- 无标题文档
查看论文信息

中文题名:

 青藏高原高寒草甸植物-土壤线虫互作及其对叶面病原真菌抑制剂施用、氮添加和增温的响应    

姓名:

 张圆圆    

学号:

 2019103005    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 071300    

学科名称:

 理学 - 生态学    

学生类型:

 硕士    

学位:

 理学硕士    

学校:

 南京农业大学    

院系:

 资源与环境科学学院    

专业:

 生态学    

研究方向:

 生态系统生态学    

第一导师姓名:

 郭辉    

第一导师单位:

 南京农业大学    

完成日期:

 2022-06-10    

答辩日期:

 2022-05-30    

外文题名:

 Plant-nematode interaction and its response to foliar fungicide, nitrogen addition and warming in a Tibetan alpine meadow    

中文关键词:

 叶面病原真菌 ; ; 气候变暖 ; 土壤线虫 ; 植物-土壤线虫相互作用 ; 青藏高原高寒草甸    

外文关键词:

 leave pathogens ; nitrogen ; clime warming ; soil nematode ; plant-soil nematode interaction ; Tibetan alpine meadow    

中文摘要:

      土壤线虫作为土壤食物网的重要组分,通过取食植物根系和加快物质循环等生态过程影响着植物的生长发育和群落动态。土壤线虫群落的组成和功能也会因植物群落物种组成和多样性的改变而变化。植物和土壤线虫群落紧密联系且相互作用,共同维持着陆地生态系统的物种多样性和功能。然而, 这种相互作用如何受到气候变化、养分输入和其他生物干扰的影响还不清楚。
青藏高原是对全球变化响应最敏感的区域之一,其生态系统脆弱,易受气候和环境变化的影响。已有研究表明青藏高原高寒草甸土壤线虫数量丰富、种类繁多,在凋落物分解、养分矿化及生物地球化学循环过程中发挥重要作用。氮素和温度是影响高寒草甸土壤线虫群落重要的环境因子,而病原真菌不仅是影响植物群落的重要生物因子,也会激发植物启动防御机制,进而对土壤线虫群落产生间接影响。
本研究利用在青藏高原东缘高寒草甸设置的多因子(包括氮添加(+12 g N m-2 yr-1)、增温(+~1.5℃)和施加叶面病原真菌抑制剂(阿西米达))试验,调查了土壤线虫群落对上述因子及其交互作用的响应,揭示了土壤线虫与植物群落、微生物性质和土壤理化性质的联系。并结合盆栽试验,探究高寒草甸不同植物物种和功能群对土壤线虫和微生物的响应。主要研究结果如下:
1. 病原真菌抑制剂、氮添加和增温没有改变土壤线虫群落的总丰度。与对照相比,在施用病原真菌抑制剂和氮添加处理下,食细菌线虫的相对丰度分别增加了7.5%和7.9%,且施用病原真菌抑制剂时植食线虫的相对丰度减少了22.3%。
2. 病原真菌抑制剂的施用不仅显著增加了土壤线虫群落的物种多样性(p = 0.01),同时改变了土壤线虫群落结构。病原真菌抑制剂的施用会削弱氮添加对土壤线虫群落物种多样性的促进作用。增温会削弱施用病原真菌抑制剂和氮添加对各营养类群水平和土壤线虫群落物种多样性的效应。氮添加促使土壤食物网向依赖细菌的快速分解途径(线虫通道指数 = 0.45)靠近,加速土壤养分矿化。
3. 土壤微生物对禾类草和杂类草的生长有抑制作用,对菊科植物生长无显著影响;而土壤线虫能够促进菊科植物生长,但对禾类草和杂类草的生长无显著影响。土壤线虫群落中食细菌线虫的占比越高,越有利于植物生长。叶片干物质含量低(资源获取型)的植物物种在生长过程中更容易受到土壤线虫群落的积极影响。
       综上,土壤线虫群落对氮添加和病原真菌的响应更大,而对温度变化并不敏感。三个处理因子之间存在显著的交互作用,多数情况下增温会削弱病原真菌抑制剂和氮添加的效应。本研究还发现在高寒草甸生态系统中,不同植物物种对土壤生物的响应存在差异,其中禾类草和杂类草的生长易受到土壤微生物的抑制作用,而菊科植物的生长更易受到土壤线虫的促进作用。本研究为预测未来全球变化下青藏高原高寒草甸土壤线虫群落的动态变化和对植物群落构建的反馈,以及草地生态系统的适应性管理提供理论依据。

