中文题名: | 阳澄湖原产及“洗澡”中华绒螯蟹形态及微化学动态特征研究 |
姓名: | |
学号: | 2022813042 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 095134 |
学科名称: | 农学 - 农业 - 渔业发展 |
学生类型: | 硕士 |
学位: | 农学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 渔业生态环境监测与保护 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
完成日期: | 2024-04-01 |
答辩日期: | 2024-05-23 |
外文题名: | Study on Dynamical Characteristics of Morphology and Microchemistry for Genuine and “Bathed” Eriocheir sinensis from the Yangcheng Lake of China |
中文关键词: | |
外文关键词: | Eriocheir sinensis ; Yangcheng Lake ; geometric morphometrics ; mineral element ; stable isotope ; “bathed crab” |
中文摘要: |
中华绒螯蟹,又名河蟹、大闸蟹,隶属于节肢动物门(Arthropoda)、甲壳纲(Crustacea)、十足目(Decapoda)、方蟹科(Grapsiodea)、绒螯蟹属(Eriocheir),具有滋味鲜美、营养价值丰富、深受消费者青睐等特点,是我国重要的经济养殖水产品,2022年全国中华绒螯蟹的养殖产量已达81万吨。阳澄湖大闸蟹是中华绒螯蟹中最为著名的地理标志品牌,因其利润空间大且供不应求,市场经常出现“洗澡蟹”等使用普通蟹假冒阳澄湖大闸蟹,欺骗消费者的现象,这损害了地理标志产品的声誉、消费者的利益,扰乱了水产品市场秩序的正常运行。因此,采取科学的手段对阳澄湖原产蟹和“洗澡蟹”进行鉴别以确保其生产者和消费者的利益,维持产业的健康可持续发展至关重要。先前,已有不少研究基于几何形态测量学、矿质元素“指纹”和稳定同位素“指纹”对中华绒螯蟹进行产地和养殖模式鉴别,也有研究涉及阳澄湖原产蟹和“洗澡蟹”的区分,但是目前尚未有研究探索中华绒螯蟹在“洗澡”这一过程中的产地特征的动态变化。所以,本论文将从中华绒螯蟹的背甲形态、第三步足微化学“指纹”角度分析“洗澡蟹”的产地特征变化,为阳澄湖大闸蟹和其他地理标志产品的保护提供更详实的理论支撑。本论文的主要研究结果如下: 1. 本研究基于地标点法选取中华绒螯蟹背甲上35个地标点,比较分析了“洗澡”式养殖第0、7、14、30天时昆山池塘和阳澄湖湖区的原产蟹与“洗澡蟹”的背甲形态变化。结果显示,“洗澡”式养殖不同阶段的中华绒螯蟹的背甲形态存在差异,“洗澡蟹”会逐渐缩小与原产蟹的形态差异,但在“洗澡”一个月后原产蟹与“洗澡蟹”仍存在形态差异,对原产蟹与“洗澡蟹”判别准确率仍可达100%,“洗澡蟹”不会具有原产蟹的形态特征。 2. 使用电感耦合等离子体质谱仪测定中华绒螯蟹第三步足整体组织的矿质元素并对其比较分析,发现“洗澡”式养殖一个月前后“洗澡蟹”与原产蟹的元素含量均存在显著差异。昆山池塘和阳澄湖湖区的“洗澡蟹”在“洗澡”过程中,元素特征都会发生变化,但其元素特征与原产蟹始终存在差异,“洗澡”式养殖会影响非阳澄湖蟹的元素特征,但不会使其具有原产蟹的产地元素特征。 3. 使用稳定同位素比质谱仪对阳澄湖原产及“洗澡”中华绒螯蟹第三步足内C、N同位素的分析表明“洗澡”一定程度上影响了中华绒螯蟹的同位素组成,使其与原产蟹趋近,但是“洗澡蟹”不会具有原产蟹的产地特征。稳定同位素技术具有进行产地溯源和养殖模式鉴别的潜力,但仅使用C、N同位素开展研究具有一定的局限性,还需结合更多的溯源指标和溯源方式才能更好地进行地理标志产品的保护。 |
外文摘要: |
Chinese mitten crab (Eriocheir sinensis), also known as river crab and hairy crab, belongs to Arthropoda, Crustacea, Decapoda, Grapsiodea and Eriocheir. It has the characteristics of delicious taste, rich nutritional value and favored by consumers. It is an important economic aquaculture aquatic product in China. In 2022, the breeding output of Chinese mitten crabs in China has reached 810,000 tons. Yangcheng Lake hairy crab is the most famous geographical indication brand in Chinese mitten crabs. Because of its large profit margin and insufficient supply, the sale of fake Yangcheng Lake hairy crabs (especially “bathed crabs”) could be frequently found in market. This situation damages the reputation of the geographical indication product and the interests of consumers, as well as disrupts the normal operation of the aquatic product market order. Therefore, it is very important to adopt scientific methods to identify the genuine crabs and “bathed crabs” in Yangcheng Lake to ensure the interests of their producers and consumers, and to maintain the healthy and sustainable development of the crab industry. Previously, many studies have identified the origin locations and culture modes of E. sinensis based on approaches of geometric morphometry, mineral element “fingerprint” and stable isotope “fingerprint”. Several studies have also involved the distinction between genuine and “bathed crabs” of the Yangcheng Lake. However, there is