- 无标题文档
查看论文信息

中文题名:

 四种杀菌剂对小麦赤霉病菌(Fusarium graminearum)生物活性及产毒素影响的研究    

姓名:

 赵婕    

学号:

 2018802168    

保密级别:

 秘密    

论文语种:

 chi    

学科代码:

 095104    

学科名称:

 农学 - 农业推广 - 植物保护    

学生类型:

 硕士    

学位:

 农业硕士    

学校:

 南京农业大学    

院系:

 植物保护学院    

专业:

 资源利用与植物保护(专业学位)    

研究方向:

 杀菌剂毒理与抗药性    

第一导师姓名:

 侯毅平    

第一导师单位:

 南京农业大学    

完成日期:

 2020-06-18    

答辩日期:

 2020-05-26    

外文题名:

 Effects of Four Fungicides on the Biological Activity and Toxin Production of Fusarium graminearum    

中文关键词:

 小麦赤霉病菌 ; 生物活性 ; 毒素 ; 复配制剂    

外文关键词:

 Fusarium graminearum ; Bioactivity ; Toxin ; Mixture    

中文摘要:

小麦赤霉病是由禾谷镰孢菌(Fusarium graminearum Schw.)引起的一种发生在禾谷类作物上的真菌病害,这种病菌会在小麦穗粒中积累真菌毒素,能同时造成产量和品质的受损,严重危害了我国粮食的安全。近年来小麦赤霉病的流行范围和发病程度越来越严重,然而单一高频的使用某种杀菌剂会导致病原菌产生抗药性从而使防治效果下降。现今防治小麦赤霉病的药剂匮乏,所以需要筛选新型杀菌剂用于小麦赤霉病的防治。本文分别建立了小麦赤霉病菌对肟菌酯、氯啶菌酯、丙硫菌唑和氯氟醚菌唑的敏感性基线,测定了其生物活性和对毒素的影响,筛选了肟菌酯、氯啶菌酯分别和丙硫菌唑、氯氟醚菌唑复配的增效配方。

采用菌丝生长速率法分别测定了97株、97株、95株和92株小麦赤霉病菌对肟菌酯、氯啶菌酯、丙硫菌唑和氯氟醚菌唑的敏感性并建立了敏感性基线,EC50值分布范围分别为0.0124~3.5828 μg/mL、0.0107~2.8058 μg/mL、0.2105~2.9663 μg/mL和0.0375~0.5145 μg/mL,平均EC50值分别为0.4147 ± 0.0792 μg/mL、0.2541 ± 0.0597 μg/mL、1.0429 ± 0.0585 μg/mL和0.1872 ± 0.0122 μg/mL。采用孢子萌发法分别测定了肟菌酯和氯啶菌酯对92株、97株小麦赤霉病菌孢子萌发的EC50值,EC50分布范围分别为0.0914~4.2542 μg/mL和0.1203~1.6763 μg/mL,平均EC50值分别为0.5472 ± 0.1177 μg/mL和0.4185 ± 0.0520 μg/mL。

四种杀菌剂对小麦赤霉病菌生物活性研究,结果表明:肟菌酯、氯啶菌酯、丙硫菌唑和氯氟醚菌唑在浓度分别为50 μg/mL、25 μg/mL、10 μg/mL、2.5 μg/mL时可抑制小麦赤霉病菌孢子的产量;在浓度分别为50 μg/mL、25 μg/mL、1 μg/mL、0.25 μg/mL时均对小麦赤霉病菌细胞核的分布和细胞壁的形成无影响;肟菌酯和氯啶菌酯在浓度分别为0.5 μg/mL和0.25 μg/mL时可使小麦赤霉病菌呼吸速率下降,但对菌丝形态无影响;丙硫菌唑和氯氟醚菌唑在浓度分别为5 μg/mL和2.5 μg/mL时能使小麦赤霉病菌菌丝弯曲,分支增多;四种药剂分别在浓度为50 μg/mL、25 μg/mL、10 μg/mL、20?μg/mL时可破坏细胞膜的完整性,使胞内电解质外渗,甚至使菌丝细胞内部细胞器降解,使细胞完整性被破坏,出现空泡化。500 μg/mL的肟菌酯和氯啶菌酯对小麦赤霉病表现出良好的防效,保护和治疗作用均可达到60%以上,200 μg/mL的丙硫菌唑和氯氟醚菌唑对小麦的防治效果均可达到70%以上。肟菌酯、丙硫菌唑和氯氟醚菌唑对小麦生长无安全性隐患;氯啶菌酯在浓度为1000 μg/mL时能显著降低小麦的株高和鲜重,对小麦的生长存在安全性隐患。

