- 无标题文档
查看论文信息

中文题名:

 氟康唑搽剂对犬皮肤癣菌病的临床疗效研究    

姓名:

 葛红帆    

学号:

 2019807185    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0952    

学科名称:

 兽医    

学生类型:

 硕士    

学位:

 兽医硕士    

学校:

 南京农业大学    

院系:

 动物医学院    

专业:

 兽医(专业学位)    

研究方向:

 小动物外科    

第一导师姓名:

 周振雷    

第一导师单位:

 南京农业大学    

完成日期:

 2021-09-01    

答辩日期:

 2021-11-24    

外文题名:

 Clinical Efficacy Evaluation of Fluconazole Liniment in the Treatment of Dermatophytosis in Dogs    

中文关键词:

 氟康唑搽剂 ; 犬皮肤癣菌病 ; 临床疗效 ; 体外敏感性 ; 皮肤刺激性    

外文关键词:

 fluconazole liniment ; canine dermatophytosis ; clinical efficacy ; Sensitivity in vitro ; skin irritation    

中文摘要:

皮肤癣菌病是一种人畜共患病,由小孢子菌属和毛癣菌属的皮肤癣菌引起,主要通过真菌分泌酶系统、生长机械力等侵入动物机体的皮肤角质层、毛发、甲床角蛋白等浅表角化组织,引起丘疹、鳞屑、脱毛、色素沉着、趾甲外观改变等多种临床症状,严重影响患病动物的生活质量和健康。从1958年首次使用灰黄霉素治疗皮肤癣菌病至今,皮肤癣菌病治疗药物的研究已有近70年的历史,但随着临床抗真菌药物的大量使用和滥用,宠物主人频繁换药和随意停药,皮肤癣菌耐药性逐渐增强,耐药菌株逐渐增加,造成临床治疗难度增大。本研究对新兽药氟康唑搽剂的皮肤安全性、体外敏感性、临床治疗效果、最佳剂量等进行了研究,以期为氟康唑搽剂的临床应用提供理论依据。

1 氟康唑搽剂的皮肤刺激性试验

本试验采用 “药物非临床研究质量管理规范(Good Laboratory Practice, GLP)”规定的皮肤刺激性试验评估氟康唑搽剂局部使用时的皮肤刺激性。以新西兰大白兔为模式动物,根据不同的背部皮肤处理分为皮肤完整组和皮肤破损组,每组4只。采用自体对照法,在新西兰大白兔左侧和右侧背部皮肤分别施用氟康唑搽剂和赋形剂丙二醇(药用级),在固定时间点观察并记录皮肤红斑和水肿评分,计算不同观察时间点的皮肤刺激评分均值,以此评价氟康唑搽剂和丙二醇对破损皮肤和完整皮肤的刺激性程度。结果显示氟康唑搽剂在单次给药和多次给药条件下,完整皮肤组和破损皮肤组均未出现红斑、水肿等炎症反应;丙二醇在单次给药和多次给药条件下,完整皮肤组未出现炎症反应,破损皮肤组仅在第一次观察时,个别受试动物出现轻微水肿反应。结果表明,氟康唑搽剂和丙二醇对动物皮肤无刺激性,在局部使用时具有较强的皮肤安全性。

2 氟康唑搽剂对常见皮肤癣菌的体外敏感性测定

    本试验参考美国临床实验室标准化研究所(CLSI)提出的“产孢丝状真菌抗真菌药敏试验参考方案(M38-A2)”,采用微量液基稀释法研究氟康唑(Flconzole, FLU)对5株兽医临床常见的皮肤癣菌临床分离株,包括犬小孢子菌(Microsporum canis)、石膏样小孢子菌(Microsporum gypseum)和须癣毛癣菌(Trichophyton mentagrophyte)的体外敏感性,探究氟康唑搽剂临床应用的可能性。结果显示FLU对上述皮肤癣菌的GM值分别为5.27、4.75、3.36 μg/mL,MIC值范围分别为2~64 μg/mL、1~8 μg/mL、0.25~16 μg/mL。表明,氟康唑对石膏样小孢子菌、须癣毛癣菌的体外敏感性强于犬小孢子菌,对皮肤癣菌具有良好的体外敏感性。

3 氟康唑搽剂对犬皮肤癣菌病的临床疗效研究

本试验诊断并纳入104只皮肤癣菌病患犬,随机分为受试药物推荐剂量组、受试药物加倍剂量组、受试药物减半剂量组、空白对照组和对照药物组,以氟康唑搽剂为受试药物,复方酮康唑软膏为对照药物,持续治疗28 d,通过治疗总有效率和病原培养结果评估氟康唑搽剂的临床疗效;每7 d观察记录各组临床症状评分下降指数、病原转阴率,统计总有效率;每7 d采集血液样本检测血常规和肝肾功能相关生化指标,监测治疗过程中受试药物对机体炎性细胞、红细胞等指标以及肝肾功能是否产生异常影响。通过统计分析,研究氟康唑搽剂临床治疗的最佳剂量、周期以及对血液指标的影响。结果表明,推荐剂量组、加倍剂量组、减半剂量组和对照药物组总有效率分别为100%、100%、95.46%、90.90%,真菌转阴率分别为100%、95.45%、86.95%、90%。氟康唑搽剂推荐剂量组、加倍剂量组和复方酮康唑软膏药物组疗效优于其他治疗组,并且氟康唑搽剂推荐剂量组和加倍剂量组临床疗效优于对照药物组。推荐剂量组、加倍剂量组、减半剂量组在给药28 d内血常规结果和生化结果均处于正常值范围内,且嗜中性粒细胞数量(Neutrophils,NEU)、淋巴细胞数量(Lymphocyte, LYM)、肌酐含量(Creatinine, CREA)、尿素氮含量(Blood Urea NitrogenBUN)与对照药物组变化趋势相符,说明氟康唑搽剂局部外用对动物血细胞指标以及肝肾功能无显著影响。另外与空白对照组相比,推荐剂量组最早(给药7 d)出现临床症状评分的显著降低(p<0.05),在给药14 ~21 d时临床症状评分显著低于包括对照药物组在内的其他各组(p<0.05),各组的临床症状评分下降指数随治疗时间的增长均显著升高(p<0.05);氟康唑搽剂推荐剂量组、加倍剂量组和减半剂量组病原孢子数在给药28 d内均显著低于空白对照组(p<0.05),氟康唑搽剂各组与对照药物组在给药14~21 d内结果无显著差异(p>0.05),各组病原转阴率随治疗时间的增长均显著升高(p<0.05);氟康唑搽剂推荐剂量0.15 mL/cm2,3次·d-1,连用28 d是理想的最佳剂量和治疗周期。综上说明,氟康唑搽剂推荐剂量临床疗效好,安全性高,治愈率高,具有临床推广价值。

外文摘要:

Dermatophytoses is a zoonosis, which is caused by dermatophytes of Microsporum and Trichophyton species. The dermatophytes invade into superficial keratinized tissue such as stratum corneum, hair, and nail bed keratin of the animals mainly through fungal secretory enzyme system and growth force, and causes papules, scales, depilation, pigmentation, toenail abnormalities, and other clinical symptoms, which seriously affecting the quality of life and health of animals. Since griseofulvinwas first used in dermatophytoses treatment in 1958, the research on the treatment of dermatophytoses has a history of almost 70 years. Because of antifungal drugs abused by veterinary in clinic and changed frequently by pet owners at will, the dermatophytes resistance to antifungal drugs and the proportion of resistant strains gradually increases, leading to the increase of difficulty of clinical treatment. In this study, the skin safety and sensitivity of a new veterinary drug fluconazole liniment in vitro were studied, and the therapeutic effect, optimal dose, and adverse reactions of fluconazole liniment in the clinical treatment were investigated. The study aimed to provide the theoretical data for the clinical application of fluconazole liniment and new possibilities for dermatophytoses treatment in dogs.