no research to exactly explore the dynamic changes on morphology and chemistry of “bathed crabs” during the process of “bathing” in the Yangcheng Lake origin water area. Therefore, this paper will monitor the changes of morphology and chemistry characteristics for “bathed crabs” by their carapace morphology and microchemical “fingerprint” of the third pereiopod. It is hoped that the present study can provide more detailed theoretical support for the protection of genuine Yangcheng Lake hairy crabs and other geographical indication products. The main results of this thesis are as follows: 1. In this study, based on the landmark-based geometric morphometrics, 35 landmarks on the carapace of Chinese mitten crabs were selected to compare and analyze the morphological changes of the carapace of genuine crabs and “bathed crabs” in Kunshan high-standard modified aquaculture ponds and Yangcheng Lake area at the 0, 7, 14 and 30 days of one-month “bathing” culture period. The results showed that there were differences in the carapace morphology of E. sinensis at different stages of “bathing” culture. The morphological differences between “bathed crabs” and genuine crabs were gradually narrowed. However, after one-month of “bathing”, there were still morphological differences between genuine crabs and “bathed crabs”. The accuracy of discrimination between genuine crabs and “bathed crabs” was still 100 %. The “bathed crabs” could not own the morphological characteristics of genuine crabs. 2. Inductively coupled plasma mass spectrometry (ICP-MS) was comparatively used to determine the mineral elements in the whole tissue of the third pereiopod of genuine crabs and “bathed crabs” in Kunshan high-standard modified aquaculture ponds and Yangcheng Lake area. It was found that there were significant differences in the element contents between the “bathed crabs” and the genuine crabs before and after one month of “bathing” culture. Although the element characteristics of “bathed crab” during the “bathing” process in Kunshan high-standard modified aquaculture ponds and Yangcheng Lake area, their element characteristics were still significantly different from those of genuine crabs. “Bathing” culture will affect the element characteristics of non-Yangcheng Lake crabs to some extent, but it would not make them to own the same element characteristics of genuine crabs. 3. Isotope Ratio Mass Spectrometry (IRMS) was used to analyze the C and N isotopes in the third pereiopod of the genuine and “bathed” E. sinensis in Kunshan high-standard modified aquaculture ponds and Yangcheng Lake area. The results showed that “bathing” culture affected the isotope ratios of the “bathed” crabs to a certain extent and made the isotopic profiles close to those of the genuine crabs. Nevertheless, “bathed crabs” did still not own the similar characteristics of the genuine crabs. Stable isotope approach has the potential to trace the genuine crabs and identify “bathed” crabs. However, only using C and N isotopes to carry out the identification has certain limitations. It is necessary to combine more traceability indicators and traceability approaches to contribute a better protecting geographical indication products. |