测定了肟菌酯、氯啶菌酯、丙硫菌唑和氯氟醚菌唑对小麦赤霉病菌产毒素水平的影响,结果表明:肟菌酯在浓度为0.5 μg/mL或50 μg/mL时均可刺激小麦赤霉病菌毒素的产生;氯啶菌酯在浓度0.25 μg/mL或25 μg/mL时对小麦赤霉病菌毒素的产量无显著影响;丙硫菌唑在浓度为10 μg/mL时可抑制小麦赤霉病菌毒素的产量;氯氟醚菌唑在浓度为0.25 μg/mL和2.5 μg/mL时均可抑制小麦赤霉病菌毒素的产量。

在离体条件下测定了肟菌酯分别与丙硫菌唑和氯氟醚菌唑,氯啶菌酯分别与丙硫菌唑和氯氟醚菌唑,混配使用时对小麦赤霉病菌菌丝生长的抑制效果,结果表明肟菌酯与丙硫菌唑比例为1:1时效果最好,增效系数(SR值)为5.5432;肟菌酯与氯氟醚菌唑比例为2:1其SR值较大为2.8197;氯啶菌酯与丙硫菌唑在比例为1:1时SR值2.6549,此比例下EC50值最小为0.1325?μg/mL;而氯啶菌酯与氯氟醚菌唑复配没有增效的配方。继而测定了几个增效配方在使用时对小麦赤霉病菌产毒素水平的影响,30 μg/mL的肟菌酯与丙硫菌唑(1:1)、20 μg/mL的肟菌酯与氯氟醚菌唑(1:1)、25?μg/mL的肟菌酯与氯氟醚菌唑(2:1)、0.45 μg/mL和45 μg/mL的氯啶菌酯与丙硫菌唑(1:1)均可有效降低毒素的产生,抑制产毒小体的形成。

本文建立了小麦赤霉病菌对肟菌酯、氯啶菌酯、丙硫菌唑和氯氟醚菌唑的敏感性基线,明确了四种药剂对小麦赤霉病菌的生物学活性,为抗性风险评估和监测田间病原菌的敏感性提供有效数据。筛选了肟菌酯和氯啶菌酯分别与丙硫菌唑和氯氟醚菌唑两两复配时的增效配方,测定了四种药剂单独使用和复配使用情况下对小麦赤霉病菌产毒素的影响,为田间的减施增效提供理论支持。

外文摘要:

Wheat scab is caused by F.graminearum?on cereal crops, which is a kind of fungal disease. This pathogen will accumulate mycotoxin in the ear and grain of wheat, which will cause the yield decline and the quality of wheat will be greatly damaged, which seriously endangers the food security of the world. In recent years, due to the increasingly serious epidemic scope and incidence of wheat scab, A large number of single use of a fungicide will lead to the resistance of pathogenic fungi, thus reducing the control effect. Therefore, it is necessary to screen new fungicides for controlling wheat scab. In this paper, the sensitivity baselines of trifloxystrobin, triclopyricarb, prothioconazole?and mefentrifluconazole?to F.graminearum?were established respectively, The biological activity and the effect on the toxin were determined, and the synergistic formula of the compound of strobilurins and triazole fungicides was screened.

The sensitivity of 97, 97, 95 and 92 strains of F.graminearum?to trifloxystrobin, triclopyricarb, prothioconazole?and mefentrifluconazole?were determined by the method of mycelial growth rate. The EC50?values were 0.0124~3.5828 μg/mL, 0.0107~2.8058 μg/mL, 0.2105~2.9663 μg/mL and 0.0375~0.5145 μg/mL, respectively. The average EC50?values were 0.4147 ± 0.0792 μg/mL, 0.2541 ± 0.0597 μg/mL, 1.0429 ± 0.0585 μg/mL and 0.1872 ± 0.0122 μg/mL. The EC50?values of trifloxystrobin?and triclopyricarb?to the 92 strains and 97 strains of F.graminearum?were determined by spore germination method. The EC50?distribution range was 0.0914~4.2542 μg/mL and 0.1203~1.6763 μg/mL respectively. The average EC50?values were 0.5472 ± 0.1177 μg/mL and 0.4185 ± 0.0520 μg/mL respectively.?