1 Skin irritation test of fluconazole liniment

The study evaluated the skin irritataion of fluconazole liniment for topical treatment using the skin irratation test prescribed by "Good Laboratory Pratice(GLP)". New Zealand White Rabbits, as the model animals, were divided into intact skin group and damaged skin group, 4 rabbits in each group, according to different back skin treatments. Fluconazole liniment and pharmaceutical grade of mono propylene glycol (MPG) were separately applied to the left and right back locally of the same rabbit as autologous control. The skin erythema and edema scores were observed and recorded at observed time points, and the average skin irritation scores at different observation time points were calculated. The irritation degree of fluconazole liniment and MPG on damaged and intact skin was observed and recorded after single and multiple skin irritation test. The results showed that non-inflammation reactions such as erythema and edema were observed in both groups after single or multiple irritation test of fluconazole liniment, and non-inflammation response in both groups was observed under single or multiple doses of MPG, except for the slight edema at the first observation of a few rabbits in damaged skin group. The results indicated that fluconazole liniment and MPG had no irritation to animal skin and had strong skin safety when applied topically.

2 Susceptibility testing of fluconazole liniment to common dermatophytes in vitro

This study referred to "Reference Method for Broth Dilution Antifungal Susceptibilty Testing of Filamentous Fungi; Approved Standard—Second Edition(M38-A2)" proposed by the Clinical and Laboratory Standards Institute(CLSI). Broth microdilution methods was used to study in susceptibility of fluconazole to 5 clinical isolates of dermatophytes common in the veterinary clinic, including Microsporum canis, Microsporum gypseum, and Trichophyton mentagrophyte, and to explore the effects of clinical application of fluconazole liniment. The results showed that the geometric mean MICs of FLU against the above fungi were 5.27, 4.75 and 3.36 μg/mL, and the MIC values were 2-64 μg/mL, 1-8 μg/mL and 0.25-16 μg/mL, respectively. The results indicated that FLU had better sensitivity to Microsporidium gypsum and Trichophyton mentagrophyte than to Microsporidium canis, and had good sensitivity in vitro to dermatophytes.

3 The clinical effect of fluconazole liniment on canine dermatophytosis

A total of 104 dogs diagnosed as dermatophytosis were divided into fluconazole liniment recommended-dose group, double-dose group, half-dose group, compound ketoconazole ointment control group and positivecontrol group at random, fluconazole liniment was used as the test drug and compound ketoconazole ointment as the control drug in this work. The clinical therapeutic trials lasted 28 days, and the clinical efficacy of fluconazole liniment was evaluated through the total effective rate of treating dermatophytosis and fungal negative conversion rate. The symptom score decreased index and fungal negative conversion rate in each group were observed and recorded every 7 days, and the total effective rate was counted according to the results; the blood samples were collected every 7 days to detect blood routine and biochemical indexes related to liver and kidney function, and to monitor whether the drugs had abnormal effects on inflammatory cells and red blood cells and so on, and the function of liver and kidney. Based on the above results, the optimal dose, treatment cycle, and adverse reactions of fluconazole liniment in clinical treatment were investigated. The results showed that the total effective rates of the recommended-dose group, double-dose group, half-dose group, and control group were 100%, 100%, 95.46%, 90.90%, and the fungal negative conversion rates were 100%, 95.45%, 86.95%, 90%, respectively. Recommended dose group, the double-dose group and the control group had better clinical efficacy than the other groups, and recommended dose group, the double-dose group had better clinical efficacy than the control group. The blood routine and biochemical results of fluconazole liniment treatment groups were within the normal range during 28 days of the experiment, and the neutrophils count (NEU), lymphocyte count (LYM), creatinine level (CREA) and urea nitrogen content (BUN) were consistent with the changing trend of the ketoconazole ointment control group, which indicated that fluconazole liniment had no significant effect on blood cells and liver and kidney function. In addition, compared with the positive control group, the clinical symptom score of the recommended-dose group was first to appear significantly decreased at 7 days (p<0.05), and was significantly lower at 14 to 21 days than that of the other groups including the control group (p<0.05). The clinical symptom decreased index in all groups were significantly increased with time past (p<0.05). The pathogenic spore number in the recommended-dose group, double-dose group, and half-dose group was significantly lower than that in the positive control group during 28 days of the experiment (p<0.05), and there was no significant difference between the fluconazole liniment groups and the ketoconazole ointment control group at 14 to 21 days (p>0.05). The negative conversion rate of pathogen in all groups were significantly increased over time (p<0.05). The results indicated that the dose of fluconazole liniment at 0.15 mL/cm2 three times a day for 28 days was the ideal optimal dose and treatment cycle. In conclusion, the recommended-dose of fluconazole liniment had good clinical efficacy and high safety, and had a faster onset, which had the significance of clinical application.

参考文献:

参考文献

[1] Pavletic M M. Anatomy and circulation of the canine skin [J]. Microsurgery. 1991, 12(2).

[2] Ehrhardt P, Johanna M B, Jens M J. The skin: an indispensable barrier[J]. Experimental Dermatology,2008, 17(12).

[3] 张兆霞. 北京地区致犬皮肤病主要病原调查与鉴定试验[D]. 新疆:石河子大学, 2009.

Zhang Z X. Survey for the main pause of dog's dermatosis in Beijing regin and related diagnostie experimcnts[D]. Xin jiang: Shihezi University, 2009 (in Chinese with English abstract).

[4] Affolter V K, Moore P F. Histologic features of normal canine and feline skin[J]. Clin Dermatol, 1994, 12(4): 491-497.

[5] Ramms L, Fabris G, Windoffer R. Keratins as the main component for the mechanical integrity of keratinocytes[J]. Proc Natl Acad Sci USA, 2013, 110(46): 18513-18518.

[6] Thomsett L R. Structure of canine skin[J]. British Veterinary Journal, 1986, 142(2): 116-123.

[7] Haftek M. Epidermal barrier disorders and corneodesmosome defects[J]. Cell Tissue Res, 2015, 360(3): 483-490.

[8] Sims D. Textbook of Veterinary Histology, 5th ed[J]. Veterinary Pathology, 2006(5).

[9] Thomsett L R. Structure of canine skin[J]. British Veterinary Journal, 1986, 142(2): 116-123.

[10] 冯洁. 犬皮肤真菌病病原分离鉴定与药敏试验[D]. 咸阳:西北农林科技大学, 2019.

Feng J. Isolation, Identification and drug sensitivity test of canine skin fungal diseases[D]. Xianyang: Northwest A&F University, 2019 (in Chinese with English abstract).

[11] 刘玮. 皮肤屏障功能解析[J]. 中国皮肤性病学杂志, 2008, 22(12): 758-761.

Liu Y. Analysis of skin barrier function[J]. The Chinese Journal of Dermatovenereology, 2008, 22(12): 758-761 (in Chinese).

[12] Nishifuji K, Yoon J S. The stratum corneum: the rampart of the mammalian body[J]. Vet Dermatol, 2013, 24(1): 60-72.

[13] Weese J S. The canine and feline skin microbiome in health and disease[J]. Vet Dermatol, 2013, 24(1): 137-145.

[14] 高延瑞. 皮肤微生态与皮肤屏障相关性探讨[D].安徽:安徽医科大学, 2013.

Gao Y R. Study on the relationship between skin microbiome and barrier function[D]. Anhui: Anhui Medical University, 2013(in Chinese with English abstract).