参考文献: |
[1] 白明, 杨星科, 李静, 等. 几何形态学:关于形态定量比较的科学计算工具[J]. 科学通报, 2014, 59(10): 887-894. [2] 白明, 杨星科. 几何形态测量法在生物形态学研究中的应用[J]. 昆虫知识, 2007, (1): 143-147. [3] 白淑艳, 王鹏, 陈中祥, 等. 北方稻蟹共作模式下中华绒螯蟹产地的判别[J]. 中国食品学报, 2022, 22(12): 303-312. [4] 白淑艳, 王钟强, 汤施展, 等. 稳定同位素比值及矿物元素分析技术在水产品溯源研究中的应用进展[J]. 水产学杂志, 2022, 35(6): 105-112. [5] 白弈非. 做好“土特产”文章,打造乡土特色品牌[N]. 人民日报, 2024-03-20(005). [6] 才让卓玛, 赵云涛, 章超桦, 等. 基于无机元素分析的香港牡蛎产地溯源技术初探[J]. 广东海洋大学学报, 2015, 35(3): 94-99. [7] 陈秋生, 张强, 刘烨潼, 等. 矿质元素指纹技术在植源性特色农产品产地溯源中的应用研究进展[J]. 天津农业科学, 2014, 20(6): 4-8. [8] 陈新军, 方舟, 苏杭, 等.几何形态测量学在水生动物中的应用及其进展[J]. 水产学报, 2013, 37(12): 1873-1885. [9] 戴红君, 孙艺伟, 任妮, 等. 我国中华绒螯蟹产业现状调查及发展对策分析[J]. 江苏农业科学, 2021, 49(18): 248-252. [10] 堵南山. 中华绒螯蟹的同属种类及其英文名称[J]. 水产科技情报, 1998, (3): 12-13+17. [11] 杜晓宁, 张鹏帅, 雷雯, 等. 稳定同位素技术在我国食品安全检测领域的应用进展[J]. 同位素, 2019, 32(3): 231-243. [12] 郭波莉, 魏益民, 潘家荣. 同位素指纹分析技术在食品产地溯源中的应用进展[J]. 农业工程学报, 2007, (3): 284-289. [13] 郭宏慧, 杨方, 高沛, 等. 不同养殖水域中华绒螯蟹滋味差异分析[J]. 渔业科学进展, 2022, 43(2): 215-227. [14] 郭婕敏, 林光辉. 不同生境红树林青蟹的稳定同位素组成及其产地溯源意义[J]. 同位素, 2014, 27(1): 1-7. [15] 何杰, 徐跑, 朱健. 南北水系中华绒螯蟹形态差异分析[J]. 海洋湖沼通报, 2009, (3): 79-86. [16] 侯刚, 王学锋, 朱立新, 等. 基于几何形态测量学的4种金线鱼矢耳石识别研究[J]. 海洋与湖沼, 2014, 45(3): 496-503. [17] 胡冉冉, 邢冉冉, 王楠, 等. 基于DNA条形码技术的海参物种鉴定[J]. 食品工业科技, 2019, 40(10): 145-151. [18] 姜晓东, 成永旭, 潘建林, 等. 基于地标点几何形态测量法区分不同水系野生中华绒螯蟹[J]. 中国水产科学, 2019, 26(6): 1116-1125. [19] 姜晓东, 成永旭, 潘建林, 等. 中国长江与荷兰野生中华绒螯蟹的头胸甲形态特征比较[J]. 淡水渔业, 2020, 50(1): 38-43. [20] 寇红岩, 周萌, 黄燕华, 等. 矿物质铜元素对水产动物生长和免疫的影响[J]. 饲料研究, 2020, 43(7): 155-158. [21] 李丽梅, 李红艳, 郑振山, 等. 基于矿质元素分析的河北鸭梨产地溯源[J]. 食品安全质量检测学报, 2022, 13(6): 2004-2011. [22] 刘雯雯, 陈岩, 杨慧, 等. 稳定同位素及矿物元素分析在谷物产地溯源中应用的研究进展[J]. 食品科学, 2019, 40(13): 340-348. [23] 卢文喜, 李俊, 于福荣, 等. 逐步判别分析法在筛选水质评价因子中的应用[J]. 吉林大学学报(地球科学版), 2009, 39(1): 126-130. [24] 骆仁军, 姜涛, 陈修报, 等. 基于稳定同位素和矿质元素的中华绒螯蟹产地鉴别潜力评价[J]. 食品科学, 2020, 41(2): 298-305. [25] 马冬红, 王锡昌, 刘利平, 等. 稳定氢同位素在出口罗非鱼产地溯源中的应用[J]. 食品与机械, 2012, 28(1): 5-7+25. [26] 农业部渔业渔政管理局编制. 中国渔业统计年鉴, 2023[M]. 北京: 中国农业出版社, 2023: 24-34. [27] 潘静, 沈建忠, 孙林丹, 等. 长江、赣江鲢幼鱼耳石核区元素指纹特征分析及其在群体识别中的应用研究[J]. 长江流域资源与环境, 2018, 27(12): 2740-2746. [28] 钱丽丽, 乔治, 左锋, 等. 基于电子鼻技术的地理标志大米产地溯源研究[J]. 农产品加工(学刊), 2014, (24): 38-41. [29] 邵佳莉, 张建科, 吴远红. 加密二维码在海产品质量溯源系统中的应用[J]. 现代食品, 2023, 29(19): 92-96 [30] 邵伟杰. 农产品地理标志保护的意义及其路径[J]. 齐鲁学刊, 2009, (1): 105-110. [31] 唐静, 薛竣仁, 刘洪波, 等. 长江水系中华绒螯蟹背甲几何形态的产地差异[J]. 水产科学, 2023, 42(5): 775-784. [32] 唐静, 薛竣仁, 刘洪波, 等. 中华绒螯蟹螯足长节产地差异的几何形态测量学研究[J]. 安徽农业大学学报, 2023, 50(5): 802-808. [33] 唐甜甜, 解新方, 任雪, 等.稳定同位素技术在农产品产地溯源中的应用[J]. 食品工业科技, 2020, 41(8): 360-367. [34] 王潇, 韩刚, 张小军, 等. 不同水域中华绒螯蟹雄体营养成分及风味成分差异性研究[J]. 大连海洋大学学报, 2019, 34(5): 688-696. [35] 王玉堃, 黄建生, 戴芳群, 等. 黄、渤海小黄鱼耳石元素指纹分析及其在种群补充群体识别中的应用[J]. 海洋学报, 2016, 38(6): 32-40 [36] 韦苏航, 钮冰, 陈沁. 水产品产地溯源与真伪鉴别技术研究进展[J]. 食品安全质量检测学报, 2023, 14(13): 93-101. [37] 魏益民, 郭波莉, 魏帅, 等. 食品产地溯源及确证技术研究和应用方法探析[J]. 中国农业科学, 2012, 45(24): 5073-5081. [38] 吴继法, 赵艳芳. 基于铅稳定同位素比值和线性判别分析相结合的刺参产地溯源研究[J]. 食品科技, 2023, 48(12): 135-140. [39] 薛竣仁, 姜涛, 陈修报, 等. 阳澄湖原产及“洗澡”中华绒螯蟹背甲的几何形态分析[J]. 水生生物学报, 2020, 44(3): 587-594. [40] 薛竣仁, 刘洪波, 姜涛, 等. 元素与稳定同位素微化学分析在水产品产地溯源中的应用[J]. 渔业科学进展, 2022, 43(1): 15-23. [41] 颜静, 熊亚波, 刘继, 等. 基于农产品无损检测的产地溯源技术的研究进展[J]. 食品工业科技, 2014, 35(11): 396-400. [42] 杨红珍, 蔡小娜, 李湘涛, 等. 