The effects of trifloxystrobin, triclopyricarb, prothioconazole?and mefentrifluconazole?on the physiological indexes of F.graminearum?were determined. The results showed that when the concentration reached 50 μg/mL, 25μg/mL, 10μg/mL and 2.5 μg/mL respectively, trifloxystrobin, triclopyricarb, prothioconazole?and mefentrifluconazole?could inhibit the spore yield of F.graminearum; At the concentration of 50 μg/mL, 25 μg/mL, 1 μg/mL and 0.25 μg/mL respectively, trifloxystrobin, triclopyricarb, prothioconazole?and mefentrifluconazole were no effect on the distribution of cell nucleus and the formation of cell wall. At the concentrations of 0.5 μg/mL and 0.25 μg/mL respectively, the results showed that trifloxystrobin and triclopyricarb?could decrease the respiration rate of F.graminearum, but had no effect on the mycelial morphology; The mycelial morphology were bent and branches increased when the concentrations of prothioconazole?and mefentrifluconazole?were 5 μg/mL?and 2.5 μg/mL?respectively; At the concentrations of 50 μg/mL, 25 μg/mL, 10 μg/mL?and 20 μg/mL, trifloxystrobin, triclopyricarb, prothioconazole?and mefentrifluconazole?could destroy the integrity of cell membrane, making the intracellular electrolyte extravasate degrade,?the organelles in the mycelia cells were destroyed and cause vacuolation. when the concentration reached 500 μg/mL, trifloxystrobin and triclopyricarb showed good protective and curative effects on wheat scab, and the control effect can reach more than 60%; when the concentration reached 200 μg/mL, prothioconazole showed excellent protective and curative effects on wheat scab, and the protective activity and curative activity reached 79.43% and 70.33% respectively, when the concentration reached 200 μg/mL, mefentrifluconazole showed excellent protective and curative effects on wheat scab, and the protective activity and curative activity reached 83.09% and 76.93% respectively; The trifloxystrobin, prothioconazole and mefentrifluconazole were safe for wheat growth,when the concentration reached 1000 μg/mL, triclopyricarb was harmful to the growth of wheat。

The effects of trifloxystrobin, triclopyricarb, prothioconazole?and mefentrifluconazole?on the toxin production of F.graminearum?were determined. The results showed that trifloxystrobin?could stimulate the production of toxin at the concentration of 0.5 μg/mL or 50 μg/mL; There was no significant effect of triclopyricarb on the toxin yield at the concentration of 0.25 μg/mL?or 25 μg/mL; At the concentration of 10 μg/mL, prothioconazole?could inhibit the toxin yield; Mefentrifluconazole?could inhibit the production of toxin significantly at the concentrations of 0.25 μg/mL?and 2.5 μg/mL.

The four compound formulations of trifloxystrobin?with prothioconazole?and mefentrifluconazole, triclopyricarb with prothioconazole?and mefentrifluconazole?were determined in vitro. The results showed that when the ratio of trifloxystrobin?to prothioconazole?is 1:1, the effect is the best, the SR value is 5.5432, When the ratio of trifloxystrobin?to mefentrifluconazole?is 2:1, the SR value is 2.8197; When the ratio of triclopyricarb and prothioconazole?is 1:1, the SR value is 2.6549. However, the formula of triclopyricarb?and mefentrifluconazole?has no synergistic effect. Then, the effects of several compound formulations on the production of toxin of F.graminearum?were determined. The results show that when the ratio of trifloxystrobin?to prothioconazole?is 1:1 and the concentration is 30 μg/mL, the ratio of trifloxystrobin?to mefentrifluconazole?is 1:1 and 2:1, and the concentration is 20 μg/mL and 25 μg/mL, and the ratio of triclopyricarb?to prothioconazole is 1:1 and the concentration is 0.45 μg/mL or 45 μg/mL, both of which could effectively reduce the production of toxins and inhibit the formation of toxigenic body.

In this paper, a baseline was established for the sensitivity of F.graminearum?to trifloxystrobin, triclopyricarb, prothioconazole?and mefentrifluconazole, and the biological activity of the four fungicides against F.graminearum?was measured, providing effective data for the risk assessment of resistance and the monitoring of susceptibility of pathogens in the field. The synergistic formulations of the four fungicides were screened, and the effects of the four fungicides on the toxin production of F.graminearum?under the conditions of single use and compound use were determined, which provided theoretical support for the synergistic effect of application reduction in the field.

参考文献:

[1]柏亚罗.Strobilurins类杀菌剂研究开发进展[J]. 农药, 2007, 46(5): 289-295+309.

[2]柏亚罗.第13批拟批准登记农药产品公示氟啶草酮、氯氟醚菌唑等6个新有效成分在我国获首登[J]. 农药市场信息, 2019(24): 15.

[3]班思凡. 甲氧基丙烯酸酯类杀菌剂检测技术研究与风险评估[D]. 河北工程大学, 2019.

[4]毕秋艳. 二元杀菌剂复配增效机理初探[D]. 河北农业大学, 2010.