[15] Baek J H, Lee S E, Choi K J,Choi E H, Lee S H. Acute modulations in stratum corneum permeability barrier function affect claudin expression and epidermal tight junction function via changes of epidermal calcium gradient[J]. Yonsei MedicalJournal, 2013, 54(2): 523-528.

[16] Ramms L, Fabris G, Windoffer R, Schwarz N, Springer R, Zhou C, Lazar J, Stiefel S, Schnakenberg U, Magin T M, Leube R E, Merkel R, Hoffmann B. Keratins as the main component for the mechanical integrity of keratinocytes[J]. Proceedings of National Academy of Sciences of the United States of America 2013, 110(46): 18513-18518.

[17] Hitomi K. Transglutaminases in skin epidermis[J]. European Journal of Dermatology, 2005, 15(5): 313-319.

[18] Panzuti P, Videmont E, Fantini O. A moisturizer formulated with glycerol and propylene glycol accelerates the recovery of skin barrier function after experimental disruption in dogs[J]. Vet Dermatol, 2020, 31(5): 344-389.

[19] Chou T C, Shih T S, Tsai J C, Wu J D, Shen H M, Chang H Y. Effect of occupational exposure to rayon manufacturing chemicals on skin barrier to evaporative water loss[J]. Journal of Occupational Health, 2004, 46(5): 410-417.

[20] 唐平. 驻岛士兵皮肤屏障功能与皮肤癣菌感染的相关性研究[D]. 桂林:桂林医学院, 2013.

Tang P. The correlation between skin barrier function of soldiers stationing in the island and dermatophytes[D]. Guilin: Guilin Medical University, 2013

[21] Cusco A, Belanger J M, Gershony L, Trejo A L, Levy K, Medrano J F, Sanchez A, Oberbauer A M, Francino O. Individual signatures and environmental factors shape skin microbiota in healthy dogs[J]. Microbiome, 2017, 5(1): 139.

[22] Rodrigues H A. The cutaneous ecosystem: the roles of the skin microbiome in health and its association with inflammatory skin conditions in humans and animals[J]. Vet Dermatol, 2017, 28(1): 15-60.

[23] Ihrke P J, Schwartzman R M, Mcginley K, Horwitz L N; Marples R R. Microbiology of normal and seborrheic canine skin[J]. American Journal of Veterinary Research, 1978, 39(9): 1487-1489.

[24] Rodrigues H A, Patterson A P, Diesel A, Lawhon S D , Ly H J, Stephenson C E, Mansell J, Steiner J, Scot E Dowd; Olivry T, Suchodolski J S. The skin microbiome in healthy and allergic dogs[J]. PLoS One, 2014, 9(1): e83197.

[25] Jo J H, Kennedy E A, Kong H H. Topographical and physiological differences of the skin mycobiome in health and disease[J]. Virulence, 2017, 8(3): 324-333.

[26] Meason-Smith C, Diesel A, Patterson A P, Older C E, Hoffmann A R. Characterization of the cutaneous mycobiota in healthy and allergic cats using next generation sequencing[J]. Vet Dermatol, 2017, 28(1): 17-71.

[27] Prado M R, Brilhante R S, Cordeiro R A, Marilena R P, Raimunda S N, Brilhante R A. Cordeiro A J, Monteiro J J, Sidrim, Marcos F G R. Frequency of yeasts and dermatophytes from healthy and diseased dogs[J]. Journal of Veterinary Diagnostic Investigation, 2008, 20(2): 197-202.

[28] Meason-Smith C, Diesel A, Patterson A P, Older C E, Mansell J M, Suchodolski J S and Hoffmann R. What is living on your dog's skin? Characterization of the canine cutaneous mycobiota and fungal dysbiosis in canine allergic dermatitis[J]. FEMS Microbiol Ecol, 2015, 91(12).

[29] Lange C E, Zollinger S, Tobler K, Ackermann M, Favrot C. Clinically healthy skin of dogs is a potential reservoir for canine papillomaviruses[J]. Journal of Clinical Microbiology, 2011, 49(2): 707-709.

[30] Kong H H. Skin microbiome: genomics-based insights into the diversity and role of skin microbes[J]. Trends in Molecular Medicine, 2011, 17(6): 320-328.

[31] Kong H H, Segre J A. Skin microbiome: looking back to move forward[J]. Journal of Investigative Dermatology, 2012, 132(3Pt2): 933-939.

[32] Weitzman I, Summerbell R C. The dermatophytes[J]. Clinical Microbiology Reviews, 1995, 8(2): 240-259.

[33] Ajello L, Cheng S L. The perfect state of Trichophyton mentagrophytes[J], Sabouraudia. 1967, 5(3): 230-234.

[34] Symoens F, Jousson O, Planard C, Fratti M, Staib P, Mignon B, Monod M. Molecular analysis and mating behaviour of the Trichophyton mentagrophytes species complex[J]. International Journal of Medical Microbiology, 2011, 301(3): 260-266.

[35] Moriello K A, Coyner K, Paterson S, Mignon B. Diagnosis and treatment of dermatophytosis in dogs and cats: Clinical Consensus Guidelines of the World Association for Veterinary Dermatology[J]. Vet Dermatol, 2017, 28(3): 266-268.

[36] Cafarchia C, Romito D, Sasanelli M, Lia R, Capelli G, Otranto D. The epidemiology of canine and feline dermatophytoses in southern Italy[J]. Mycoses, 2004, 47(11-12): 508-513.

[37] Sieklucki U, Oh S H, Hoyer L L. Frequent isolation of Arthroderma benhamiae from dogs with dermatophytosis[J]. Vet Dermatol, 2014, 25(1): 14-39.

[38] 陈瑶. 临床不同部位分离须癣毛癣菌的形态学、分子生物学鉴定及药敏分析[D]. 湖北:湖北中医药大学, 2019.

Chen Y. Morphology, molecular identification and antifungal susceptibility testing of clinical Trichophyton mentagrophytes strains isolated from different part of the body[D]. Hubei: Hubei university of traditional Chinese medicine, 2019 (in Chinese with English abstract).

[39] 陈柏叡,孙毅,胡小平,万喆,李若瑜. 须癣毛癣菌的形态学及分子生物学鉴定[J]. 中国真菌学杂志, 2010, 5(06): 321-326.

Chen B X, Sun Y, Hu X P, Wan Z, Li R Y. Morphological and molecular characterization of Trichophyton mentagrophytes[J]. Chinese Journal of Mycology, 2010, 5(06): 321-326 (in Chinese with English abstract).

[40] Trotha R, Graser Y, Platt J. Tinea barbae caused by a zoophilic strain of Trichophyton interdigitale[J]. Mycoses, 2003, 46(1-2): 60-63.

[41] 孙凯. 五倍子溶液对犬真菌性皮肤病的疗效研究[D].四川:四川农业大学, 2018.

Sun K. Evaluation of Galla chinensis solution treatment of dermatophytosis[D]. Sichuan: Sichuan Agricultural University,2018 (in Chinese with English abstract).

[42] 李叶. 上海地区猫真菌性皮肤病临床检查方法、流行病学调查及治疗方法比较[D]. 南京:南京农业大学, 2018.

Li Y. Clinical examination methods, epidemiological investigation and treatment of feline fungal dermatoses in Shanghai[D]. Nanjing Agricutural university,2018 (in Chinese with English abstract).

[43] 陈玉娟. 人兽共患癣菌病病原菌鉴定与体外药敏试验[D].南充:川北医学院, 2015.

Chen Y J. The pathogen identification of zoonotic dermatophytosis and antifungal susceptibility test in vitro[D]. Nanchong: North Sichuan Medical College, 2015 (in Chinese with English abstract).

