- 无标题文档
查看论文信息

中文题名:

 番茄SlPYR1参与PopW介导的抗病抗旱机制初探     

姓名:

 韩溪溪    

学号:

 2021102021    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090401    

学科名称:

 农学 - 植物保护 - 植物病理学    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 南京农业大学    

院系:

 植物保护学院    

专业:

 植物病理学    

研究方向:

 生物农药及绿色植保    

第一导师姓名:

 刘红霞    

第一导师单位:

 南京农业大学    

完成日期:

 2024-06-21    

答辩日期:

 2024-05-24    

外文题名:

 A Preliminary Study on the Involvement of SlPYR1 in PopW-mediated Disease and Drought Resistance Mechanism in Tomato    

中文关键词:

 SlPYR1 ; PopW ; ABA信号 ; 抗病抗旱 ; 植物免疫    

外文关键词:

 SlPYR1 ; PopW ; ABA signal ; Disease and drought resistance ; Plant immunity    

中文摘要:

PopW具有激活植物免疫,促进植物抗病抗旱及植物生长等多方面的作用。作为一种harpin蛋白,在农作物的绿色防控方面有着非常广泛的应用前景。因此,解析PopW的调控机制,能够为其生防制剂应用提供重要的理论依据。实验室前期研究表明,PopW可诱导植物内源脱落酸(abscisic acid, ABA)的积累,并且能够通过气孔免疫抵御黄单胞菌Xanthomonas euvesicatoria(Xe)85-10的侵染。进一步筛选得到PopW互作蛋白SlSec13,发现其能够介导PopW诱导的气孔关闭,并参与免疫反应。本实验基于以上研究基础,筛选到了SlSec13互作蛋白SlPYR1,能够介导植物的ABA信号。以SlPYR1蛋白为主要研究对象,探索其在PopW诱导的植物免疫及抗病抗旱过程中的作用。具体研究结果如下:

1  ABA受体SlPYR1正向参与PopW诱导的早期免疫,并促进植物抗病抗旱

实验初期,对番茄SlSec13的互作蛋白进行筛选,获得了蛋白SlPYR1。通过酵母双杂、双分子荧光互补、免疫共沉淀、萤火素酶互补实验等实验方法验证了二者互作关系的稳定性。利用农杆菌介导的瞬时过表达技术,发现SlPYR1的过表达可以促进PopW诱导的植物早期免疫相关过程,即过表达SlPYR1能够对PopW诱导的气孔关闭、活性氧迸发、胼胝质沉积都产生促进作用。同时,利用病毒介导的基因沉默技术,沉默烟草相关同源基因NbPYR1-like、NbSec13b。在对照(pTRV2-GUS)和沉默植株上检测PopW诱导植物抗病性,结果表明,PopW处理后,与对照植株相比,NbPYR1-like沉默组植株仍能抑制Phytophthora capsici、Pseudomonas syringae pv. tomato(Pst)DC3000、Xe 85-10的侵染,但抗病性明显减弱。同样,在沉默植株上PopW诱导的抗旱能力也显著变弱,丙二醛含量升高,脯氨酸含量降低,表明PYR1对PopW诱导的植物抗旱十分重要。

2  PopW参与植物ABA信号的传递

免疫共沉淀实验发现PopW能够影响SlPYR1的二聚化状态。通过微量分子热涌动实验,证实了PopW可以促进SlPYR1与ABA的结合,并促进植物ABA复合体ABA-SlPYR1-SlABI1的形成。核质分离实验发现,PopW能够促进SlPYR1向细胞核内转移。PopW处理使SlOST1与SlABI1结合能力减弱,表明SlOST1被SlABI1释放。磷酸化实验显示,SlOST1磷酸化转录因子SlABF2能力增强。进一步利用荧光素酶报告基因系统,证明了PopW处理会促进SlABF2结合AREB序列,提高SlABF2的转录活性及稳定性。基于上述结果,我们推测了PopW通过调控ABA信号诱导植物免疫的模型:PopW处理使得植物内源ABA含量升高,促进了SlPYR1蛋白与ABA结合,促使SlABI1与SlPYR1、ABA形成复合体。并通过这种方式,释放SlOST1激酶,进一步激活转录因子SlABF2,从而启动ABA应答基因表达。

外文摘要:

PopW has many functions such as activating plant immunity, promoting plant disease resistance and drought tolerance, and promoting plant growth. As a harpin protein, it has a very wide application prospect of crops in the green house. Therefore, it is very important to analyze its regulatory mechanism and provide a theoretical basis for its application as a biocontrol agent. Previous laboratory studies have shown that PopW induced the accumulation of endogenous abscisic acid in plants and can defend against pathogen Xanthomonas euvesicatoria (Xe) 85-10 infection through stomatal immunity. Screening of its interacting proteins revealed that SlSec13 can mediate PopW-induced stomatal closure and immune responses. Based on the above research basis, the specific regulatory mechanism was preliminarily explored, and the downstream interaction protein SlPYR1 was screened, which can mediate ABA signaling in plants. In this study, SlPYR1 protein was used as the main research object to explore its role in PopW-induced immune regulation and disease and drought tolerance. The specific results of the study are as follows:

1  ABA receptor PYR1 is positively involved in PopW-induced early immunity and promotes plant disease and drought tolerance

At the beginning of the experiment, the interaction protein of tomato SlSec13 was screened, and its downstream interaction protein SlPYR1 was clarified. The stability of the interaction between the two was verified by Yeast double-hybrid (Y2H), Bimolecular fluorescence complementation (BiFC), Co-precipitation for immunoprecipitation (CoIP), Luciferase complementation assay (LCA) and other experiments. Through Agrobacterium-mediated transient overexpression techniques, overexpression of SlPYR1 was found to promote PopW-induced plant immune-related processes. That is, overexpression of SlPYR1 can promote PopW-induced stomatal closure, burst of reactive oxygen species, and callus deposition. At the same time, virus-mediated gene silencing (VIGS) technology was used to silence tobacco-related homologous genes NbPYR1-like and NbSec13b. Inoculation of P. capsici, Pst DC3000 and Xe 85-10 on silent plants showed that NbPYR1-like silencing could lead to faster infection by P. capsici and also affect the colonization of Pst DC3000 and Xe 85-10 inhibited by PopW. Then, the drought simulation experiment was carried out with silent plants, and the drought tolerance of silent plants was significantly weakened, the malondialdehyde content increased, and the proline content decreased, indicating that PYR1 is very important for PopW-induced plant drought tolerance.

2  Positively modulation of ABA signaling by PopW

Immunoprecipitation experiments revealed that PopW could affect the dimerization state of SlPYR1. The MST assay confirmed that PopW could promote the binding of SlPYR1 to ABA and the formation of the plant ABA complex ABA-SlPYR1-SlABI1. Nucleoplasmic separation experiments revealed that PopW was able to promote the translocation of SlPYR1 into the nucleus. PopW treatment diminished the binding ability of SlOST1 to SlABI1, indicating that SlOST1 was released by SlABI1. Phosphorylation experiments showed that SlOST1 phosphorylation of the transcription factor SlABF2 was enhanced. At the same time, using the luciferase reporter system, it was proved that PopW treatment could promote the binding of SlABF2 to the AREB sequence and improve the transcriptional activity and stability of SlABF2. Based on the above results, we speculated that PopW regulated the model of ABA immunity in plants: PopW treatment increased the content of endogenous ABA in plants, promoted the binding of SlPYR1 protein to ABA, and promoted the formation of a complex between PP2C protein SlABI1 and SlPYR1 and ABA. Thereby the SlOST1 kinase is released, which further phosphorylates the transcription factor SlABF2, thereby activating ABA-responsive gene expression.

参考文献:

[1] 鲍婷婷.PopW互作蛋白SlVHA-B2和SlCA2功能探析[D].南京:南京农业大学,2022.

[2] 高方园.PopW互作蛋白的筛选与番茄WD40蛋白SlSec13的功能初探[D].南京:南京农业大学,2022.

[3] 韩礼新.PopW 蛋白可湿性粉剂的研发及其应用[D].南京:南京农业大学,2022.

[4] 李建刚.青枯劳尔氏菌PopW蛋白生物学特性及其抗病功能研究[D].南京:南京农业大学,2009.

[5] 王翠.转PopW基因烟草的鉴定及其抗病抗氧化分析[D].南京:南京农业大学,2014.

[6] 卫甜.PopW蛋白诱导植物防御Xanthomonas euvesicatoria早期侵染的机制研究[D].南京:南京农业大学,2015.

[7] 郑丽,罗玉明,薛庆云等.PopW蛋白对黄瓜霜霉病的防病促生作用[J].植物病理学报,2013,43(02):179-186.

[8] 周小四.PopW蛋白通过调控气孔开度影响植物对番茄细菌性疮痂病和干旱的抗性机理研究[D].南京:南京农业大学,2020.

[9] Abou-Saleh R H, Hernandez-Gomez M C, Amsbury S, et al. Interactions between callose and cellulose revealed through the analysis of biopolymer mixtures[J]. Nature Communications, 2018, 9(1): 4538.

[10] Abuqamar S, Luo H, Laluk K, et al. Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor[J]. Plant Journal, 2009, 58(2): 347-360.

[11] Akbudak B, Akbudak N, Seniz V, et al. The effect of harpin treatment on storage of cherry tomato cv. Naomi[C]. International Conference on Managing Quality in Chains-The Integrated View on Fruits and Vegetables Quality 712. 2006: 237-244.

[12] Ali F, Qanmber G, Li F, et al. Updated role of ABA in seed maturation, dormancy, and germination[J]. Journal of Advanced Research, 2022, 35: 199-214.