[5]曾志豪. 杀菌剂氯啶菌酯对斑马鱼的毒性效应[D]. 湖南农业大学, 2016.

[6]陈明明. 丙硫菌唑关键中间体的合成工艺研究[D]. 湖南师范大学, 2015.

[7]陈雪琴, 周丽花, 杨海燕, 等.小麦赤霉病绿色防控技术中化学防治药种的筛选[J]. 上海农业科技, 2018(4): 111-112+117.

[8]陈雨. 新型杀菌剂氰烯菌酯对禾谷镰孢菌(Fusarium graminearum)的作用方式及抗药性遗传研究[D]. 南京农业大学, 2009.

[9]程顺和, 张勇, 别同德, 等. 中国小麦赤霉病的危害及抗性遗传改良[J]. 江苏农业学报, 2012, 28(5): 938-942.

[10]程圆杰, 崔蕊蕊, 郭雯婷, 等. 丙硫菌唑研究开发现状与展望[J]. 山东化工, 2018, 47(6): 58-61.

[11]樊平声. 小麦赤霉病和DON毒素研究进展[J]. 江苏农业科学, 2010(5): 182-184.

[12]范三红, 胡小平. 小麦赤霉菌毒素合成机制及检测技术研究进展[J]. 麦类作物学报, 2018, 38(3): 348-357.

[13]顾林玲. 肟菌酯的应用与开发进展[J]. 现代农药, 2019, 18(1): 44-49.

[14]关爱莹, 李林, 刘长令. 新型三唑硫酮类杀菌剂丙硫菌唑[J]. 农药, 2003, 42(9): 42-43+41.

[15]韩凤英, 秦永梅, 徐铮, 等. 六种杀菌剂对枣黑斑病菌的室内毒力测定[J]. 湖北农业科学, 2015, 54(14): 3451-3453.

[16]何莲, 李建明, 成淑芬, 等. 丙硫菌唑和肟菌酯复配对小麦赤霉病菌的联合毒力测定[J]. 世界农药, 2019, 41(5): 58-59+64.

[17]侯冕, 汪章勋, 操海群, 等. 几种复配杀菌剂对小麦赤霉病及DON毒素污染控制作用[J]. 农业灾害研究, 2019, 9(6): 3-5.

[18]胡迎春, 李伟, 陈怀谷, 等. 中国冬小麦主产区小麦赤霉病菌种群组成及其致病力[J]. 江苏农业学报, 2010, 26(5): 954-960.

[19]吉沐祥, 邬劼, 王晓琳, 等. 叶菌唑与肟菌酯及其复配对葡萄炭疽病菌及白腐病菌的室内抑菌活性及田间防效[J]. 江苏农业科学, 2019, 47(9): 98-102.

[20]康振生, 黄丽丽, Buchenauer H, 等. 禾谷镰刀菌在小麦穗部侵染过程的细胞学研究[J]. 植物病理学报, 2004(4): 329-335.

[21]李斌, 代占武, 俞慧明, 等. 生长季气候对嘉兴地区小麦生产的影响研究[J]. 上海农业学报, 2019, 35(6): 29-33.

[22] 李慧, 曹芳杰, 邱立红. 甲氧基丙烯酸酯类杀菌剂对水生生物的生态毒理学研究进展[J].农药学学报, 2019, 21(5-6):831-840.

[23]李进永, 张大友, 许建权, 等. 小麦赤霉病的发生规律及防治策略[J]. 上海农业科技, 2008(4): 113.

[24]刘传德, 王培松, 王继秋, 等. 三唑类杀菌剂及其在小麦病害防治中的应用研究进展[J].山东农业大学学报(自然科学版), 2005(1): 157-160.

[25]刘刚. 叶菌唑与肟菌酯合理复配具有增效作用[J]. 农药市场信息, 2019(23): 61.

[26]刘新琼. 小麦赤霉病菌毒素研究进展[J]. 湖北植保, 1997(3): 23-24.

[27]刘馨. 小麦赤霉病菌麦角甾醇生物合成途径中关键基因的功能研究[D]. 浙江大学, 2012.

[28]马跃亭. 小麦籽粒DON含量影响因素相关性分析及氨基酸对赤霉菌产毒的影响[D]. 江苏科技大学, 2019.

[29]钱兰娟. 丙硫菌唑和叶菌唑成为防治小麦赤霉病新选择[J].农药市场信息, 2019(18): 52.

[30]冉军舰, 徐剑宏, 赫丹, 等. 小麦赤霉病原菌拮抗菌Bacillus amyloliquefaciens 7M1产抗菌素的研究[J]. 微生物学通报, 2016, 43(11): 2437-2447.