 

外文摘要:

    As an important component in the soil food network, soil nematodes affect plant growth and community dynamics through feeding on plant roots and accelerating ecological processes, such as nutrient and carbon cycling. The composition and function of soil nematodes communities also change with varying plant diversity and community composition. Plant and soil nematode communities are closely linked and interact with each other, playing a critical role in maintaining species diversity and the functions of terrestrial ecosystems. However, how the interactions between plants and nematodes will be affected by climate changes, nutrients input and other disturbances remains unclear. 
The Tibetan Plateau is one of the most sensitive and fragile regions in response to global change. Studies have found that the soil nematodes are abundant in number and variety in the alpine meadows of the Tibetan Plateau, and play an important role in regulating litter decomposition, nutrient mineralization and biogeochemical cycling. While nutrient and temperature represent important environmental factors affecting the soil nematode community, pathogenic fungi are important biological factors driving changes in nematode community via altering plant community and stimulating plant to defend themselves. However, few studies have focused on the effects of foliar pathogenic fungi, nutrients and temperature simultaneously, and it is unclear whether the changes in soil nematode community will in turn affect plant performance and community structure and functioning.
     We conducted a filed experiment to examine the effects of fungicides application (Amistar), nitrogen addition (+12 g N m-2 y-1) and warming (OTCs, +~1.5℃) on soil nematodes in an alpine meadow ecosystem in the Tibetan plateau. The relationships between soil nematode and plant community, microbial properties and soil properties were examined. Combined with a potting experiment, we also explored the responses of different plant species or functional groups to soil nematodes and microorganisms. The main results are as follows:
1. Fungicide application, nitrogen addition and warming did not alter the abundance of soil nematode community. Compared with the control, the relative abundance of bacterivores increased by 7.5% and 7.9% under fungicide application and nitrogen addition, respectively. The relative abundance of herbivores decreased by 22.3% under fungicide application.
2. Fungicide application significantly increased species diversity of soil nematode community (p = 0.01), and changed the soil nematode community structure. Fungicide application weakened the nitrogen effects on the species diversity of soil nematode community. Warming weakened the interactive effects of fungicide application and nitrogen addition on trophic group and species diversity of soil nematode community. Under nitrogen addition, the soil food web moved closer to the rapid decomposition pathway which relies on bacteria (nematode channel index = 0.45), accelerating the mineralization of soil nutrients.
3. Soil microorganisms had significant negative effects on grasses and forbs, but had no effect on the growth of Compositae plants. While promoting the growth of Compositae plants, soil nematodes showed no effect on the growth of grasses and forbs. Moreover, the higher proportion of bacterivores is favorable for plant growth. We also found that soil nematode community can promote the growth of species with low leaf dry matter content (i.e., resource-acquisitive).
     In summary, nitrogen addition and pathogenic fungi had greater disturbance to soil nematode community, whereas soil nematodes were not sensitive to changes in temperature. There was a significant interaction among the three treatment factors. In most cases, warming weakened the interactive effects of fungicide and nitrogen treatments. This study also showed that plant species responded differently to soil organisms. Soil microorganisms had inhibitory effects on the growth of grasses and forbs, and soil nematodes could promote the growth of plants in the Compositae plants. This study provides the theoretical basis for predicting the dynamic changes of soil nematode community and their feedback to plant community assembly in Tibetan alpine ecosystems and is of important implications for grassland management under future global change.

 

参考文献:

[1] Aber, J.D. Nitrogen saturation in temperate forest ecosystems: current theory, remaining questions and recent advances[J]. Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium, 2002, 98: 179–188.

[2] Bagchi, R., Gallery, R.E., Gripenberg, S., et al. Pathogens and insect herbivores drive rainforest plant diversity and composition[J]. Nature, 2014, 506: 85–88.

[3] Bagchi, S. & Ritchie, M.E. Herbivore effects on above- and belowground plant production and soil nitrogen availability in the Trans-Himalayan shrub-steppes[J]. Oecologia, 2010, 164: 1075–1082.

[4] Bai, Y., Han, X., Wu, J., et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland[J]. Nature,2004, 431: 181–184.