[13] Aljaafri W A R, McNeece B T, Lawaju B R, et al. A harpin elicitor induces the expression of a coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene and others functioning during defense to parasitic nematodes[J]. Plant Physiology and Biochemistry, 2017, 121: 161-175.

[14] Ausubel F M. Are innate immune signaling pathways in plants and animals conserved?[J]. Nature Immunology, 2005, 6(10): 973-979.

[15] Baker C J, Orlandi E W, Mock N M. Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension Cells[J]. Plant Physiology, 1993, 102(4): 1341-1344.

[16] Bally J, Jung H, Mortimer C, et al. The rise and rise of Nicotiana benthamiana: a plant for all reasons[J]. Annual Review of Phytopathology, 2018, 56: 405-426.

[17] Barchenger D W, Lamour K H, Bosland P W. Challenges and strategies for breeding resistance in Capsicum annuum to the multifarious pathogen, Phytophthora capsici[J]. Frontiers in Plant Science, 2018, 9: 628.

[18] Belda-Palazon B, Gonzalez-Garcia M P, Lozano-Juste J, et al. PYL8 mediates ABA perception in the root through non-cell-autonomous and ligand-stabilization-based mechanisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(50): E11857-e11863.

[19] Belda-Palazón, Borja, and Pedro L. Rodriguez. Degradation of abscisic acid receptors through the endosomal pathway[M]. Plant Endosomes: Methods and Protocols, 2020: 35-48.

[20] Bloch D, Puli M R, Mosquna A, et al. Abiotic stress modulates root patterning via ABA-regulated microRNA expression in the endodermis initials[J]. Development, 2019, 146(17).

[21] Bulgakov V P, Wu H C, Jinn T L. Coordination of ABA and chaperone signaling in plant stress responses[J]. Trends In Plant Science, 2019, 24(7): 636-651.

[22] Chong L, Xu R, Huang P, et al. The tomato OST1-VOZ1 module regulates drought-mediated flowering[J]. The Plant Cell, 2022, 34(5): 2001-2018.

[23] Chuang H, Chang P Y, Syu Y. Harpin protein, an elicitor of disease resistance, acts as a growth promoter in Phalaenopsis orchids[J]. Journal of plant Growth Regulation, 2014, 33: 788-797.

[24] Chuang H W, Harnrak A, Chen Y C, et al. A harpin-induced ethylene-responsive factor regulates plant growth and responses to biotic and abiotic stresses[J]. Biochemical and Biophysical Research Communications, 2010, 402(2): 414-420.

[25] Creelman R A, Mullet J E. Biosynthesis and action of jasmonates in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 355-381.

[26] Cutler S R, Rodriguez P L, Finkelstein R R, et al. Abscisic acid: emergence of a core signaling network[J]. Annual Review of Plant Biology, 2010, 61: 651-679.

[27] Dalal M, Chinnusamy V. ABA receptors: prospects for enhancing biotic and abiotic stress tolerance of crops[J]. Elucidation of Abiotic Stress Signaling in Plants: Functional Genomics Perspectives, Volume 1, 2015: 271-298.

[28] Danquah A, De Zélicourt A, Colcombet J, et al. The role of ABA and MAPK signaling pathways in plant abiotic stress responses[J]. Biotechnology advances, 2014, 32(1): 40-52.

[29] De Brasi-Velasco S, Sánchez-Guerrero A, Castillo M C, et al. Thioredoxin TRXo1 is involved in ABA perception via PYR1 redox regulation[J]. Redox Biology, 2023, 63: 102750.

[30] de Torres-Zabala M, Truman W, Bennett M H, et al. Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease[J]. The EMBO Journal, 2007, 26(5): 1434-1443.

[31] Delmas F, Sankaranarayanan S, Deb S, et al. ABI3 controls embryo degreening through Mendel's I locus[J]. Proceedings of the National Academy of Sciences, 2013, 110(40): E3888-E3894.

[32] Demirkol G. PopW enhances drought stress tolerance of alfalfa via activating antioxidative enzymes, endogenous hormones, drought related genes and inhibiting senescence genes[J]. Plant Physiology and Biochemistry, 2021, 166: 540-548.

[33] Desikan R, Hancock J T, Ichimura K, et al. Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6[J]. Plant Physiology, 2001, 126(4): 1579-1587.

[34] Dittrich M, Mueller H M, Bauer H, et al. The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration[J]. Nature Plants, 2019, 5(9): 1002-1011.

[35] Dodds P N, Rathjen J P. Plant immunity: towards an integrated view of plant–pathogen interactions[J]. Nature Reviews Genetics, 2010, 11(8): 539-548.

[36] Dong H P, Peng J, Bao Z, et al. Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense[J]. Plant Physiology, 2004, 136(3): 3628-3638.