几何形态计量学在昆虫自动鉴定中的应用与展望[J]. 四川动物, 2013, 32(3): 464-469. [43] 杨洁, 杨钊. 水产品溯源中的同位素技术研究进展[J]. 化学分析计量, 2017, 26(4): 112-117. [44] 杨文斌, 苏彦平, 刘洪波, 等. 长江水系3个湖泊中华绒蟹形态及元素“指纹”特征[J]. 中国水产科学, 2012, 19(1): 84-93. [45] 张莉. 地理标识保护带动百亿元产值助力区域经济发展腾飞[J]. 中国对外贸易, 2021(10): 36-37. [46] 张申增, 麦广铭, 陈志劼, 等. 红鳍笛鲷和紫红笛鲷种类和群体的矢耳石地标点法识别[J]. 广东海洋大学学报, 2020, 40(2): 35-43. [47] 张勇, 王督, 李雪, 等. 基于近红外光谱技术的农产品产地溯源研究进展[J]. 食品安全质量检测学报, 2018, 9(23): 6161-6166. [48] 张玉敏. 地理标志的性质和保护模式选择[J]. 法学杂志, 2007, (6): 6-11. [49] 张政权, 黄冬梅, 蔡友琼, 等. 矿物元素结合稳定同位素的中华绒螯蟹产地溯源[J]. 食品科学, 2020, 41(24): 125-130. [50] 赵鉴, 苏彦平, 刘洪波, 等. 不同/相同水系中华绒螯蟹元素“指纹”的产地差异性[J]. 核农学报, 2014, 28(7): 1253-1260. [51] 郑朝臣, 姜涛, 骆仁军, 等. 不同产地中华绒螯蟹形态差异的地标点法分析[J]. 水产学报, 2017, 41(12): 1896-1907. [52] Adams D C, Rohlf F J, Slice D E. Geometric morphometrics: ten years of progress following the ‘revolution’[J]. Italian Journal of Zoology, 2004, 71(1): 5-16. [53] Adrian B, Smith H F, Hutchison J H, et al. Geometric morphometrics and anatomical network analyses reveal ecospace partitioning among geoemydid turtles from the Uinta Formation, Utah[J]. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology, 2022, 305(6): 1359-1393. [54] Bai S Y, Wang S H, Qin D L, et al. Elemental analysis of wild Eriocheir sinensis: Determining the geographic origin and human health risk assessment[J]. Quality Assurance and Safety of Crops & Foods, 2023, 15(4): 133-142. [55] Bakhshalizadeh S, Tchaikovsky A, Bani A, et al. Using fin ray chemistry to discriminate hatchery reared juvenile age-0 Persian sturgeons by their origin in the Southern Caspian Sea region using split stream ICP-MS/MC ICP-MS[J]. Fisheries Research, 2021, 243: 106093. [56] Baranov S G. Use of a geometric morphometric method to determine the developmental stability of Betula pendula Roth[J]. Biology Bulletin, 2017, 44(5): 547–551. [57] Bazzi M, Campione N E, Kear B P, et al. Feeding ecology has shaped the evolution of modern sharks[J]. Current Biology, 2021, 31(23): 5138-5148. [58] Braga R, Crespi-Abril A C, Van der Molen S, et al. Analysis of the morphological variation of Doryteuthis sanpaulensis (Cephalopoda: Loliginidae) in Argentinian and Brazilian coastal waters using geometric morphometrics techniques[J]. Marine Biodiversity, 2017, 47(3): 755–762. [59] Bremmers H J. Trade effects of geographical indications[J]. Journal of Consumer Protection and Food Safety, 2015, 10(s1): S53-S55. [60] Caio S N, Nícholas F C, João A F P, et al. Elucidating taxonomic problems of two closely related freshwater prawn lineages of the genus Macrobrachium (Caridea: Palaemonidae): A geometric morphometrics approach[J]. Zoologischer Anzeiger, 2023, 304: 73-83. [61] Campana S E, Chouinard G A, Hanson J M, et al. Otolith elemental fingerprints as biological tracers of fish stocks[J]. Fisheries Research, 2000, 46(1-3): 343-357. [62] Carter J F, Tinggi U, Yang X, et al. Stable isotope and trace metal compositions of Australian prawns as a guide to authenticity and wholesomeness[J]. Food Chemistry, 2015, 170: 241–248. [63] Chen D W, Zhang M, Shrestha S, Compositional characteristics and nutritional quality of Chinese mitten crab (Eriocheir sinensis)[J]. Food Chemistry, 2007, 103(4): 1343-1349. [64] Cheng