[44] Brilhante R S, Cavalcante C S, Soares-Junior F A, Cordeiro R A, Sidrim J J, Rocha M F. High rate of Microsporum canis feline and canine dermatophytoses in Northeast Brazil: epidemiological and diagnostic features[J]. Mycopathologia, 2003, 156(4): 303-308.

[45] Muller A, Guaguere E, Degorce-Rubiales F, Bourdoiseau G. Dermatophytosis due to Microsporum persicolor: a retrospective study of 16 cases[J]. Canadian Veterinary Journal, 2011, 52(4): 385-388.

[46] 吴绍熙,郭宁如,刘维达. 中国致病皮肤真菌流行病学研究—1986、1996、2006年[J]. 皮肤性病诊疗学杂志, 2011, 18(03): 144-147.

Wu S X, Guo N R, Liu W D. Epidemiology of pathogenic dermatofungi in China-1986, 1996, 2006[J]. Journal of Diagnosis and Therapy on Dermato-venereology, 2011, 18(03): 144-147 (in Chinese with English abstract).

[47] 周琦. 长治市犬、猫皮肤真菌的调查及皮肤真菌体外药效测定和临床疗效观察[D]. 山西:山西农业大学, 2015.

Zhou Q. Investigation of dermatophytes on dogs and cats in Changzhi City and observation of in vitro pharmacodynamics and clinical efficacy of dermatophytes[D]. Shanxi: Shanxi Agricultural University, 2015 (in Chinese with English abstract).

[48] 韦星. 长春地区宠物犬皮肤真菌病的调查与研究[D]. 长春:吉林大学, 2011.

Wei X. Research and investigation of petdog dermatomycosis in Changchun[D]. Changchun: Jilin University, 2011 (in Chinese with English abstract).

[49] 屈德芳. 长江三角洲地区犬猫皮肤真菌病调查及体外药敏试验[D].南京:南京农业大学, 2009.

Qu D F. An investigation of dermatophytes of dog and cat in the Yangtze delta and vitro antifungal susceptibility[D]. Nanjing: Nanjing Agricutural university,2009 (in Chinese with English abstract).

[50] 陈一. 泰州地区犬常见皮肤病流行病学调查及防控对策[D]. 陕西:西北农林科技大学, 2014.

Chen Y, Epidemiological survey and control measures of common skin diseases in dogs in the Taizhou[D]. Shanxi: Northwest A&F University, 2014 (in Chinese with English abstract).

[51] 孔玲娜. 石河子地区犬皮肤病调查及真菌性皮肤病诊治[D]. 新疆:石河子大学, 2016.

Kong L N. Investigation of dogs’ dermatosis and a study of diagnosis and treatment for dogs’ fungal dermatosis in Shihezi[D]. Xinjiang: Shihezi University, 2016 (in Chinese with English abstract).

[52] 刘唤成. 吕梁市犬皮肤病的临床调查与治疗研究[D]. 呼和浩特:内蒙古农业大学, 2020.

Liu H C. Clinical investigation and treatment of canine dermatosis in Luliang city[D]. Hohehot Municipality: Inner Mongolia Agricultural University, 2020 (in Chinese with English abstract).

[53] 王利利. 阜阳地区犬常见皮肤病流行病学调查与诊治[D]. 安徽:安徽农业大学, 2016.

Wang L L. Epidemiological survey and treatment of common skin diseases in dogs in Fuyang[D]. Anhui: Anhui Agricultural University, 2016 (in Chinese with English abstract).

[54] 张兆霞. 北京地区致犬皮肤病主要病原调查与鉴定试验[D]. 新疆:石河子大学, 2009.

Zhang Z X. Survey for the main pause of dog's dermatosis in Beijing regin and related diagnostie experimcnts[D]. Xin jiang: Shihezi University, 2009 (in Chinese with English abstract).

[55] 张婉. 北京地区宠物犬皮肤真菌病的调查与研究[D]. 北京:中国农业大学, 2003.

Zhang W. Investigation and research of pet dogs dermatophytosis in Beijing[D]. Beijing: China Agricultural University, 2003 (in Chinese with English abstract).

[56] 包腾飞. 2019年池州市部分地区宠物犬皮肤病病因调查及治疗效果分析[D]. 合肥:安徽农业大学, 2020.

Bao T F. Etiological investigation and therapeutic effect on the dermatopathy of pet dog in some areas of Chizhou in 2019[D]. Hefei: Hefei Agricultural University, 2020 (in Chinese with English abstract).

[57] 李天伟. 犬皮肤真菌病和蠕形螨病的流行病学调查与临床诊疗研究[D]. 南京:南京农业大学, 2006.

Li T W. Epidemiologial investigation and clinical diagnosis and therapy of canine dermatomycosis and bemodicosis[D]. Nanjing: Nanjing Agricutural University, 2006 (in Chinese with English abstract).

[58] 景胜凡. 保定市犬真菌性皮肤病的流行病学调查与治疗[D]. 保定:河北农业大学, 2019.

Jing S F. Epidemiological investigation and treatment of Canine fungal dermatosis in Banding City[D]. Baoding: Hebei Agricultural University, 2019 (in Chinese with English abstract).

[59] 黄家雨,李学平,廖祖彬. 泸州市宠物犬真菌性皮肤病的流行病学调查[J]. 安徽农学通报. 2017, 23(23): 104-106.

Huang J Y, Li X P, Liao Z B. Epidemiological investigation of fungal dermatoses in pet dogs in Luzhou city[J]. Anhui Agricultural Science Bulletin, 2017, 23(23): 104-106 (in Chinese with English abstract).

[60] 赵彬,刘国芳,曹霞. 句容地区临床宠物犬皮肤真菌流行病学调查[J]. 中国畜禽种业, 2020, 16(06): 3-5.

Zhao B, Liu G X, Cao X. Epidemiology of dermatophytes in clinical pet dogs in Juerong area[J]. China livestock breeding industry, 2020,16(06): 3-5 (in Chinese).

[61] Baldo A, Monod M, Mathy A, Cambier L, Bagut E T, Defaweux V, Symoens F, Antoine N, Mignon B. Mechanisms of skin adherence and invasion by dermatophytes[J]. Mycoses, 2012, 55(3).

[62] Kaufman G, Horwitz B A, Duek L, Kaufman G, Horwitz B A, Duek L, Ullman Y, Berdicevsky I. Infection stages of the dermatophyte pathogen Trichophyton: microscopic characterization and proteolytic enzymes[J]. Medical mycology, 2007: 149-155.

[63] Sandy V, Jérémy T, Aline B. Pathogenesis of dermatophytosis[J]. Mycopathologia, 2008, 166 [64] Duek L, Kaufman G, Ulman Y, Berdicevsky I. The pathogenesis of dermatophyte infections in human skin sections [J]. The Journal of infection, 2004, 48(2).

[65] Karen A M, Kimberly C, Susan P, Mignon B. Diagnosis and treatment of dermatophytosis in dogs and cats [J]. Veterinary Dermatology, 2017, 28(3).

[66] Deboer D J, Moriello K A, Blum J L, Volk L M, Bredahl L K. Safety and immunologic effects after inoculation of inactivated and combined live-inactivated dermatophytosis vaccines in cats[J]. American Journal of Veterinary Research, 2002, 63(11): 1532-1537.

[67] Nilce M M, Nalu T A P, Antonio R. Pathogenesis of Dermatophytosis: Sensing the Host Tissue[J]. Mycopathologia, 2017, 182(1-2).

[68] Sheppard D C, Howell P L. Biofilm Exopolysaccharides of Pathogenic Fungi: Lessons from Bacteria [J]. The Journal of biological chemistry, 2016, 291(24).