[37] Dong H S, Delaney T P, Bauer D W, et al. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene[J]. The Plant Journal, 1999, 20(2): 207-215.

[38] Dou D, Zhou J M. Phytopathogen effectors subverting host immunity: different foes, similar battleground[J]. Cell Host & Microbe, 2012, 12(4): 484-495.

[39] Fernando V C D, Schroeder D F. Role of ABA in Arabidopsis salt, drought, and desiccation tolerance[M]. Abiotic and biotic stress in plants-recent advances and future perspectives. IntechOpen, 2016.

[40] Fidler J, Graska J, Gietler M, et al. PYR/PYL/RCAR receptors play a vital role in the abscisic-acid-dependent responses of plants to external or internal stimuli[J]. Cells, 2022, 11(8).

[41] Fontanilla M, Montes M, De Prado R. Effects of the foliar-applied protein "Harpin(Ea)" (messenger) on tomatoes infected with Phytophthora infestans[J]. Communications in Agricultural and Applied Biological Sciences, 2005, 70(3): 41-45.

[42] Fujii H, Chinnusamy V, Rodrigues A, et al. In vitro reconstitution of an abscisic acid signalling pathway[J]. Nature, 2009, 462(7273): 660-664.

[43] Fujii H, Verslues P E, Zhu J K. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo[J]. Proceedings of the National Academy of Sciences of the United States, 2011, 108(4): 1717-1722.

[44] Fujii H, Zhu J K. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress[J]. Proceedings of the National Academy of Sciences of the United States, 2009, 106(20): 8380-8385.

[45] Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants[J]. Plant Physiology, 2013, 147(1): 15-27.

[46] Furihata T, Maruyama K, Fujita Y, et al. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1[J]. Proceedings of the National Academy of Sciences of the United States, 2006, 103(6): 1988-1993.

[47] Geiger D, Scherzer S, Mumm P, et al. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities[J]. Proceedings of the National Academy of Sciences of the United States, 2010, 107(17): 8023-8028.

[48] Gómez-Porras J L, Riaño-Pachón D M, Dreyer I, et al. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice[J]. BMC Genomics, 2007, 8: 260.

[49] Gonzalez-Guzman M, Pizzio G A, Antoni R, et al. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid[J]. The Plant Cell, 2012, 24(6): 2483-2496.

[50] He S Y. Elicitation of plant hypersensitive response by bacteria[J]. Plant Physiology, 1996, 112(3): 865-869.

[51] Jain B P, Pandey S. WD40 repeat proteins: Signalling scaffold with diverse functions[J]. Protein Journal, 2018, 37(5): 391-406.

[52] Jeong S, Lim C W, Lee S C. CaADIP1-dependent CaADIK1-kinase activation is required for abscisic acid signalling and drought stress response in Capsicum annuum[J]. New Phytologist, 2021, 231(6): 2247-2261.

[53] Jones J D, Dangl J L. The plant immune system[J]. Nature. 2006, 444(7117): 323-329.

[54] Johnson R R, Wagner R L, Verhey S D, et al. The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences[J]. Plant Physiology, 2002, 130(2): 837-846.

[55] Kim J S, Mizoi J, Yoshida T, et al. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis[J]. Plant and Cell Physiology, 2011, 52(12): 2136-2146.

[56] Klingler J P, Batelli G, Zhu J K. ABA receptors: the START of a new paradigm in phytohormone signalling[J]. Journal of Experimental Botany, 2010, 61(12): 3199-3210.

[57] Kulik A, Wawer I, Krzywińska E, et al. SnRK2 protein kinases-key regulators of plant response to abiotic stresses[J]. Omics: a journal of integrative biology, 2011, 15(12): 859-872.

[58] Kwak J M, Mori I C, Pei Z M, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis[J]. The EMBO Journal, 2003, 22(11): 2623-2633.

[59] Lamb C, Dixon R A. The oxidative burst in plant diease resistance[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 251-275.

[60] Lamour K H, Stam R, Jupe J, et al. The oomycete broad-host-range pathogen Phytophthora capsici[J]. Molecular Plant Pathology, 2012, 13(4): 329-337.

[61] Lee J H, Yoon H J, Terzaghi W, et al. DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction[J]. The Plant Cell, 2010, 22(6): 1716-1732.

[62] Leube M P, Grill E, Amrhein N. ABI1 of Arabidopsis is a protein serine/threonine phosphatase highly regulated by the proton and magnesium ion concentration[J]. FEBS Letters, 1998, 424(1-2): 100-104.

[63] Levine A. Oxidative stress as a regulator of environmental responses in plants[M]. Plant responses to environmental stresses. Routledge, 2018: 247-264.

[64] Li B, Meng X Z, Shan L B, et al. Transcriptional regulation of pattern-triggered immunity in plants[J]. Cell Host Microbe, 2016, 19(5): 641-650.