H F, Wu H R, Liang F, et al. Comparison of the nutritional quality of three edible tissues from precocious and normal adult female Chinese mitten crabs (Eriocheir sinensis)[J]. Journal of Aquatic Food Product Technology, 2021, 30(1): 49–61. [65] Chifor C, Arion I D, Isarie V I, et al. A Systematic literature review on European food quality Schemes in Romania[J]. Sustainability, 2022, 14(23): 16176. [66] Curtis J M, Stunz G W, Overath R D, et al. Otolith chemistry can discriminate signatures of hatchery-reared and wild spotted seatrout[J]. Fisheries Research, 2014, 153: 31-40. [67] Da Silva F O, Fabre A C, Savriama Y, et al. The ecological origins of snakes as revealed by skull evolution[J]. Nature Communications, 2018, 9: 376. [68] Davis J L D, Young-Williams A C, Aguilar R, et al. Differences between hatchery-raised and wild blue crabs: Implications for stock enhancement potential[J]. Transactions of the American Fisheries Society, 2004, 133(1): 1–14. [69] Ding L, Guo Z, Hou Y, et al. KECA for identifying the habitats of Chinese mitten crabs (Eriocheir Sinensis) based on aroma analysis[C]. 7th International Conference on Control Automation and Information Sciences (ICCAIS), 2018: 401–404. [70] Dong X, Han C, Li L. Stable isotope ratio analysis for the authentication of sea urchin (Mesocentrotus nudus) from different culture areas in the North Yellow Sea, China[J]. Aquaculture, 2022, 561: 738637. [71] Durate B, Durate I A, Cacador I, et al. Elemental fingerprinting of thornback ray (Raja clavata) muscle tissue as a tracer for provenance and food safety assessment[J]. Food Control, 2022, 133: 108592. [72] Duvaleix S, Emlinger C, Gaigné C, et al. Geographical indications and trade: Firm-level evidence from the French cheese industry[J]. Food Policy, 2021, 102: 102118. [73] Farre M, Lombarte A, Tuset V M, et al. Shape matters: relevance of carapace for brachyuran crab invaders[J]. Biological Invasions, 2021, 23(2): 461–475. [74] Fonseca V F, Duarte I A, Matos A R, et al. Fatty acid profiles as natural tracers of provenance and lipid quality indicators in illegally sourced fish and bivalves[J]. Food Control, 2022, 134: 108735. [75] Fox N S, Veneracion J J, Blois J L. Are geometric morphometric analyses replicable? Evaluating landmark measurement error and its impact on extant and fossil Microtus classification[J]. Ecology and Evolution, 2020, 10(7): 3260–3275. [76] Gong Y, Li Y K, Chen X J, et al. Potential use of stable isotope and fatty acid analyses for traceability of geographic origins of jumbo squid (Dosidicus gigas)[J]. Rapid Communications in Mass Spectrometry, 2018, 32(7): 583-589. [77] Gopi K, Mazumder D, Sammut J, et al. Combined use of stable isotope analysis and elemental profiling to determine provenance of black tiger prawns (Penaeus monodon)[J]. Food Control, 2019, 95: 242-248. [78] Gopi K, Mazumder D, Sammut J, et al. Determining the provenance and authenticity of seafood: A review of current methodologies[J]. Trends in Food Science & Technology, 2019, 91: 294-304. [79] Haye P A, Segovia N I, Vera R, et al. Authentication of commercialized crabs-meat in Chile using DNA Barcoding[J]. Food Control, 2012, 25(1): 