[5] Bakonyi, G. & Nagy, P. Temperature - and moisture-induced changes in the structure of the nematode fauna of a semiarid grassland – patterns and mechanisms[J]. Global Change Biology, 2000,6: 697–707.

[6] Bakonyi, G., Nagy, P., Kovács-Láng, E., et al. Soil nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland[J]. Applied Soil Ecology, 2007, 37: 31–40.

[7] Bardgett, R.D. & van der Putten, W.H. Belowground biodiversity and ecosystem functioning[J]. Nature, 2014, 515: 505–511.

[8] Bardgett, R.D. & Wardle, D.A. Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change[J]. Quarterly review of biology, 2010, 86: 340–344.

[9] Baudoin, E., Benizri, E. & Guckert, A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere[J]. Soil Biology and Biochemistry, 2003, 35: 1183–1192.

[10] Berger, S., Sinha, A.K. & Roitsch, T. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions[J]. Journal of experimental botany, 2007, 58: 4019–4026.

[11] Bever, J.D., Dickie, I.A., Facelli, E., et al. Rooting theories of plant community ecology in microbial interactions[J]. Trends in Ecology & Evolution, 2010, 25: 468–478.

[12] Bezemer, T.M., Fountain, M.T., Barea, J.M., et al. Divergent composition but similar function of soil food webs of individual plants: plant species and community effects[J]. Ecology, 2010, 91: 3027–3036.

[13] Blande, J.D., Holopainen, J.K. & Li, T. (2010). Air pollution impedes plant-to-plant communication by volatiles[J]. Ecology Letters, 2010,13: 1172–1181.

[14] Bongers, T. The maturity index: an ecological measure of environmental disturbance based on nematode species composition[J]. Oecologia, 1990, 83: 14–19.

[15] Bongers, T. & Bongers, M. Functional diversity of nematodes[J]. Applied Soil Ecology, 1998, 10: 239–251.

[16] Bongers, T. & Ferris, H. Nematode community structure as a bioindicator in environmental monitoring[J]. Trends in Ecology & Evolution, 1999, 14: 224–228.

[17] Bradford, M.A., Jones, T.H., Bardgett, R.D., et al. Impacts of soil faunal community composition on model grassland ecosystems[J]. Science, 2002, 298: 615–618.

[18] Bradford, M.A., Wieder, W.R., Bonan, G.B., et al. Managing uncertainty in soil carbon feedbacks to climate change[J]. Nature Climate Change, 2016, 6: 751–758.

[19] Bradley, K., Drijber, R.A. & Knops, J. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi[J]. Soil Biology and Biochemistry, 2006, 38: 1583–1595.

[20] Buchan, D., Gebremikael, M.T., Ameloot, N., et al. The effect of free-living nematodes on nitrogen mineralisation in undisturbed and disturbed soil cores[J]. Soil Biology and Biochemistry, 2013, 60: 142–155.

[21] Chen, D., Lan, Z., Hu, S., et al. Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification[J]. Soil Biology and Biochemistry, 2015, 89: 99–108.

[22] Chen, D., Pan, Q., Bai, Y., et al. Effects of plant functional group loss on soil biota and net ecosystem exchange: A plant removal experiment in the Mongolian grassland[J]. Journal of Ecology, 2016, 104: 734–743.

[23] Cheng, Y.Y., Sun, T., Wang, Q.K., et al. Effects of simulated nitrogen deposition on temperate forest soil nematode communities and their metabolic footprints[J]. Acta ecologica sinica, 2018, 38: 475–484.

[24] Cole, L., Buckland, S.M. & Bardgett, R.D. Influence of disturbance and nitrogen addition on plant and soil animal diversity in grassland[J]. Soil Biology and Biochemistry, 2008, 40: 505–514.

[25] Cortois, R., Schröder-Georgi, T., Weigelt, A., et al. Plant-soil feedbacks: role of plant functional group and plant traits[J]. Journal of Ecology, 2016, 104: 1608–1617.

[26] Conrath, U., Pieterse, CMJ. & Mauch-Mani, B. Priming in plant-pathogen interactions[J]. Trends in plant science, 2002, 7: 201–216.

[27] Darby, B.J., Neher, D.A., Housman, D.C., et al. Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro- and meso-fauna[J]. Soil Biology and Biochemistry, 2011, 43: 1474–1481.

[28] de Deyn, G.B., Raaijmakers, C.E., van Ruijven, J., et al. Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web[J]. Oikos, 2004, 106: 576–586.