[65] Li J G, Cao J, Sun F F, et al. Control of Tobacco mosaic virus by PopW as a result of induced resistance in tobacco under greenhouse and field conditions[J]. Phytopathology, 2011, 101(10): 1202-1208.

[66] Li J G, Liu H X, Cao J, et al. PopW of Ralstonia solanacearum, a new two-domain harpin targeting the plant cell wall[J]. Molecular Plant Pathology, 2010, 11(3): 371-381.

[67] Li Q, Ai G, Shen D, et al. A Phytophthora capsici effector targets ACD11 binding partners that regulate ROS-mediated defense response in Arabidopsis[J]. Molecular Plant, 2019, 12(4): 565-581.

[68] Li X, Han B, Xu M, et al. Plant growth enhancement and associated physiological responses are coregulated by ethylene and gibberellin in response to harpin protein Hpa1[J]. Planta, 2014, 239(4): 831-846.

[69] Li X, Han L, Zhao Y, et al. Hpa1 harpin needs nitroxyl terminus to promote vegetative growth and leaf photosynthesis in Arabidopsis[J]. Journal of Bioscience and Bioengineering, 2014, 39(1): 127-137.

[70] Lindgren P B. The role of hrp genes during plant-bacterial interactions[J]. Annual Review of Phytopathology, 1997, 35: 129-152.

[71] Liu F, Zhang H, Ding L, et al. Reversal of rdo5 1, a homolog of rice seed dormancy4, interacts with bHLH57 and controls ABA biosynthesis and seed dormancy in Arabidopsis[J]. The Plant Cell, 2020, 32(6): 1933-1948.

[72] Liu H, Wang Y, Zhou X, et al. Overexpression of a harpin-encoding gene PopW from Ralstonia solanacearum primed antioxidant defenses with enhanced drought tolerance in tobacco plants[J]. Plant Cell Reports, 2016, 35(6): 1333-1344.

[73] Liu L, Li Y, Xu Z, et al. The Xanthomonas type III effector XopAP prevents stomatal closure by interfering with vacuolar acidification[J]. Journal of Integrative Plant Biology, 2022, 64(10): 1994-2008.

[74] Liu Y, Zhang H, Wang J, et al. Nonpathogenic Pseudomonas syringae derivatives and its metabolites trigger the plant “cry for help” response to assemble disease suppressing and growth promoting rhizomicrobiome[J]. Nature Communications, 2024, 15(1): 1907.

[75] Liu Z, Hou S, Rodrigues O, et al. Phytocytokine signalling reopens stomata in plant immunity and water loss[J]. Nature, 2022, 605(7909): 332-339.

[76] Liu Z, Zhang M, Wang L, et al. Genome-wide identification and expression analysis of PYL family genes and functional characterization of GhPYL8D2 under drought stress in Gossypium hirsutum[J]. Plant Physiology and Biochemistry, 2023, 203: 108072.

[77] Luna E, Pastor V, Robert J, et al. Callose deposition: a multifaceted plant defense response[J]. Molecular Plant-Microbe Interactions, 2011, 24(2): 183-193.

[78] Ma Y, Szostkiewicz I, Korte A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors[J]. Science, 2009, 324(5930): 1064-1068.

[79] Macho A P, Zipfel C. Plant PRRs and the activation of innate immune signaling[J]. Molecular Cell, 2014, 54(2): 263-272.

[80] Mao H, Jian C, Cheng X, et al. The wheat ABA receptor gene TaPYL1-1B contributes to drought tolerance and grain yield by increasing water-use efficiency[J]. Plant Biotechnology Journal, 2022, 20(5): 846-861.

[81] Marusig D, Tombesi S. Abscisic acid mediates drought and salt stress responses in Vitis vinifera-A review[J]. International Journal of Molecular Sciences, 2020, 21(22).

[82] Mehdi S, Derkacheva M, Ramström M, et al. The WD40 domain protein MSI1 functions in a histone deacetylase complex to fine-tune abscisic acid signaling[J]. The Plant Cell, 2016, 28(1): 42-54.

[83] Melcher K, Ng L M, Zhou X E, et al. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors[J]. Nature, 2009, 462(7273): 602-608.

[84] Meng X, Zhang S. MAPK cascades in plant disease resistance signaling[J]. Annual Review of Phytopathology, 2013, 51: 245-266.

[85] Metcalf W S, Quickenden T I. Di-imide and the chemiluminescence of luminol[J]. Nature, 1965, 206(4983): 506-507.

[86] Miao R, Yuan W, Wang Y, et al. Low ABA concentration promotes root growth and hydrotropism through relief of ABA insensitive 1-mediated inhibition of plasma membrane H(+)-ATPase 2[J]. Science Advances, 2021, 7(12).

[87] Monneveux P, Belhassen E. The diversity of drought adaptation in the wide[J]. Plant Growth Regulation, 1996, 20(2): 85-92.