[69] Chad J J, Jonathan C, John F K, Wang S X, Beebe D J, Huttenlocher A, Ansari H, Nett J E. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps[J]. PLOS Pathogens, 2016, 12(9).

[70] Raimunda S N B, Edmilson E M C, Glaucia M D M G, Pereira V S, Oliveira J S, Bandeira S P, Alencar L P. Quantitative and structural analyses of the in vitro and ex vivo biofilm-forming ability of dermatophytes[J]. Journal of Medical Microbiology, 2017, 66(7).

[71] Michael W H, Lyriam L R M, Ronald J H, Olson M E. Can filamentous fungi form biofilms? [J]. Trends in Microbiology, 2009, 17(11).

[72] 王端礼. 医学真菌学 [M]. 北京:人民卫生出版社, 2005: 164-167.

Wang D L. Medical mycology [M]. Beijing: People's Medical Publishing House, 2005: 164-167 (in Chinese).

[73] 刘玮. 皮肤屏障功能解析[J]. 中国皮肤性病学杂志, 2008, 22(12): 758-761.

Liu Y. Analysis of skin barrier function[J]. The Chinese Journal of Dermatovenereology, 2008, 22(12): 758-761 (in Chinese).

[74] Ogawa H, Summerbell R C, Clemons K V, Koga T, Ran Y P, Rashid A, Sohnle P G, Stevens D A. Dermatophytes and host defence in cutaneous mycoses [J]. Medical mycology, 1998, 36 Suppl 1.

[75] 彭晗. 豚鼠真菌性皮肤病模型的建立及致病机理初探[D]. 南京:南京农业大学, 2015.

Peng H, The establishment of guinea pig's model of dermatophytosis and the prelinibary syudy of the pathogenic process[D]. Nanjing: Nanjing Agricutural University, 2015 (in Chinese with English abstract).

[76] 张婉. 北京地区宠物犬皮肤真菌病的调查与研究[D]. 北京:中国农业大学, 2003.

Zhang W. Investigation and research of pet dogs dermatophytosis in Beijing[D]. Beijing: China Agricultural University, 2003 (in Chinese with English abstract).

[77] Wisal G A. An Over View of Canine Dermatophytosis[J]. South Asian Journal of Research in Microbiology, 2018.

[78] Cafarchia C, Romito D, Sasanelli M, Lia R, Capelli G, Otranto D. The epidemiology of canine and feline dermatophytoses in southern Italy [J]. Mycoses, 2004, 47(11-12).

[79] Kaplan W, Georg L K, Ajello L. Recent developments in animal ringworm and their public health implications [J]. Annals of the New York Academy of Sciences, 1958, 70(3).

[80] Kligman A M. The pathogenesis of Tinea capitis due to Microsporum audouini and Microsporum canis. I. Gross observations following the inoculation of humans[J]. Journal of Investigative Dermatology, 1952, 18(3): 231-246.

[81] Sparkes A H, Gruffydd-Jones T J, Shaw S E, Wright A I, Stokes C R. Epidemiological and diagnostic features of canine and feline dermatophytosis in the United Kingdom from 1956 to 1991[J]. Veterinary Record, 1993, 133(3).

[82] Kano R, Yasuda K, Nakamura Y, Hasegawa A. Microsporum gypseum isolated from a feline case of dermatophytosis[J]. Mycoses, 2001, 44(7-8).

[83] Muller A, Guaguère E, Degorce-Rubiales F, Bourdoiseau G. Dermatophytosis due to Microsporum persicolor: a retrospective study of 16 cases[J]. The Canadian veterinary journal, 2011, 52(4).

[84] Caplan R M. Medical uses of the Wood's lamp[J]. JAMA, 1967, 202(11): 1035-1038.

[85] Neumann E. Wood's light in dermatology[J]. Cesk Dermatol, 1949, 24(7): 298-301.

[86] Sparkes A H, Werrett G, Stokes C R, Gruffydd-Jones T. Improved sensitivity in the diagnosis of dermatophytosis by fluorescence microscopy with calcafluor white[J]. Veterinary record, 1994, 134(12): 307-308.

[87] Bonifaz A, Rios-Yuil J M, Arenas R, Araiza J, Fernández R,Mercadillo-Pérez P, Ponce-Olivera, R M. Comparison of direct microscopy, culture and calcofluor white for the diagnosis of onychomycosis[J]. Revista Iberoamericana de Micologia, 2013, 30(2): 109-111.

[88] Mackenzie D W. "Hairbrush Diagnosis" in Detection and Eradication of Non-fluorescent Scalp Ringworm[J]. British Medcial Journal, 1963, 2(5353): 363-365.

[89] Goldberg H C. "Brush" technique in animals. Finding contact sources of fungus diseases[J]. Arch Dermatol, 1965, 92(1): 103.

[90] 马天,宋月星,邹先彪. 真菌的组织病理学特殊染色[J]. 中国真菌学杂志, 2011, 6(06): 367-369.

Ma T, Song Y X, Zhou X B. Histopathological special staining for fungi[J]. Chinese Journal of Mycology. 2011, 6(06): 367-369 (in Chinese with English abstract).

[91] Grant D I. Skin diseases in the dog and cat[J]. Blackwell Scientific, 1991.

[92] White J R, Maddox C, White O, Angiuoli S V, Fricke W F. CloVR-ITS: Automated internal transcribed spacer amplicon sequence analysis pipeline for the characterization of fungal microbiota[J]. Microbiome, 2013, 1(1): 6.

[93] Cafarchia C, Gasser R B, Figueredo L A, Weigl S, Danesi P, Capelli G, Otranto D. An improved molecular diagnostic assay for canine and feline dermatophytosis[J]. Medical Mycology, 2013, 51(2): 136-143.

[94] 余进. 真菌检验技术进展[J]. 临床检验杂志. 2017, 35(10): 721-724.

Yu J. Progress in Fungus Testing Technology[J]. Journal of Clinical Laboratory, 2017, 35(10): 721-724 (in Chinese).

[95] 韩轶群. 抗真菌药物的临床应用现状和研究进展[J]. 实用医药杂志, 2011, 28(07): 647-649.

Han Y Q, The clinical application status and research progress of antifungal drugs[J]. Journal of Practical Medicine, 2011, 28(07): 647-649 (in Chinese).

[96] 元子青云,陈安九,沈怡雯. 三唑类抗真菌药物临床应用研究进展[J]. 药学与临床研究. 2018, 26(02): 125-129.

Yun Z Q Y, Chen A J, Shen Y W. Development of triazole antifungal agents[J]. Pharmaceutical and Clinical Research. 2018, 26(02): 125-129 (in Chinese).

[97] 孙凯. 五倍子溶液对犬真菌性皮肤病的疗效研究[D]. 四川:四川农业大学, 2018.

Sun K. Evaluation of Galla chinensis solution treatment of dermatophytosis[D]. Sichuan: Sichuan Agricultural University,2018 (in Chinese with English abstract).

[98] Oxford A E, Raistrick H, Simonart P. Studies in the biochemistry of micro-organisms: Griseofulvin, C17H17O6Cl, a metabolic product of Penicillium griseo-fulvum Dierckx[J]. Biochemical Journal, 1939, 33(2): 240-248.

[99] Gupta A K, Sauder D N, Shear N H. Antifungal agents: An overview. Part I[J]. Mosby, 1994, 30(5).

[100] Fromtling R A. Overview of medically important antifungal azole derivatives [J]. Clinical microbiology reviews, 1988, 1(2).

[101] Grant S M, Clissold S P. Fluconazole. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in superficial and systemic mycoses[J]. Drugs, 1990, 39(6): 877-916.

[102] Grant S M, Clissold S P. Itraconazole. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in superficial and systemic mycoses[J]. Drugs, 1989, 37(3): 310-344.