[29] de Deyn, G.B., Raaijmakers, C.E., Zoomer, H.R., et al. Soil invertebrate fauna enhances grassland succession and diversity[J]. Nature, 2003, 422: 711–713.

[30] de Deyn, G.B. & van der Putten, W.H. Linking aboveground and belowground diversity[J]. Trends in Ecology & Evolution, 2005, 20: 625–633.

[31] de Moraes, C.M., Lewis, W.J., Pare, P.W., et al. Herbivore-infested plants selectively attract parasitoids[J]. Nature, 1998, 393: 570–573.

[32] de Moraes, C.M., Mescher, M.C. & Tumlinson, J.H. Caterpillar-induced nocturnal plant volatiles repel conspecific females[J]. Nature, 2001,410: 577–580.

[33] de Ruiter, P.C., van Veen, J.A., Moore, J.C., et al. Calculation of nitrogen mineralization in soil food webs[J]. Plant and Soil, 1993, 157: 263–273.

[34] de Kroon, H., Hendriks, M., van Ruijven, J., et al. Root responses to nutrients and soil biota: drivers of species coexistence and ecosystem productivity[J]. Journal of Ecology, 2012, 100: 6–15.

[35] Delaney, TP. Genetic dissection of acquired resistance to disease[J]. Plant physiology, 1997, 113: 5–12.

[36] Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., et al. The global spectrum of plant form and function[J]. Nature. 2015, 529: 167–171.

[37] Dyer, L.A. & Letourneau, D. Top-down and bottom-up diversity cascades in detrital vs. living food webs[J]. Ecology Letters, 2003, 6: 60–68.

[38] Eisenhauer, N., Beßler, H., Engels, C., et al. Plant diversity effects on soil microorganisms support the singular hypothesis[J]. Ecology, 2010, 91: 485–496.

[39] Eisenhauer, N., Cesarz, S., Koller, R., et al. Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity[J]. Global Change Biology, 2012, 18: 435–447.

[40] Eisenhauer, N., Dobies, T., Cesarz, S., et al. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 6889–6894.

[41] Eisenhauer, N., Lanoue, A., Strecker, T., et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass[J]. Scientific Reports, 2017, 7: 1–8.

[42] Ekschmitt, K., Bakonyi, G., Bongers, M., et al. Nematode community structure as indicator of soil functioning in European grassland soils[J]. European journal of soil biology, 2001, 37: 263–268.

[43] Elhady, A., Adss, S., Hallmann, J., et al. Rhizosphere microbiomes modulated by pre-crops assisted plants in defense against plant-parasitic nematodes[J]. Frontiers in microbiology, 2018, 9: 1–9.

[44] Ferris, H., Bongers, T. & de Goede, R.G.M. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept[J]. Applied Soil Ecology, 2001, 18: 13–29.

[45] Ferris, H., Griffiths, B.S., Porazinska, D.L., et al. Reflections on Plant and Soil Nematode Ecology: Past, Present and Future[J]. Journal of Nematology, 2012, 44: 115-126.

[46] Ferris, H. & Matute, M.M. Structural and functional succession in the nematode fauna of a soil food web[J]. Applied Soil Ecology, 2003, 23: 93–110.

[47] Fisk, M., Santangelo, S. & Minick, K. (2015). Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests[J]. Soil Biology & Biochemistry, 2015, 81: 212–218.

[48] Fleischer, K., Dolman, A.J., van der Molen, M.K., et al. Nitrogen deposition maintains a positive effect on terrestrial carbon sequestration in the 21st century despite growing phosphorus limitation at regional scales[J]. Global Biogeochemical Cycles, 2019, 33: 810–824.

[49] Forge, T.A., Bittman, S. & Kowalenko, C.G. Responses of grassland soil nematodes and protozoa to multi-year and single-year applications of dairy manure slurry and fertilizer[J]. Soil Biology and Biochemistry, 2005, 37: 1751–1762.

[50] Freckman, D.W. & Ettema, C.H. Assessing nematode communities in agroecosystems of varying human intervention[J]. Agriculture. Ecosystems & Environment., 1993, 45: 239–261.

[51] Frost, C.J. & Hunter, M.D. Herbivore-induced shifts in carbon and nitrogen allocation in red oak seedlings[J]. The New Phytologist, 2008, 178: 835–845.