239–244. [80] Ibáñez A L. Fish scale shape variation by year and by geographic location, could scales be useful to trace fish? A case study on the Gulf of Mexico[J]. Fisheres Research, 2014, 156: 34–38. [81] Iguchi J, Takashima Y, Namikoshi A, et al. Origin identification method by multiple trace elemental analysis of short-neck clams produced in Japan, China, and the Republic of Korea[J]. Fisheries Science, 2013, 79(6): 977-982. [82] Kang X M, Zhao Y F, Shang D R, et al. Elemental analysis of sea cucumber from five major production sites in China: A chemometric approach[J]. Food Control, 2018, 94: 361-367. [83] Kenthao A, Jearranaiprepame P. Ecomorphological diversification of some barbs and carps (Cyprininae, Cyprinidae) in the Lower Mekong Basin of Thailand[J]. Zoology, 2020, 143: 125830. [84] Kim H, Kumar K S, Shin K H. Applicability of stable C and N isotope analysis in inferring the geographical origin and authentication of commercial fish (Mackerel, Yellow Croaker and Pollock)[J]. Food Chemistry, 2015, 172: 523-527. [85] Kim S K, Yoon S C, Youn S H, et al. Morphometric changes in the cultured starry flounder, Platichthys stellatus, in open marine ranching areas[J]. Journal of Environmental Biology, 2013, 34(2): 197-204. [86] Kishida M, Kanaji Y, Xie S G, et al. Ecomorphological dimorphism of juvenile Trachurus japonicus in Wakasa Bay, Japan[J]. Environmental Biology of Fishes, 2011, 90(3): 301-315. [87] Lai J, Zhao L, Fan Y, et al. Using whole body elemental fingerprint analysis to distinguish different populations of Coilia nasus in a large river basin[J]. Biochemical Systematics and Ecology, 2015, 60: 249-257. [88] Li C Y, Gao J M, Ge L Q, et al. Do geographical indication products promote the growth of the agricultural economy? An empirical study based on meta-analysis[J]. Sustainability, 2023, 15(19): 14428. [89] Li L, Boyd C E, Odom J, Identification of Pacific white shrimp (Litopenaeus vannamei) to rearing location using elemental profiling[J]. Food Control, 2014, 45: 70-75. [90] Li L, Boyd C E, Sun Z L. Authentication of fishery and aquaculture products by multi-element and stable isotope analysis[J]. Food Chemistry, 2016, 194: 1238-1244. [91] Li L, Ren W, Dong S, et al. Investigation of geographic origin, salinity and feed on stable isotope profile of Pacific white shrimp (Litopenaeus vannamei)[J]. Aquaculture Research, 2018, 49(2): 1029-1036. [92] Lishchenko F, Jones J B. Application of shape analyses to recording structures of marine organisms for stock discrimination and taxonomic purpose[J]. Frontiers in Marine Science, 2021, 8: 667183. [93] Liu Y, Zhang X, Li Y, et al. The application of compound-specific isotope analysis of fatty acids for traceability of sea cucumber (Apostichopus japonicus) in the coastal areas of China[J]. Journal of the Science of Food and Agriculture, 2017, 97(14): 4912-4921. [94] Liu Z, Zhang Z H, Hao Y D, et al. Origin and farming pattern authentication of wild-caught, coast-pond and freshwater farming white shrimp (Litopenaeus vannamei) in Chinese market using multi-stable isotope analysis of tail shell[J]. Food Control, 2023, 148: 109646. [95] Luo R J, Jiang T, Chen X B, et al. Determination