[88] Mur L A, Kenton P, Lloyd A J, et al. The hypersensitive response; the centenary is upon us but how much do we know?[J]. Journal of Experimental Botany, 2008, 59(3): 501-520.

[89] Mustilli A C, Merlot S, Vavasseur A, et al. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production[J]. The Plant Cell, 2002, 14(12): 3089-3099.

[90] Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism[J]. Annual Review of Plant Biology, 2005, 56: 165-185.

[91] Nemoto K, Kagawa M, Nozawa A, et al. Identification of new abscisic acid receptor agonists using a wheat cell-free based drug screening system[J]. Scientific Reports, 2018, 8(1): 4268.

[92] Newman M A, Dow J M, Molinaro A, et al. Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides[J]. Journal of Endotoxin Research, 2007, 13(2): 69-84.

[93] Nishimura N, Sarkeshik A, Nito K, et al. PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis[J]. The Plant Journal, 2010, 61(2): 290-299.

[94] Nishiyama R, Watanabe Y, Fujita Y, et al. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis[J]. The Plant Cell, 2011, 23(6): 2169-2183.

[95] O'Brien J A, Daudi A, Butt V S, et al. Reactive oxygen species and their role in plant defence and cell wall metabolism[J]. Planta, 2012, 236(3): 765-779.

[96] Pandey S, Nelson D C, Assmann S M. Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis[J]. Cell, 2009, 136(1): 136-148.

[97] Park S Y, Fung P, Nishimura N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science, 2009, 324(5930): 1068-1071.

[98] Penfield S. Seed dormancy and germination[J]. Current Biology, 2017, 27(17): R874-r878.

[99] Pizzio G A, Rodriguez L, Antoni R, et al. The PYL4 A194T mutant uncovers a key role of PYR1-like4/protein phosphatase 2CA interaction for abscisic acid signaling and plant drought resistance[J]. Plant Physiology, 2013, 163(1): 441-455.

[100] Ramachandran P, Augstein F, Mazumdar S, et al. Abscisic acid signaling activates distinct VND transcription factors to promote xylem differentiation in Arabidopsis[J]. Current Biology. 2021, 31(14): 3153-3161.e3155.

[101] Roy D, Panchal S, Rosa B A, et al. Escherichia coli O157:H7 induces stronger plant immunity than Salmonella enterica Typhimurium SL1344[J]. Phytopathology, 2013, 103(4): 326-332.

[102] Saavedra X, Modrego A, Rodríguez D, et al. The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress[J]. Plant Physiology, 2010, 152(1): 133-150.

[103] Saijo Y, Loo E P. Plant immunity in signal integration between biotic and abiotic stress responses[J]. New Phytologist, 2020, 225(1): 87-104.

[104] Santiago J, Dupeux F, Round A, et al. The abscisic acid receptor PYR1 in complex with abscisic acid[J]. Nature, 2009, 462(7273): 665-668.

[105] Sawinski K, Mersmann S, Robatzek S, et al. Guarding the green: pathways to stomatal immunity[J]. Molecular Plant-Microbe Interactions, 2013, 26(6): 626-632.

[106] Schopfer P, Plachy C. Control of seed germination by abscisic acid: III. Effect on embryo growth potential (minimum turgor pressure) and growth coefficient (cell wall extensibility) in Brassica napus L[J]. Plant Physiology, 1985, 77(3): 676-686.

[107] Shang Y, Yang D, Ha Y, et al. Brassinosteroid-insensitive 1-associated receptor kinase 1 modulates abscisic acid signaling by inducing PYR1 monomerization and association with ABI1 in Arabidopsis[J]. Frontiers in Plant Science, 2022, 13: 849467.

[108] Shi Y, Liu X, Zhao S, et al. The PYR-PP2C-CKL2 module regulates ABA-mediated actin reorganization during stomatal closure[J]. New Phytologist, 2022, 233(5): 2168-2184.

[109] Sirichandra C, Davanture M, Turk B E, et al. The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover[J]. Public Library of Science ONE, 2010, 5(11): e13935.

[110] Sirichandra C, Gu D, Hu H C, et al. Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase[J]. FEBS Letters, 2009, 583(18): 2982-2986.

[111] Son S, Im J H, Song G, et al. OsWRKY114 inhibits ABA-Induced susceptibility to Xanthomonas oryzae pv. oryzae in Rice[J]. International Journal of Molecular Sciences, 2022, 23(15): 8825.

[112] Sun C H, Chuang H W. Effects of harpin and chitosan elicitors on the improvement of post-shipping quality of Phalaenopsis Orchids[J]. Journal of the Taiwan Society for Horticultural Science, 2010, 56(3): 183-191.

[113] Sun Y, Oh D H, Duan L, et al. Divergence in the ABA gene regulatory network underlies differential growth control[J]. Nature Plants, 2022, 8(5): 549-560.