[52] IPCC, 2018. Global warming of 1.5 ◦C: an IPCC special report on the impacts of global warming of 1.5 ◦C above pre-industrial levels and related global greenhouse gas emission pathways. In: The Context of Strengthening the Global Response to the Threat of Climate Change. IPCC, Geneva, Switzerland.

[53] IPCC, 2014. Climate change 2014: synthesis report. In: Core Writing Team, Pachauri, R. K., Meyer, L.A. (Eds.), Contribution of Working Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.

[54] Gao, M., Xiong, C., Gao, C., et al. Disease-induced changes in plant microbiome assembly and functional adaptation[J]. Microbiome, 2021, 9:187, 1-18.

[55] Georgieva, S., Christensen, S. & Stevnbak, K. Nematode succession and microfauna- microorganism interactions during root residue decomposition[J]. Soil Biology and Biochemistry, 2005, 37: 1763–1774.

[56] Gong, S., Zhang, T. & Guo, J. Warming and nitrogen deposition accelerate soil phosphorus cycling in a temperate meadow ecosystem[J]. Soil Research, 2019, 58: 109–115.

[57] Halbrendt, J.M. Allelopathy in the management of plant-parasitic nematodes[J]. Journal of Nematology, 1996, 28: 8–14.

[58] Hart, M.M., Reader, R.J. & Klironomos, J.N. Plant coexistence mediated by arbuscular mycorrhizal fungi[J]. Trends in Ecology & Evolution, 2003, 18: 418–423.

[59] Heinen, R., van der Sluijs, M., Biere, A., et al. Plant community composition but not plant traits determine the outcome of soil legacy effects on plants and insects[J]. Journal of Ecology, 2018, 106: 1217–1229.

[60] Hendriks, M., Visser, E.J.W., Visschers, I.G.S., et al. Root responses of grassland species to spatial heterogeneity of plant-soil feedback[J]. Function Ecology, 2015, 29: 177–186.

[61] Hu, L., Robert, C.A.M., Cadot, S., et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 2018, 9: 1–13.

[62] Hu, S., Chapin, F.S., Firestone, M.K., et al. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2[J]. Nature, 2001, 409: 188–191.

[63] Hu, ZK., Yao, JN., Chen, XY., et al. Precipitation changes, warming, and N input differentially affect microbial predators in an alpine meadow: Evidence from soil phagotrophic protists[J]. Soil Biology & Biochemistry, 2022, 165: 1–7.

[64] Hugot, J.P., Baujard, P. & Morand, S. Biodiversity in helminths and nematodes as a field of study: An overview[J]. Nematology, 2001, 3: 199–208.

[65] Jiang, Y., Yin, X. & Wang, F. The influence of litter mixing on decomposition and soil fauna assemblages in a Pinus koraiensis mixed broad-leaved forest of the Changbai Mountains, China[J]. European Journal of Soil Biology, 2013, 55: 28–39.

[66] Jing, W. & Jing, H.U. Effects of nitrogen and phosphorus on the soil nematode community in Tibetan Plateau alpine meadows[J]. Biodiversity Science, 2015, 28: 707–717.

[67] Kalbitz, K., Solinger, S., Park, J.H., et al. Controls on the dynamics of dissolved organic matter in soils: A review[J]. Soil Science, 2000, 165: 277–304.

[68] Kardol, P., Bezemer, T.M., van der Wal, A., et al. Successional trajectories of soil nematode and plant communities in a chronosequence of ex-arable lands[J]. Biological Conservation, 2005, 126: 317–327.

[69] Klironomos, J.N., McCune, J., Hart, M., et al. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity[J]. Ecology Letters, 2000, 3: 137–141.

[70] Kudrin, A.A. Effects of low quantities of added labile carbon on soil nematodes in intact forest soil microcosms[J]. European Journal of Soil Biology, 2017, 78: 29–37.

[71] Kulmatiski, A., Beard, K.H., Stevens, J.R., et al. Plant-soil feedbacks: a meta-analytical review[J]. Ecology Letter, 2008, 11: 980–992.

[72] Laliberté, E., Lambers, H., Burgess, T.I., et al. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands[J]. New Phytologist, 2015, 206: 507–521.

[73] Lange, M., Eisenhauer, N., Sierra, C.A., et al. Plant diversity increases soil microbial activity and soil carbon storage[J]. Nature Communication, 2015, 6: 1–8.