[103] 黄鑫,刘颖,陈思敏. 基于新靶点的抗真菌药物研究进展[J]. 中国真菌学杂志, 2015, 10(03): 175-181.

Huang X, Liu Y, Chen S M. The research progress on new targets of antifugal candidates[J]. Chinese Journal of Mycology, 2015, 10(03): 175-181 (in Chinese with English abstract).

[104] 张致平. 抗真菌药物研究进展[J]. 中国处方药, 2006(03): 28-32.

Zhang Z P. Development of antifungal agents[J]. Chinese prescription drugs, 2006(03): 28-32 (in Chinese with English abstract).

[105] 代猛,裘娟萍,汪琨. 几丁质合酶抑制剂作为抗真菌药物的研究进展[J]. 科技通报, 2017, 33(03): 71-76.

Dai M, Qiu J P, Wang K. Research progress of chitin synthase inhibitors as antifungal drugs[J]. Science and Technology Bulletin, 2017, 33(03): 71-76 (in Chinese with English abstract).

[106] 陈琦. 几丁质合成与水解酶的抑制剂及抑制机理[D]. 大连:大连理工大学, 2017.

Chen Q. Inhibitors of chitin synthase and chitinolytic enzymes and their inhibitory mechanism[D]. Dalian: Dalian University of Technology, 2017 (in Chinese with English abstract).

[107] 李映,崔紫宁,胡君,凌云,杨欣灵. 几丁质合成酶抑制剂[J]. 化学进展, 2007(04): 535Li Y, Cui Z N, Hu J, Lin Y, Yang X L. Study on Chitin synthase inhibitors[J]. Advances in Chemistry, 2007(04): 535-543 (in Chinese with English abstract).

[108] 唐宁枫. 新型抗真菌药—1,3-β-D葡聚糖合成酶抑制剂的研究进展[J]. 国外医学(皮肤性病学分册), 1998(05): 273-276.

Tang N F. Chemical advances development of new antifungal agents-1, 3-β-D glucan synthase inhibitors[J]. Foreign Medicine (Dermato Venereology Fascicle), 1998(05): 273-276 (in Chinese).

[109] 贺潇蒙,盛春泉,张万年. (1,3)-β-D-葡聚糖合成酶小分子抑制剂研究进展[J]. 中国药物化学杂志, 2014, 24(04): 314-319.

He X M, Sheng W Q, Development of small molecule inhibitors of (1,3) - β - D-glucan synthase[J]. Zhang W N. Chinese Journal of Medicinal Chemistry, 2014, 24(04): 314-319 (in Chinese).

[110] 叶丽娟,朱辉,田敏. 微生物来源的真菌细胞壁抑制剂的研究进展[J]. 国外医药(抗生素分册), 2005(01): 34-41.

Ye L J, Zhu H, Tian M. Development of microbially derived inhibitors of fungal cell walls[J]. Foreign medicines (antibiotic fascicle), 2005(01): 34-41 (in Chinese).

[111] Choudhary V, Schneiter R. Pathogen-Related Yeast (PRY) proteins and members of the CAP superfamily are secreted sterol-binding proteins[J]. Proceedings of the National Academy of Sciences of The United States of America, 2012, 109(42): 16882-16887.

[112] 刘晓环,张朝晖. 抗真菌药物作用靶点机理及新药研发进展[J]. 药物分析杂志, 2015, 35(02): 193-202.

Liu X H, Zhang C H. The action target mechanism of antifungal agents and research advances of novel drugs[J]. Chin J Pharm Anal, 2015, 35(02): 193-202 (in Chinese with English abstract).

[113] 胡唐玲. 白头翁汤正丁醇提取物对白念珠菌细胞膜、细胞壁和液泡的作用及机制研究[D]. 安徽:安徽中医药大学, 2018.

Hu T L. Effect and mechanism of butyl alcohol except of baitouweng decoction on cell membrane, cell wall and vacuole of Candida Albicans[D]. Anhui: Anhui University of traditional Chinese Medicine,2018 (in Chinese with English abstract).

[114] 董卓. 浅谈抗真菌药物作用靶点机理与新药的研发[J]. 中西医结合心血管病电子杂志, 2018, 6(07): 26.

Dong Z. Study on the target mechanism of antifungal drugs and the research and development of new drugs Cardiovascular Disease Journal of integrated traditional Chinese and Western Medicine, 2018, 6(07): 26 (in Chinese).

[115] Vanden B H, Koymans L, Moereels H. P450 inhibitors of use in medical treatment: focus on mechanisms of action[J]. Clinical Pharmacology & Therapeutics, 1995, 67(1): 79-100.

[116] Cauwenbergh G, Van Cutsem J. Role of animal and human pharmacology in antifungal drug design[J]. Annals of the New York Academy of Sciences, 1988, 544: 264-269.

[117] Van-Cauteren H, Heykants J, De Coster R, Cauwenbergh G. Itraconazole: pharmacologic studies in animals and humans[J]. Reviews of Infectious Diseases Journal, 1987, 9 Suppl 1: S43-S46.

[118] Grosso D S, Boyden T W, Pamenter R W, Johnson D G, Stevens D A, Galgiani J N. Ketoconazole inhibition of testicular secretion of testosterone and displacement of steroid hormones from serum transport proteins[J]. Antimicrob Agents Chemother, 1983, 23(2): 207-212.

[119] De-Keyser H, Van den Brande M. Ketoconazole in the treatment of dermatomycosis in cats and dogs[J]. The Veterinary quarterly, 1983, 5(3): 142-144.

[120] Moriello K A. In vitro efficacy of shampoos containing miconazole, ketoconazole, climbazole or accelerated hydrogen peroxide against Microsporum canis and Trichophyton species[J]. Journal of Feline Medicine and Surgery, 2017, 19(4): 370-374.

[121] Faergemann J. Pharmacokinetics of fluconazole in skin and nails[J]. Journal of the American Academy of Dermatology, 1999, 40(6 Pt 2): S14-S20.

[122] Moriello K A, Coyner K, Paterson S, Mignon B. Diagnosis and treatment of dermatophytosis in dogs and cats: Clinical Consensus Guidelines of the World Association for Veterinary Dermatology [J]. Veterinary Dermatology, 2017, 28(3).

[123] Nam H S, Kim T Y, Han S H, Hyun S. Evaluation of therapeutic efficacy of medical shampoo containing terbinafine hydrochloride and chlorhexidine in dogs with dermatophytosis complicated with bacterial infection[J]. Journal of Biomedical Research, 2013, 14(3).

[124] Gull K, Trinci A P. Griseofulvin inhibits fungal mitosis [J]. Nature, 1973, 244(5414).

[125] Oxford A E, Raistrick H, Simonart P. Studies in the biochemistry of micro-organisms: Griseofulvin, C14H17O6Cl, a metabolic product of Penicillium griseo-fulvum Dierckx [J]. Biochemical Journal, 1939, 33(2).

[126] Frank C O, Alistair J P B, Neil A R. Antifungal agents: mechanisms of action[J]. Trends in Microbiology, 2003, 11(6).

[127] Shah V P, Riegelman S, Epstein W L. Determination of griseofulvin in skin, plasma, and sweat[J]. Elsevier, 1972, 61(4).

[128] Hofbauer B, Leitner I, Ryder N S. In vitro susceptibility of microsporum canis and other dermatophyte isolates from veterinary infections during therapy with terbinafine or griseofulvin[J]. Medical Mycology, 2002, 40(2).

[129] Alastruey-Izquierdo A, Melhem M S C, Bonfietti L X, Rodricuez-Tudela J. Susceptility test for fungi: Clincal and laboratorial carrelations in medical mycology[J]. Revista do Instituto de Medicina Tropical de Sao Paulo, 2015, 57 Suppl 19.