[114] Sun Z, Feng Z, Ding Y, et al. RAF22, ABI1 and OST1 form a dynamic interactive network that optimizes plant growth and responses to drought stress in Arabidopsis[J]. Molecular Plant, 2022, 15(7): 1192-1210.

[115] Szostkiewicz I, Richter K, Kepka M, et al. Closely related receptor complexes differ in their ABA selectivity and sensitivity[J]. The Plant Journal, 2010, 61(1): 25-35.

[116] Takahashi F, Suzuki T, Osakabe Y, et al. A small peptide modulates stomatal control via abscisic acid in long-distance signalling[J]. Nature, 2018, 556(7700): 235-238.

[117] Takasaki H, Maruyama K, Takahashi F, et al. SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence[J]. The Plant Journal, 2015, 84(6): 1114-1123.

[118] Takeuchi J, Mimura N, Okamoto M, et al. Structure-based chemical design of abscisic acid antagonists that block PYL-PP2C receptor interactions[J]. Acs Chemical Biology, 2018, 13(5): 1313-1321.

[119] Tan L, Salih H, Htet N N W, et al. Genomic analysis of WD40 protein family in the mango reveals a TTG1 protein enhances root growth and abiotic tolerance in Arabidopsis[J]. Scientific Reports, 2021, 11(1): 2266.

[120] Tan W, Zhang D, Zhou H, et al. Transcription factor HAT1 is a substrate of SnRK2.3 kinase and negatively regulates ABA synthesis and signaling in Arabidopsis responding to drought[J]. PLoS Genetics, 2018, 14(4): e1007336.

[121] Ton J, Flors V, Mauch-Mani B. The multifaceted role of ABA in disease resistance[J]. Trends in Plant Science, 2009, 14(6): 310-317.

[122] Torres M A, Dangl J L, Jones J D. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response[J]. Proceedings of the National Academy of Sciences of the United States, 2002, 99(1): 517-522.

[123] Tran L S, Urao T, Qin F, et al. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States, 2007, 104(51): 20623-20628.

[124] Trovato M, Mattioli R, Costantino P. Multiple roles of proline in plant stress tolerance and development[J]. Rendiconti Lincei, 2008, 19(4): 325-346.

[125] Upadhyaya H, Khan M H, Panda S K. Hydrogen peroxide induces oxidative stress in detached leaves of Oryza sativa L[J]. General and Applied Plant Physiology, 2007, 33(1-2): 83-95.

[126] Vahisalu T, Kollist H, Wang Y F, et al. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling[J]. Nature, 2008, 452(7186): 487-491.

[127] Verma V, Ravindran P, Kumar P P. Plant hormone-mediated regulation of stress responses[J]. BMC Plant Biology, 2016, 16: 86.

[128] Wang P, Xue L, Batelli G, et al. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action[J]. Proceedings of the National Academy of Sciences of the United States, 2013, 110(27): 11205-11210.

[129] Wang X F, Zhang D P. ABA signal perception and ABA receptors[J]. Abscisic acid: metabolism, transport and signaling, 2014: 89-116.

[130] Wang Y, Chen Z H, Zhang B, et al. PYR/PYL/RCAR abscisic acid receptors regulate K+ and Cl- channels through reactive oxygen species-mediated activation of Ca2+ channels at the plasma membrane of intact Arabidopsis guard cells[J]. Plant Physiology, 2013, 163(2): 566-577.

[131] Wang Y, Liu R, Chen L, et al. Nicotiana tabacum TTG1 contributes to ParA1-induced signalling and cell death in leaf trichomes[J]. Journal of Cell Science, 2009, 122(15): 2673-2685.

[132] Wang Y, Pruitt R N, Nürnberger T, et al. Evasion of plant immunity by microbial pathogens[J]. Nature Reviews Microbiology, 2022, 20(8): 449-464.

[133] Wang Z, Ren Z, Cheng C, et al. Counteraction of ABA-mediated inhibition of seed germination and seedling establishment by ABA signaling terminator in Arabidopsis[J]. Molecular Plant, 2020, 13(9): 1284-1297.

[134] Waszczak C, Carmody M, Kangasjärvi J. Reactive oxygen species in plant signaling[J]. Annual Review of Plant Biology, 2018, 69: 209-236.

[135] Wei T, Wang L, Zhou X, et al. PopW activates PAMP-triggered immunity in controlling tomato bacterial spot disease[J]. Biochemical and Biophysical Research Communications, 2015, 463(4): 746-750.

[136] Wei Z M, Laby R J, Zumoff C H, et al. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora[J]. Science, 1992, 257(5066): 85-88.

[137] Weiner J J, Peterson F C, Volkman B F, et al. Structural and functional insights into core ABA signaling[J]. Current Opinion in Plant Biology, 2010, 13(5): 495-502.

[138] Wu F Q, Xin Q, Cao Z, et al. The magnesium-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling: new evidence in Arabidopsis[J]. Plant Physiology, 2009, 150(4): 1940-1954.