[31]邵振润, 周明国, 仇剑波, 等. 2010年小麦赤霉病发生与抗性调查研究及防控对策[J]. 农药, 2011, 50(5): 385-389.

[32] 石凯威, 李莉, 刘丰茂. 丙硫菌唑及代谢物硫酮菌唑在土壤中的残留分析方法及消解[J].农药学学报, 2016, 18(5): 659-663.

[33]石志琦, 史建荣, 陈怀谷, 等. 小麦赤霉病菌对多菌灵的抗药性研究[J]. 农药学学报, 2000(4): 22-27.

[34]史建荣, 刘馨, 仇剑波, 等. 小麦中镰刀菌毒素脱氧雪腐镰刀菌烯醇污染现状与防控研究进展[J]. 中国农业科学, 2014, 47(18): 3641-3654.

[35]史文琦, 杨立军, 冯洁, 等. 小麦赤霉病流行区镰刀菌致病种及毒素化学型分析[J]. 植物病理学报, 2011, 41(5): 486-494.

[36]孙晓梅, 杨淼泠, 王建秀, 等. 禾谷镰孢菌田间菌株β1、β2微管蛋白基因序列分析[J].青岛农业大学学报(自然科学版), 2020, 37(1): 32-37.

[37]孙悦. 黄淮麦区小麦中镰刀菌的分离及其产毒控制[D]. 西北农林科技大学, 2018.

[38]王春修, 姜成义, 王金凤, 等. 75% 丙硫菌唑·肟菌酯水分散粒剂的配方开发[J]. 世界农药, 2019, 41(5): 44-47+57.

[39]王化敦, 史高玲, 张平平, 等. 长江中下游小麦品种籽粒品质对氮素的敏感性分析[J]. 南方农业学报, 2017, 48(9): 1568-1573.

[40]王建新. 禾谷镰孢菌对多菌灵抗药性研究[D]. 南京农业大学, 2000.

[41]王丽, 石延霞, 李宝聚, 等. 甲氧基丙烯酸酯类杀菌剂研究进展[J]. 农药科学与管理, 2008(9): 24-27.

[42]王艳, 冯艺, 孙俊, 等. 小麦赤霉病防治研究进展[J]. 现代农业科技, 2013(22): 109-111+118.

[43]王裕中, 米勒 J.D. 中国小麦赤霉病菌优势种—禾谷镰刀菌产毒素能力的研究[J]. 真菌学报, 1994(3): 229-234.

[44]吴佳文, 陆彦, 王开峰, 等. 多种杀菌剂对小麦赤霉病及其DON毒素的防效[J]. 中国植保导刊, 2018, 38(9): 62-67.

[45]吴佳文, 杨荣明, 杨红福, 等. 江苏省小麦赤霉病病菌对多菌灵抗药性发展及其治理对策研究[J]. 中国植保导刊, 2019, 39(12): 51-54+78.

[46]武海波, 郭二庆, 陈须琨, 等. 浅议甲氧基丙烯酸酯类杀菌剂[J]. 河南农业, 2020(4): 22.

[47]徐飞, 宋玉立, 王俊美, 等. 不同侵染时期对小麦赤霉病发生和籽粒中DON积累的影响[J]. 植物保护, 2018, 44(6): 129-135.

[48]徐欢. 高效安全杀菌剂丙硫菌唑的合成[D]. 扬州大学, 2014.

[49]徐雍皋, 内藤秀树. 小麦赤霉病菌的侵染过程[J]. 南京农业大学学报, 1989(3): 33-38.

[50]闫向泉, 朱伟, 孟自力. 小麦赤霉病的发生及综合防控[J]. 现代农业科技, 2019(24): 86-88.

[51]杨继芝, 王继师, 龚国淑, 等. 多菌灵、多抗霉素及其复配对小麦赤霉病菌的生物活性研究[J]. 安徽农业科学, 2010, 38(9): 4627-4628+4630.

[52]姚金保, 陆维忠. 中国小麦抗赤霉病育种研究进展[J]. 江苏农业学报, 2000(4): 242-248.

[53]尹军良, 张兴, 马东方, 等. 小麦赤霉病菌对咪鲜胺和氰烯菌酯敏感性及药剂混配增益效果研究[J]. 江西农业大学学报, 2018, 40(5): 920-924.

[54]于思勤, 马忠华, 张猛, 等. 河南省小麦赤霉病发生规律与综合防治关键技术[J]. 中国植保导刊, 2019, 39(2): 53-60.

[55]俞刚, 陈利锋, 姚红燕, 等. 脱氧雪腐镰刀菌烯醇在小麦赤霉病病程中的作用[J]. 植物病理学报, 2003(1): 40-43.