[130] Maurizio S, Brunella P. Susceptibility testing of fungi to antifungal drugs[J]. Journal of Fungi, 2018, 4(3).

[131] Berkow E L, Lockhart S R, Ostrosky-Zeichner L. Antifungal susceptibility testing: current approaches [J]. Clinical Microbiology Reviews, 2020, 33(3).

[132] 陆承平. 兽医微生物学[M]. 第五版. 北京: 中国农业出版社, 2012.

Lu C P. Veterinary Microbiology[M]. the fifth edition. Beijing: China Agricultural Press, 2012 (in Chinese).

[133] 陶丛珊. 青藤碱在黑色素合成以及皮肤炎症中的作用及其外用制剂的初步研究[D].上海:第二军医大学, 2017.

Tao C S. The effect of sinomenine on melanin pigmentation and skin inflammation and the preliminary study of its eternal preperation[D]. Shanghai: Second Military Medical University,2017 (in Chinese with English abstract).

[134] 覃聪慧,黄秋燕,邱泉,林国彪, 梁平, 李耀华. 五味解毒药酒皮肤刺激性实验研究[J]. 蛇志, 2020, 32(03): 293-296.

Qin C H, Huang Q Y, Qiu Q, Lin G B, Liang P, Li Y H. Experimental study on skin irritation of wuwei detoxification liquor[J]. Journal of Snake, 2020, 32(03): 293-296 (in Chinese with English abstract).

[135] 张晓萌,王康俊,陈国彪, 王巨才等. 骨康宁洗剂皮肤刺激性和过敏性实验研究[J]. 中国药业, 2021, 30(16): 59-61.

Zhang X M, Wang K J, Chen G B, Wang J C. Skin irritation and hypersensitivity of gukangning lotion[J]. China Pharmaceuticals, 2021, 30(16): 59-61 (in Chinese with English abstract).

[136] 国家食品药品监督管理总局. 化学药物刺激性、过敏性和溶血性 研究技术指导原则[S], 2005.

SFDA: State Food and Drug Administration. State food and drug administration technical guidelines for the investigation of irritant, allergic and hemolytic properties of chemicals[S], 2005 (in Chinese).

[137] Fowles J R, Banton M I, Pottenger L H. A toxicological review of the propylene glycols[J]. Critical Reviews in Toxicology, 2013, 43(4): 363-390.

[138] 韩晓燕,宋亚丽,白埔,牛艺璇,赵娜,苏长海,苏伊新,肖斌. 抗真菌药物的系统分类、耐药机制及新药研发进展[J]. 中国现代应用药学, 2019, 36(11): 1430-1436.

Han X Y, Song Y L, Bai P, Niu Y X, Zhao N, Su C H, Su Y X, Xiao B. Systematic classification of antifungal drugs, resistance mechanisms and development of new drugs[J]. China Modern Applied Pharmacy, 2019, 36(11): 1430-1436 (in Chinese with English abstract).

[139] Berkow E L, Lockhart S R, Ostrosky-Zeichner L. Antifungal susceptibility testing: current approaches[J]. Clinical Microbiology Reviews. 2020, 33(3).

[140] Fernandez-Torres B, Carrillo A J, Martin E, DelPalacio A, Moore M K, Valverde A, Serrano M. In vitro activities of 10 antifungal drugs against 508 dermatophyte strains[J]. Antimicrob Agents Chemother, 2001, 45(9): 2524-2528.

[141] 赵景辉,孙秋宁,闫岩,李军. 常见皮肤癣菌体外药物敏感试验的研究[J]. 中国真菌学杂志, 2006(04): 200-205.

Zhao J H, Sun Q N, Yan Y, Li J. Development of an in vitro drug susceptibility test for common dermatophytes[J]. Chinese Journal of Mycology, 2006(04): 200-205 (in Chinese with English abstract).

[142] 陈玉娟,熊心猜,张浩,唐芹芹. 动物源性皮肤癣菌病32例患者病原菌体外药敏试验[J]. 实用皮肤病学杂志, 2019, 12(01): 5-7.

Chen Y J, Xiong X C, Zhang H, Tang Q Q. In vitro drug susceptibility test of pathogenic bacteria in 32 patients with animal-derived dermatophytosis[J]. Journal of Practical Dermatology, 2019, 12(01): 5-7 (in Chinese with English abstract).

[143] Maurya V K, Kachhwaha D, Bora A, Khatri P K, Rathore L. Determination of antifungal minimum inhibitory concentration and its clinical correlation among treatment failure cases of dermatophytosis[J]. Journal of Family Medicine and Primary Care, 2019, 8(8): 2577-2581.

[144] 刘洁,刘晓云,于波,胡小平. 85株皮肤癣菌感染的病原菌分析及标准化体外药物敏感性研究[J]. 中国真菌学杂志, 2019, 14(06): 351-356.

Liu J, Liu X P, Yu B, Hu X P. Pathogen analysis and standardized in vitro drugs in 85 dermatophyte infections sensitivity studies[J]. Chinese Journal of Mycology, 2019, 14(06): 351-356 (in Chinese with English abstract).

[145] Espinel-Ingroff A, Arthington-Skaggs B, Iqbal N, Ellis D, Pfaller M A, Messer S, Rinaldi M. Multicenter evaluation of a new disk agar diffusion method for susceptibility testing of filamentous fungi with voriconazole, posaconazole, itraconazole, amphotericin B, and caspofungin[J]. Journal of Clinical Microbiology, 2007, 45(6): 1811-1820.

[146] 周世添,郭主声,邹美兰,朱学海. 纸片扩散法与微量肉汤稀释法检测念珠菌对氟康唑和伏立康唑药物敏感性的效果观察[J]. 心血管外科杂志(电子版),2020, 009(001): 131-133.

Zhou S T, Guo Z S, Zou M L, Zhu X H. Observation on the effect of disk diffusion method and microbroth dilution method in detecting drug sensitivity of candida to fluconazole and voriconazole[J]. Journal of Cardiovascular Surgery (electronic version) ,2020, 009(001): 131-133 (in Chinese with English abstract).

[147] Tett S E. AMH (Australian Medicines Handbook, 2007 Edition) [J]. Clinical Pharmacology & Therapeutics, 2008, 83(1).

[148] 孙青. 新型三唑类抗真菌衍生物的设计、合成及活性研究[D]. 上海:第二军医大学, 2007.

Sun Q. Design, synthesis and biological evaluation of novel triazole antifungal derivatives[D]. Shanghai: Second Military Medical University, 2007 (in Chinese with English abstract).

[149] 朱文元,陈斌,吴绍熙,刘维达,倪容之. 口服氟康唑胶囊治疗皮肤浅部真菌病495例[J]. 中华皮肤科杂志, 1998(04): 57-58.

Zhu W Y, Chen B, Wu S X, Liu W D, Ni R Z. Oral fluconazole capsule in the treatment of 495 cases of superficial skin mycosis[J]. Chinese Journal of Dermatology, 1998(04): 57-58 (in Chinese).

[150] 李忠明,孙凯亮,周春红. 氟康唑片应用于浅部真菌病中的效果分析[J]. 中国现代药物应用, 2015, 9(11): 165-166.

Li Z M, Sun K L, Zhou C H. Analysis of the effect of fluconazole tablets in superficial fungal infections[J]. Modern pharmaceutical applications in China, 2015, 9(11): 165-166 (in Chinese).

