleosins: Ca2+ -binding proteins associated with lipid bodies[J]. Plant Molecular Biology, 2000, 44(4):463-476. 61. Perez F, Nyman K, Johnson T, et al. CRISPR-Cas systems: ushering in the new genome editing era[J]. Bioengineered, 2018, 9(1): 214-221. 62. Pham A , Lee J , Shannon J , et al. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait[J]. BMC Plant Biology, 2010, 10:195. 63. Pidkowich M, Nguyen H, Heilmann I, et al. Modulating seed beta-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil[J]. Proceedings of The National Academy of Sciences of The United States of America, 2007, 104(11):4742-4747. 64. Qi Q, Hu B, Jiang W, et al. Advances in Plant Epigenome Editing Research and Its Application in Plants[J]. International Journal of Molecular Sciences, 2023, 24(4): 3442. 65. Sayanova O, Smith M, Lapinskas P, et al. Expression of a borage desaturase cDNA containing an Nterminal cytochrome b5 domain results in the accumulation of high levels of Δ 6 -desaturated fatty acids in transgenic tobacco[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(8):4211–4216. 66. Schwender J, Goffman F, Ohlrogge J B, et al. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds[J]. Nature, 2004, 432(7018):779-782. 67. Singer S D, Chen G, Mietkiewska E, et al. Arabidopsis GPAT9 contributes to synthesis of intracellular glycerolipids but not surface lipids[J]. Journal of Experimental Botany, 2016, 67(15):4627-4638. 68. Shanlin Y. Isolation and expression analysis of a β-ketoacyl-acyl carrier protein synthase Ⅰ gene from Arachis hypogaea L[J]. Legume Genomics and Genetics, 2010, 1(3):11-17. 69. Shimada T, Takahashi H, Fukao Y, et al. A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana[J]. Plant Journal, 2008, 55(5):798-809. 70. Shen B, Allen W, Zheng P, et al. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize[J]. Plant Physiology,2010, 153:980-987. 71. Siloto R, Findlay K, Lopez-Villalobos A, et al. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis[J]. Plant Cell, 2006, 18(8):1961-1974. 72. Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278):17883. 73. Tzen J, Lie G, Huang A. Characterization of the charged components and their topology on the surface of plant seed oil bodies[J]. Journal of Biological Chemistry, 1992, 267(22):15626-15634. 74. Tao F, Zhu S, Fan J, et al. Cloning and sequence analysis of maize FAD2 gene[J]. Journal of Plant Physiology and Molecular Biology, 2006, 32(6):649-656. 75. Wang H W, Zhang B, Hao Y J, et al. The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants[J]. The Plant Journal, 2007, 52(4):716-729. 76. Wang L, Zhang M, Li M, et al. A telomere-to-telomere gap-free assembly of soybean genome. Molecular plant, 2023, 16(11):1711–1714. 77. Wang N, Ma J, Pei W, et al. A genome-wide analysis of the lysophosphatidate acyltransferase (LPAAT) gene family in cotton: organization, expression, sequence variation, and association with seed oil content and fiber quality[J]. BMC Genomics, 2017, 18(1):218. 78. Wang S, Liu S, Wang J, et al. Simultaneous changes in seed size, oil and protein content driven by selection of SWEET homologues during soybean domestication[J]. National science review, 2020,7(11):1776–1786. 79. Weiss S B, Kennedy E P, Kiyasu J Y. The enzymatic synthesis of triglycerides[J]. The Journal of Biological Chemistry, 1960, 235(1):40-44. 80. Wu J, Yu R, Wang H, et al. A large-scale genomic association analysis identifies the candidate causal genes conferring stripe rust resistance under multiple field environments. Plant biotechnology journal, 2021,19(1):177–191. 81. Wu X, Liu Z, Hu Z, et al. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed[J]. Journal of Integrative Plant Biology, 2014, 56(6):582-593. 82. Yusuf S, Sleight P, Pogue J, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients[J]. New England Journal of Medicine, 2000, 342(3):14553. 83. Yasuno R, Von Wettstein-Knowles P, Wada H. Identification and molecular characterization of the beta-ketoacyl-[acyl carrier protein] synthase component of the Arabidopsis mitochondrial fatty acid synthase[J]. Journal of Biological Chemistry, 2004, 279(9):8242-8251. 84. Yang C, Shen S, Zhan C, et al. Variation in a Poaceae-conserved fatty acid metabolic gene cluster controls rice yield by regulating male fertility. Nature communications, 2024,15(1):6663. 85. Yang M, Du C, Li M, et al. The transcription factors GmVOZ1A and GmWRI1a synergistically regulate oil biosynthesis in soybean[J]. Plant physiology,2025,197(2):485. 86. Yuan X, Jiang X, Zhang M, et al. Integrative omics analysis elucidates the genetic basis underlying seed weight and oil content in soybean. The Plant cell, 2024,36(6):2160–2175. 87. Zhang Z, Dunwell J M, Zhang Y M. An integrated omics analysis reveals molecular mechanisms that are associated with differences in seed oil content between Glycine max and Brassica napus[J]. BMC Plant Biology, 2018, 18(1):328. 88. Zhang Y, Bai Y, Wu G, et al. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. The Plant journal : for cell and molecular biology,2017, 91(4):714–724. 89. Zhao N, Zhang Y, Li Q, et al. Identification and expression of a stearoyl-ACP desaturase gene responsible for oleic acid accumulation in Xanthoceras sorbifolia seeds[J]. Plant Physiology and Biochemistry, 2015, 87:9-16. 90. Zhao J, Bi R, Li S, et al. Genome-wide analysis and functional characterization of Acyl-CoA: diacylglycerol acyltransferase from soybean identify GmDGAT1A and 1B roles in oil synthesis in Arabidopsis seeds. Journal of plant physiology, 2019,242:153019. 91. Zheng P, Allen W B, Roesler K, et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize[J]. Nature Genetics, 2008, 40(3):367-372. 92. Zeng X, Luo Y, Vu NCRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty. BMC plant biology, 2020,20(1):313. 93. Zhang D, Zhang H Y, Hu Z B, et al. Artificial selection on GmOLEO1 contributes to the increase in seed oil during soybean domestication[J]. PLoS Genetics, 2019, 15(7):1008267. 94. Zhang D, Zhang H, Hu Z, et al. Artificial selection on GmOLEO1 contributes to the increase in seed oil during soybean domestication. PLoS genetics, 2019,15(7):1008267. 95. Zaborowska A, Starzycki M, Femiak I, et al. Yellow lupine gene encoding stearoyl-ACP desaturase organization, expression and potential application[J]. Acta Biochimica Polonica, 2002, 49(1):29-42. 96. Zhang D, Zhao M, Li S, et al. Plasticity and innovation of regulatory mechanisms underlying seed oil content mediated by duplicated genes in the palaeopolyploid soybean[J]. Plant Journal, 2017,90(6):1120-1133. 97. Zhang J, Wang X, Lu Y, et al. Genome-wide Scan for Seed Composition Provides Insights into Soybean Quality Improvement and the Impacts of Domestication and Breeding[J]. Molecular plant, 2018,11(3) :460–472. 98. Zhang S, Hao D, Zhang S, et al. Genome-wide association mapping for protein, oil and water-soluble protein contents in soybean. Molecular genetics and genomics, 2021,296(1):91–102. |
中图分类号: | S33 |
开放日期: | 2027-06-13 |