[56]虞卉, 黄坤敏. 新颖甲氧丙烯酸酯类杀菌剂—氯啶菌酯[J]. 世界农药, 2012, 34(2): 54-55.

[57]张爱萍, 李勇. 新型三唑硫酮类杀菌剂丙硫菌唑的研究进展[J]. 今日农药, 2011(6): 27-28.

[58]张国生. 甲氧基丙烯酸酯类杀菌剂的应用、开发现状及展望[J]. 农药科学与管理, 2003(12): 30-34.

[59]张洪晓. 丙硫菌唑的合成工艺研究[D]. 河北科技大学, 2014.

[60]张洁, 伊艳杰, 王金水, 等. 小麦赤霉病的防治技术研究进展[J]. 中国植保导刊, 2014, 34(1): 24-28+53.

[61]张茂九. 防治小麦赤霉病新成分之丙硫菌唑综述[J]. 农药市场信息, 2019(8): 29-33.

[62]张鹏, 张慧丽, 杨蕾, 等. 小麦赤霉病菌拮抗菌筛选及最适培养条件初步研究[J]. 植物病理学报, 2019, 49(6): 876-880.

[63]张强, 王胜翔, 黄伟, 等. 240 g/L氯氟醚菌唑·吡唑醚菌酯乳油高效液相色谱分析方法研究[J]. 农药科学与管理, 2018, 39(4): 29-32.

[64]张晓光, 王伦, 毛明珍, 等. 氯氟醚菌唑合成方法综述[J]. 农药, 2019, 58(7): 475-477+486.

[65] 张旭, 邢锦城, 马鸿翔, 等.江淮流域小麦赤霉病菌的遗传多样性[J]. 江西农业大学学报, 2010, 32(6): 1146-1151.

[66]张勇, 马严明, 徐劲锋, 等. 几种三唑类杀菌剂对小麦赤霉病菌毒力的测定及药效试验[J]. 安徽农业科学, 2004(2): 248-249.

[68]张宇. 新型杀菌剂氰烯菌酯抑制亚洲镰孢菌(Fusarium asiaticum)单端孢霉烯族毒素合成的机制研究[D]. 南京农业大学, 2017.

[68]张臻. 两株生防菌对小麦赤霉病和茎基腐病防治效果的评价[D]. 华中农业大学, 2018.

[69]张志刚, 张奎祚, 郑晓迪, 等. 氯氟醚菌唑合成方法述评[J]. 现代农药, 2019, 18(4): 24-26+34.

[70]赵平, 严秋旭, 李新, 等. 甲氧基丙烯酸酯类杀菌剂的开发及抗性发展现状[J]. 农药, 2011, 50(8): 547-551+572.

[71]周仁先. 小麦赤霉病菌对常用杀菌剂的抗性研究[J]. 安徽农业科学, 2018, 46(21): 152-154+174.

[72] 周艳明, 刘西莉, 姜辉, 等. QoI类杀菌剂环境风险浅析[J]. 农药科学与管理, 2019, 40(5): 23-30.

[73]周子燕, 李昌春, 高同春, 等. 三唑类杀菌剂的研究进展[J]. 安徽农业科学, 2008(27): 11842-11844.

[74]朱丽珺. 辽宁省稻曲病菌对三唑类和甲氧基丙烯酸酯类杀菌剂的敏感性研究[D]. 沈阳农业大学, 2019.

[75]Culbreath A K, Brenneman T B, Kemerait R C, et al. Combinations of elemental sulfur with demethylation inhibitor fungicides for management of late leaf spot (Nothopassalora personata) of peanut[J]. Crop Protection, 2019, 125:104911.

[76]Amaro A C E, Baron D, Ono E O, et al. Physiological effects of strobilurin and carboxamides on plants: an overview[J]. Acta Physiologiae Plantarum, 2019, 42(1): 52-60.

[77]Tarazona A, Mateo E M, José V Gómez, et al. Potential use of machine learning methods in assessment of Fusarium culmorum and F. proliferatum growth and mycotoxin production in treatments with antifungal agents[J]. Fungal Biology, 2019, 11(6): 1-11.

[78]Rayko, Becher, Fabian, et al. Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses[J]. BMC Genomics, 2011. 12:52.

[79]Van?o B, ?liková S, ?udyová V. Influence of localities and winter wheat cultivars on deoxynivalenol accumulation and disease damage by Fusarium culmorum[J]. Biologia, 2007, 62(1): 62-66.

[80]Amarasinghe C C, Tamburic-Ilincic L, Gilbert J, et al. Evaluation of different fungicides for control of Fusarium head blight in wheat inoculated with 3ADON and 15ADON chemotypes of Fusarium graminearum in Canada[J]. Canadian Journal of Plant Pathology, 2013, 35(2): 200-208.