of geographic origin of Chinese mitten crab (Eriocheir sinensis) using integrated stable isotope and multi-element analyses[J]. Food Chemistry, 2019, 274: 1-7. [96] Maria O, Sergio G, Emanuela Z, et al. Authentication of European sea bass according to production method and geographical origin by light stable isotope ratio and rare earth elements analyses combined with chemometrics[J]. Italian Journal of Food Safety, 2019, 8(1): 7872. [97] Meng Y, Wang G, Xiong D, et al. Geometric morphometric analysis of the morphological variation among three lenoks of genus Brachymystax in China[J]. Pakistan Journal of Zoology, 2018, 50(3): 885-95. [98] Miguel C L, Tânia P, Fernando R, et al. Seafood traceability: current needs, available tools, and biotechnological challenges for origin certification[J]. Trends in Biotechnology, 2015, 33(6): 331-336 [99] Molkentin J, Lehmann I, Ostermeyer U, et al. Traceability of organic fish-Authenticating the production origin of salmonids by chemical and isotopic analyses[J]. Food Control, 2015, 53: 55-66. [100] Ortea I, Galla R. Investigation of production method, geographical origin and species authentication in commercially relevant shrimps using stable isotope ratio and/or multi-element analyses combined with chemometrics: An exploratory analysis[J]. Food Chemistry, 2015, 170: 145-153. [101] Pamukcu H, Sarac O, Aytugar S, et al. The effects of local food and local products with geographical indication on the development of tourism gastronomy[J]. Sustainability, 2021, 13(12): 6692. [102] Perini M, Camin F, Bontempo L, et al. Multielement (H, C, N, O, S) stable isotope characteristics of lamb meat from different Italian regions[J]. Rapid Communications in Mass Spectrometry, 2009, 23(16): 2573-2585. [103] Rohlf F J. Bias and error in estimates of mean shape in geometric morphometric[J]. Journal of Human Evolution, 2003, 44(6): 665–683. [104] Schroeder R, Schwingel P R, Pinto E, et al. Stock structure of the Brazilian sardine Sardinella brasiliensis from Southwest Atlantic Ocean inferred from otolith elemental signatures[J]. Fisheries Research, 2022, 248: 106192. [105] Schroeder V, De Leaniz C G. Discrimination between farmed and free-living invasive salmonids in Chilean Patagonia using stable isotope analysis[J]. Biological Invasions, 2011, 13(1): 203-213. [106] Tulli F, Balenovic I, Messina M, et al. Biometry traits and geometric morphometrics in sea bass (Dicentrarchus labrax) from different farming system[J]. Italian Journal of Animal Science, 2009, 8(s2): 881-883. [107] Turchini G M, Quinn G P, Jones P L, et al. Traceability and discrimination among differently farmed fish: A case study on Australian murray cod[J]. Journal of Agricultural and Food Chemistry, 2008, 57(1): 274-281. [108] Varra M O, Husakova L, Patocka J, et al. Multi-element signature of cuttlefish and its potential for the discrimination of different geographical provenances and traceability[J]. Food Chemistry, 2021, 356: 129687. [109] Wang X F, Wang L F, Lv S L, et al. Stock discrimination and connectivity assessment of yellowfin seabream (Acanthopagrus latus) in northern South China Sea using otolith elemental fingerprints[J]. Saudi