[151] Sun K, Song X, Jia R, Yin Z, Zou Y, Li L, Yin L, He C, Liang X, Ye G, Yue G, Zhao X. In Vivo Evaluation of Galla chinensis Solution in the Topical Treatment of Dermatophytosis[J]. Evidence-Based Complementary and Alternative Medicine, 2017.

[152] Raimunda S N B, Lara D A, Jamille A S, Brilhante R S N, Aguiar L Sales J A, Araújo G D S, Pereira V S, Pereira-Neto W A, Pinheiro A Q. Ex vivo biofilm-forming ability of dermatophytes using dog and cat hair: an ethically viable approach for an infection model[J]. Biofouling, 2019, 35(4).

[153] Ghannoum M A, Hossain M A, Long L, Mohamed S, Mukherjee P K. Evaluation of antifungal efficacy in an optimized animal model of trichophyton mentagrophytes dermatophytosis[J]. Journal of Chemotherapy, 2004, 16(2).

[154] Sook-Jin L, Je-Ik H, Geun-Shik L, Mi-Jin P, In-Gyu C, Ki-Jeong N, Eui-Bae J. Antifungal effect of eugenol and nerolidol against microsporum gypseum in a guinea pig model[J]. Biological and Pharmaceutical Bulletin, 2007, 30(1).

[155] Yook C N, Na Y S, Choi H J, You I S, Baek J M, Baek S H. Antifungal effect of brachyglottis repanda ethanol extract [J]. Toxicological research, 2010, 26(2).

[156] Collins G D, Smith O G. Ringworm in a siamese cattery[J]. Canadian Veterinary Journal-revue Veterinaire Canadienne, 1960, 1(9): 412-415.

[157] Deboer D J, Moriello K A. Efficacy of pre-treatment with lufenuron for the prevention of Microsporum canis infection in a feline direct topical challenge model[J]. Veterinary Dermatology, 2010, 13(4): 211-229.

[158] Moriello K. Dermatophytosis in cats and dogs: a practical guide to diagnosis and treatment[J]. Practice, 2019, 41(4): 138-147.

[159] 夏思敏. 犬小孢子菌皮肤病诱发感染以及盐酸特比萘芬搽剂临床试验[D]. 南京:南京农业大学, 2013.

Xia S M. Experiments of dermatosis induced by M. canis and clinical application feo terbinafine liniment in dogs[D]. Nanjing: Nanjing Agricutural University, 2013 (in Chinese with English abstract).

[160] 陈曦. 犬用伊曲康唑凝胶剂的研制[D]. 哈尔滨:东北农业大学, 2010.

Chen X. Development of itraconazole gel for dogs[D]. Harbin: Northeast Agricultural University, 2010 (in Chinese with English abstract).

[161] 孙凯. 五倍子溶液对犬真菌性皮肤病的疗效研究[D]. 四川农业大学, 2018.

Sun K. Evaluation of Galla chinensis solution treatment of dermatophytosis[D]. Sichuan: Sichuan Agricultural University,2018 (in Chinese with English abstract).

[162] 吴云飞. 盐酸特比萘芬的安全性和抗真菌药物的敏感性及临床疗效试验[D]. 南京:南京农业大学, 2012.

Wu Y F. The safety testing of hydrochloride terbinafine and the susceptibility and clincal efficacy testing of antifungal agents. Nanjing: Nanjing Agricutural University, 2012 (in Chinese with English abstract).

[163] 黄孟军,向欢,江荣高,胡承波,柳斌杰. 我国抗菌药使用现状及防止不合理使用应对措施[J]. 中国药师, 2017, 20(04): 732-735.

Huang M J, Xiang H, Jiang R G, Hu C B, Liu B J. Current Application status and countermeasures of antibiotics irrational Use in China[J]. Chinese Pharmacist, 2017, 20(04): 732-735 (in Chinese with English abstract).

[164] 熊关越. 南昌地区家养犬血液常规及其生化指标的测定与探讨[D]. 南昌:江西农业大学, 2012.

Xiong G Y. Determination and discussion of blood routine and biochemical indexes of domestic dogs in Nanchang Area[D]. Nanchang: Jiangxi Agricultural University, 2012 (in Chinese with English abstract).

[165] Richardson M D, Aljabre S H. Pathogenesis of dermatophytosis[J]. Current Topics in Medical Mycology, 2008, 166(5-6): 49-77.

[166] Grando S A, Herron M J, Dahl M V, Nelson R D. Binding and uptake of Trichophyton rubrum mannan by human epidermal keratinocytes: a time-course study[J]. Acta dermato-venereologica, 1992, 72(4): 273.

[167] Dahl M V. Suppression of immunity and inflammation by products produced by dermatophytes[J]. Journal of the American Academy of Dermatology, 1993, 28(5).

[168] 贺绍君,丁金雪,李静,刘德义. 犬高温环境代谢特征下血常规、血液流变学和血清生化指标的变化[J]. 动物营养学报, 2018, 30(06): 2252-2261.

He S J, Ding J X, Li J, Liu D Y. Changes of blood routine, hemorheology and serum biochemical indexes under the metabolic characteristics of high temperature environment in dogs [J]. Chinese Journal of Animal Nutrition, 2018, 30(06): 2252-2261 (in Chinese).

[169] 孙艳华. 外用药的正确使用方法探讨[J]. 黑龙江医药, 2012, 25(06): 879-881.

Sun Y H. Discussion on the correct use of external medicine[J]. Heilongjiang Medicine (in Chinese).

[170] 吴国华,贾高蓉. 皮肤科外用药的使用方法[J]. 护理研究, 2000(05): 202.

Wu G H, Jia G R. Methods of use for dermatological topicals[J]. Nursing research, 2000(05): 202 (in Chinese).

[171] 叶子彬. 剂型不同用药须“对路”[J]. 当代医学, 2011, 17(22): 131-132.

Ye Z B. Different dosage forms must be used in the right way[J]. Contemporary medicine, 2011, 17(22): 131-132 (in Chinese with English abstract).

[172] 陈永顺,杨金霞,王启斌. 不同促渗剂对右旋酮洛芬氨丁三醇水凝胶贴剂透皮吸收的影响[J]. 中国药业, 2020, 29(23): 13-17.

Chen Y S, Yang J X, Wang Q B. Effect of different penetration enhancers on the transdermal permeability of dexketoprofen trometamol hydrogel patch[J]. China Pharmaceuticals, 2020, 29(23): 13-17 (in Chinese with English abstract).

[173] 罗黎霞,牛壮,符艳,谢嘉驰. 不同保湿剂和促透剂对三黄肿痛湿敷贴局部透皮吸收的影响[J]. 中国中医药科技, 2020, 27(03): 379-384.

Luo L X, Niu Z, Fu Y, Xie J C. Influences on partial transdermal absorption of sanhuang swollen wet compress by different moisturizers and penwtration enhancers[J]. Chinese Journal of Traditional Medical Science and Technology, 2020, 27(03): 379-384 (in Chinese with English abstract).

[174] 辛聪. 汉族健康人群皮肤水分与表皮密度、厚度在面部年轻化中的相关性分析[D]. 安徽医科大学, 2020.

Xin C. The analysis of relationship between skin moisture and epidermal structure in facial skin rejuvenation in healthy han subjects[D]. Anhui: Anhui Medical University, 2020 (in Chinese with English abstract).

[175] 宁宇. 硫康唑纳米乳对体癣豚鼠模型的疗效观察与皮肤药动学研究[D]. 中国人民解放军海军军医大学, 2021.

Ning Y. The efficacy in the treatment of tinea corporis in guinea pig model and the skin pharmacokinetics of sulconazole nanoemusion[D]. Shanghai: The People's Liberation Army Navy Military Medial University (in Chinese with English abstract).

中图分类号:

 S85    

开放日期:

 2021-11-30    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式