[81]Wang C L, Cheng Y H. Identification and trichothecene genotypes of Fusarium graminearum species complex from wheat in Taiwan[J]. Botanical Studies, 2017, 58(1): 4.

[82]Edwards S G, Godley N P. Reduction of Fusarium head blight and deoxynivalenol in wheat with early fungicide applications of prothioconazole[J]. Food Additives & Contaminants, 2010, 27(5): 629-635.

[83]Femenias A, Gatius F, Ramos A J, et al. Standardisation of near infrared hyperspectral imaging for quantification and classification of DON contaminated wheat samples[J]. Food Control, 2019, 111: 107074.

[84]Fiaccadori R, Cicognani E, Abbatecola A, et al. Sensitivity of Venturia inaequalisto strobilurin fungicides in Italy[J]. communications in agricultural & applied biological sciences, 2005, 70(3): 73-77.

[85]Golge O, Kabak B. Occurrence of deoxynivalenol and zearalenone in cereals and cereal products from Turkey[J]. Food Control, 2019, 110: 106982.

[86]Hao G, Mccormick S, Vaughan M, et al. Fusarium graminearum arabinanase (Arb93B) enhances wheat head blight susceptibility by suppressing plant immunity[J]. Molecular Plant Microbe Interactions, 2019. 32(7): 888-898.

[87]Aguzey H A, Gao Z, Haohao W, et al. The Effects of Deoxynivalenol (DON) on the Gut Microbiota, Morphology and Immune System of Chicken–A Review[J]. Annals of Animal Science, 2019. 19(2): 305-318.

[88]Renata H B, Moser T S, Fetter J F C, et al. Effect of natural compounds on Fusarium graminearum complex[J]. Journal of the science of food and agriculture, 2016, 96(12): 3998-4008.

[89]Herms, S. A Strobilurin Fungicide Enhances the Resistance of Tobacco against Tobacco Mosaic Virus and Pseudomonas syringae pv tabaci[J]. Plant Physiology, 2002, 130(1): 120-127.

[90]Kaur S, Takkar R, Bhardwaj U, et al. Dissipation Kinetics of Trifloxystrobin and Tebuconazole on Wheat Leaves and Their Harvest Time Residues in Wheat Grains and Soil[J]. Bulletin of Environmental Contamination & Toxicology, 2012, 89(3): 606-610.

[91]Kettering M, Sterner O, Anke T. Antibiotics in the Chemical Communication of Fungi[J]. Zeitschrift Für Naturforschung C, 2004, 59: (11-12): 816-823.

[92]Audenaert K, Callewaert E, H?fte M, et al. Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum[J]. BioMed Central,2011, 63: 3-21.

[93]Krsjak L, Szabolcs, Varga, et al. Translocation and degradation of tebuconazole and prothioconazole in wheat following fungicide treatment at flowering[J]. Pest management science, 2013, 69(11): 1216-1224.

[94]Li Y J, Luo S W, Jia X J, et al. Regulatory roles of introns in fungicide sensitivity of Fusarium graminearum[J]. Environmental Microbiology, 2017, 19(10): 4140-4153.

[95]Liu X, Jiang J H, Shao J F, et al. Gene transcription profiling of Fusarium graminearum treated with an azole fungicide tebuconazole[J]. Applied microbiology and biotechnology, 2010, 85(4): 1105-1114.

[96]Luo X S, Qin X X, Liu Z Y, et al. Determination, residue and risk assessment of trifloxystrobin, trifloxystrobin acid and tebuconazole in Chinese rice consumption[J]. Biomedical chromatography, 2020, 34(1): e4694.

[97]Fernandez M R, Turkington T K, May W E. Effectiveness of fungicide seed treatments for preventing seed-to-seedling transmission of Fusarium graminearum under controlled- environment conditions[J]. NRC Research Press Ottawa, Canada, 2009, 89(4): 811-821.

[98]Manasikan T, Hiroshi O, Takeo S, et al. Distinct Distribution of Deoxynivalenol, Nivalenol, and Ergosterol in Fusarium -infected Japanese Soft Red Winter Wheat Milling Fractions[J]. Mycopathologia, 2011, 172(4): 323-330.

[99]Paramasivam M, Selvi C, Deepa M, et al. Simultaneous determination of tebuconazole, trifloxystrobin, and its metabolite trifloxystrobin acid residues in gherkin under field conditions[J]. Journal of Separation Science, 2015, 38(6): 958-964.