Journal of Biological Sciences, 2018, 25(6): 1163-1169. [110] Wang X, Zheng R X, Zhang D M, et al. Effects of different stocking densities on growth performance, nutritional quality and economic benefit of juvenile female Chinese mitten crabs (Eriocheir sinensis) in rice-crabs culture systems[J]. Aquaculture, 2022, 553: 738111. [111] Wang Y M V, Wan A H L, Lock E J, et al. Know your fish: A novel compound-specific isotope approach for tracing wild and farmed salmon[J]. Food Chemistry, 2018, 256: 380-389. [112] Wu H R, Ge M T, Chen H F, et al. Comparison between the nutritional qualities of wild-caught and rice-field male Chinese mitten crabs (Eriocheir sinensis)[J]. LWT- Food Science and Technology, 2020, 117: 108663. [113] Xu Y J, Peng K X, Jiang F, et al. Geographical discrimination of swimming crabs (Portunus trituberculatus) using stable isotope and multi-element analyses[J]. Journal of Food Composition and Analysis, 2022, 105: 104251. [114] Xue J R, Jiang T, Chen X B, et al. Multi-mineral element profiles in genuine and "bathing" cultured Chinese mitten crabs (Eriocheir sinensis) in Yangcheng Lake, China[J]. Fishes, 2022a, 7(1): 11. [115] Xue J R, Jiang T, Chen X B, et al. Multi-mineral fingerprinting analysis of the Chinese mitten crab (Eriocheir sinensis) in Yangcheng Lake during the year-round culture period[J]. Food Chemistry, 2022b, 390: 133167. [116] Xue, J.R, Jiang T, Chen X B, et al. Shape variation in the carapace of Chinese mitten crabs (Eriocheir sinensis H. Milne Edwards, 1853) in Yangcheng Lake during the year-long culture period[J]. European Zoology Journal, 2022c, 89(1): 210–221. [117] Xue J R, Jiang T, Chen X B, et al. Stable isotopic fingerprints of genuine and “bathing” cultured Chinese mitten crabs (Eriocheir sinensis) in Yangcheng Lake, China[J]. Microchemical Journal, 2024, 199:110045. [118] Ye H.P, Yang J, Xiao G S, et al. A comprehensive overview of emerging techniques and chemometrics for authenticity and traceability of animal-derived food[J]. Food Chemistery, 2023, 402: 134216. [119] Yokoyama T, Tokuda M, Yamazaki T. Possibility of geographical traceability of Lucensosergia lucens shrimp based on element content measured through inductively coupled plasma mass spectrometry[J]. Fisheries Science, 2021, 87(6): 893-903. [120] Zelditch M, Bookstein F L. Morphometric tools for landmark data: Geometry and Biology[J]. BioScience, 1998, 48(10): 855+857-858. [121] Zhang X F, Cheng J P, Han D M, et al. Geographical origin traceability and species identification of three scallops (Patinopecten yessoensis, Chlamys farreri, and Argopecten irradians) using stable isotope analysis[J]. Food Chemistry, 2019, 299: 125107. [122] Zhao H Y, Zhang S L. Effects of sediment, seawater, and season on multi-element fingerprints of Manila clam (Ruditapes philippinarum) for authenticity identification[J]. Food Control, 2016, 66: 62-68. [123] Zheng C C, Jiang T., Luo R J, et al. Geometric morphometric analysis of the Chinese mitten crabs Eriocheir sinensis: A potential approach for geographical origin authentication[J]. North American Journal of Fisheries Management, 2021, 41(4): 891–903. |
中图分类号: | S96 |
开放日期: | 2024-06-12 |