[139] Wu S, Shan L, He P. Microbial signature-triggered plant defense responses and early signaling mechanisms[J]. Plant Science, 2014, 228: 118-126.

[140] Wu S W, Kumar R, Iswanto A B B, et al. Callose balancing at plasmodesmata[J]. Journal Of Experimental Botany, 2018, 69(22): 5325-5339.

[141] Xie T, Ren R, Zhang Y Y, et al. Molecular mechanism for inhibition of a critical component in the Arabidopsis thaliana abscisic acid signal transduction pathways, SnRK2.6, by protein phosphatase ABI1[J]. Journal of Biological Chemistry, 2012, 287(1): 794-802.

[142] Xu X, Wan W, Jiang G, et al. Nucleocytoplasmic trafficking of the Arabidopsis WD40 repeat protein XIW1 regulates ABI5 stability and abscisic acid responses[J]. Molecular Plant, 2019, 12(12):1598-1611.

[143] Yan C, Yang T, Wang B, et al. Genome-Wide Identification of the WD40 gene family in Tomato (Solanum lycopersicum L.)[J]. Genes, 2023, 14(6): 1273.

[144] Yang Y, Zhao Y, Zhang Y, et al. A mitochondrial RNA processing protein mediates plant immunity to a broad spectrum of pathogens by modulating the mitochondrial oxidative burst[J]. The Plant Cell, 2022, 34(6): 2343-2363.

[145] Yar, Wang. Application of TRV-GFP vector in strawflower plants[J]. Journal of Beijing University of Agriculture, 2015.

[146] Ye H, Liu S, Tang B, et al. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways[J]. Nature Communications, 2017, 8: 14573.

[147] Yin P, Fan H, Hao Q, et al. Structural insights into the mechanism of abscisic acid signaling by PYL proteins[J]. Nature Structural & Molecular Biology, 2009, 16(12): 1230-1236.

[148] Yoshida T, Fujita Y, Maruyama K, et al. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress[J]. Plant, Cell & Environment, 2015, 38(1): 35-49.

[149] Yoshida T, Fujita Y, Sayama H, et al. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation[J]. The Plant Journal, 2010, 61(4): 672-685.

[150] Yoshida T, Obata T, Feil R, et al. The role of abscisic acid signaling in maintaining the metabolic balance required for Arabidopsis growth under nonstress conditions[J]. The Plant Cell. 2019, 31(1): 84-105.

[151] Yu Z, Zhang D, Xu Y, et al. CEPR2 phosphorylates and accelerates the degradation of PYR/PYLs in Arabidopsis[J]. Journal of Experimental Botany, 2019, 70(19): 5457-5469.

[152] Zavaliev R, Dong X. NPR1, a key immune regulator for plant survival under biotic and abiotic stresses[J]. Molecular Cell, 2024, 84(1): 131-141

[153] Zhan Q, Shen J, Nie K, et al. MIW1 participates in ABA signaling through the regulation of MYB30 in Arabidopsis[J]. Plant Science, 2023, 332: 111717.

[154] Zhang L, Hu G, Cheng Y, et al. Heterotrimeric G protein alpha and beta subunits antagonistically modulate stomatal density in Arabidopsis thaliana[J]. Developmental Biology, 2008, 324(1): 68-75.

[155] Zhang L, Xiao S, Li W, et al. Overexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance[J]. Journal of Experimental Botany, 2011, 62(12): 4229-4238.

[156] Zhang Y, Zhao Y, Li T, et al. TaPYL4, an ABA receptor gene of wheat, positively regulates plant drought adaptation through modulating the osmotic stress-associated processes[J]. BMC Plant Biology, 2022, 22(1): 423.

[157] Zhao J, Yuan Z, Han X, et al. The carbonic anhydrase βCA1 functions in PopW-mediated plant defense responses in tomato[J]. International Journal of Molecular Sciences, 2023, 24(13).

[158] Zhou X, Chen Y, Zhao Y, et al. The application of exogenous PopW increases the tolerance of Solanum lycopersicum L. to drought stress through multiple mechanisms[J]. Physiology and Molecular Biology of Plants, 2020, 26(12): 2521-2535.

[159] Zhou Z, Bi G, Zhou J M. Luciferase complementation assay for protein‐protein interactions in plants[J]. Current Protocols in Plant Biology, 2018, 3(1): 42-50.

[160] Zinsmeister J, Lalanne D, Terrasson E, et al. ABI5 is a regulator of seed maturation and longevity in legumes[J]. The Plant Cell. 2016, 28(11): 2735-2754.

[161] Zipfel C, Felix G. Plants and animals: a different taste for microbes?[J]. Current Opinion in Plant Biology, 2005, 8(4): 353-360.

中图分类号:

 S43    

开放日期:

 2024-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式