[100]Emese D N, Barbara K, Eva L, et al. Toxicity of abiotic stressors to Fusarium species: differences in hydrogen peroxide and fungicide tolerance.[J]. Acta microbiologica et immunologica Hungarica, 2014, 61(2): 189-208.

[101]Ortega L M, Moure M C, González E M, et al. Wheat storage proteins: changes on the glutenins after wheat infection with different isolates of Fusarium graminearum[J]. International Microbiology, 2018, 22(2): 289-296.

[102]Scaglioni P T, Pagnussatt F A, Lemos A C, et al. Nannochloropsis sp. and Spirulina sp. as a Source of Antifungal Compounds to Mitigate Contamination by Fusarium graminearum Species Complex[J]. Current microbiology, 2019.76(8): 930-938.

[103]Jean S, Sameh S, Céline R F, et al. Protective and curative efficacy of prothioconazole against isolates of Mycosphaerella graminicola differing in their in vitro sensitivity to DMI fungicides[J]. Pest management science, 2011, 67(9): 1134-1140.

[104]Tesh S A, Tesh J M, Fegert I, et al. Innovative selection approach for a new antifungal agent mefentrifluconazole (Revysol?) and the impact upon its toxicity profile[J].Regulatory Toxicology and Pharmacology, 2019, 106: 152-168.

[105]Liu S M, Liu J L, Fu L Y, et al. Baseline sensitivity of Fusarium graminearum from wheat fields in Henan, China, to metconazole and analysis of cross resistance with carbendazim and phenamacril[J]. Journal of Phytopathology, 2020, 168(3): 156-161.

[106]?pani? V, Drezner G, Dvojkovi? K, et al. Estimated quantity of deoxynivalenol (DON) in wheat genotypes[J]. Glasnik Za?tite Bilja, 2010. 6: 56-60.

[107]Pilar V, Natalia C, Nelson M C, et al. Method development and validation for strobilurin fungicides in baby foods by solid-phase microextraction gas chromatography-mass spectrometry[J]. Journal of chromatography. A, 2009, 1216(1): 140-146.

[108]Yu W Y, Zhang L G, Qiu J B, et al. Effect of carbendazim-8-oxyquinoline-copper, a novel chelate fungicide against Fusarium graminearum[J]. Journal of Pesticide Science, 2011, 36(3): 385-391.

[109]Wood P M, Hollomon D W. A critical evaluation of the role of alternative oxidase in the performance of strobilurin and related fungicides acting at the Qo site of complex III[J]. Pest management science, 2003, 59(5): 499-511.

[110]Wu P, Wu W Z, Han Z H, et al. Desorption and mobilization of three strobilurin fungicides in three types of soil.[J]. Environmental monitoring and assessment, 2016, 188(6): 363.

[111]Chen Y L, Yao K C, Wang K Y, et al. Bioactive-guided structural optimization of 1,2,3-triazole phenylhydrazones as potential fungicides against Fusarium graminearum[J]. Pesticide Biochemistry and Physiology, 2019. 164: 26-32.

[112]Sun Y Q, Cao Y, Tong L L, et al.Exposure to prothioconazole induces developmental toxicity and cardiovascular effects on zebrafish embryo[J]. Chemosphere, 2020, 251: 126418.

[113]Kolupaev Y E, Karpets Y V, Yastreb T. O, et al. Protective effect of inhibitors of succinate dehydrogenase on wheat seedlings during osmotic stress[J]. Applied Biochemistry and Microbiology, 2017, 53(3): 353-358.

[114]Zhai W J, Zhang L L, Cui J N, et al. The biological activities of prothioconazole enantiomers and their toxicity assessment on aquatic organisms[J]. Chirality, 2019, 31(6): 468-475.

[115]Zhang L, Ma R, Zhu M X, et al. Effect of deoxynivalenol on the porcine acquired immune response and potential remediation by a novel modified HSCAS adsorbent[J]. Food and chemical toxicology, 2020,138: 111187.

[116]Zhang Y, Wu X H, Li X B, et al. A fast and sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry method for determining mefentrifluconazole in plant- and animal-derived foods.[J]. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment, 2019, 36(9): 1348-1357.

[117]Zhang Z X, Gao B B, He Z Z, et al. Stereoselective bioactivity of the chiral triazole fungicide prothioconazole and its metabolite[J]. Pesticide Biochemistry and Physiology, 2019, 160: 112-118.

[118]Zheng Z T, Gao T, Zhang Y, et al. FgFim, a key protein regulating resistance to the fungicide JS399-19, asexual and sexual development, stress responses and virulence in Fusarium graminearum[J]. Molecular plant pathology, 2014, 15(5): 488-499.

中图分类号:

 S48    

开放日期:

 2022-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式