[74] Lehman, R.H. & Rice, E.L. Effect of deficiencies of nitrogen, potassium and sulfur on chlorogenic acids and scopolin in sunflower[J]. American Midland Naturalist, 1972, 87: 71–80.

[75] Li, Q., Bai, H., Liang, W., et al. Nitrogen addition and warming independently influence the belowground micro-food web in a temperate steppe[J]. PLOS ONE, 2013, 8: 1–10.

[76] Li, Q., Jiang, Y., Liang, W., et al. Long-term effect of fertility management on the soil nematode community in vegetable production under greenhouse conditions[J]. Applied Soil Ecology, 2010, 46: 111–118.

[77] Liang, W., Li, Q., Jiang, Y., et al. Nematode faunal analysis in an aquic brown soil fertilised with slow-release urea[J], Northeast China. Applied Soil Ecology, 2005, 29: 185–192.

[78] Linn, D.M. & Doran, J.W. Aerobic and anaerobic microbial populations in no-till and plowed soils[J]. Soil Science Society of America Journal, 1984, 48: 794–799.

[79] Lindow, S. & Brand, M. (2003). Microbiology of the Phyllosphere[J]. Applied and environmental microbiology, 69, 1875-1883.

[80] Liu, X., Ma, Z., Cadotte, M.W., et al. Warming affects foliar fungal diseases more than precipitation in a Tibetan alpine meadow[J]. New Phytologist, 2019, 221: 1574–1584.

[81] Lu, M., Zhou, X., Yang, Q., et al. Responses of ecosystem carbon cycle to experimental warming: A meta-analysis[J]. Ecology, 2013, 94: 726–738.

[82] Luu, K.T., Matches, A.G. & Peters, E.J. Allelopathic Effects of Tall Fescue on Birdsfoot Trefoil as Influenced by N Fertilization and Seasonal Changes1[J]. Agronomy Journal, 1982, 74: 805–808.

[83] Ma, Q., Yu, H., Liu, X., et al. Climatic warming shifts the soil nematode community in a desert steppe[J]. Climatic Change, 2018, 150: 243–258.

[84] Manning, P., Morrison, S.A., Bonkowski, M., et al. Nitrogen enrichment modifies plant community structure via changes to plant-soil feedback[J]. Oecologia, 2008, 157: 661–673.

[85] Marschner, P. Marschner’s Mineral Nutrition of Higher Plants: Third Edition[M]. 2012, 1–651.

[86] Matsui, K., Minami, A., Hornung, E., et al. Biosynthesis of fatty acid derived aldehydes is induced upon mechanical wounding and its products show fungicidal activities in cucumber[J]. Phytochemistry, 2006, 67: 649–657.

[87] McSorley, R. & Frederick, J.J. Effect of extraction method on perceived composition of the soil nematode community[J]. Applied Soil Ecology, 2004, 27: 55–63.

[88] Meisner, A., Gera Hol, W.H., de Boer, W., et al. Plant–soil feedbacks of exotic plant species across life forms: A meta-analysis[J]. Biological Invasions, 2014, 16: 2551–2561.

[89] Mueller, K.E., Blumenthal, D.M., Carrillo, Y., et al. Elevated CO2 and warming shift the functional composition of soil nematode communities in a semiarid grassland[J]. Soil Biology and Biochemistry, 2016, 103: 46–51.

[90] Neher, D.A. Role of nematodes in soil health and their use as indicators[J]. Journal of Nematology, 2001, 33: 161–168.

[91] Niu, S., Classen, A.T., Dukes, J.S., et al. Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle[J]. Ecology Letters, 2016, 29: 697–709.

[92] Oka, Y. & Pivonia, S. Effect of a nitrification inhibitor on nematicidal activity of organic and I, rganic ammonia-releasing compounds against the root-knot nematode Meloidogyne javanica[J]. Nematology, 2003, 5: 505–513.

[93] Parsons, A.J. & Penning, P.D. The effect of the duration of regrowth on photosynthesis, leaf death and the average rate of growth in a rotationally grazed sward[J]. Grass and Forage Science, 1988, 43: 15–27.

[94] Peay, K.G. Timing of mutualist arrival has a greater effect on Pinus muricata seedling growth than interspecific competition[J]. Journal of Ecology, 2018, 106: 514–523.

[95] Perakis, S.S. & Kellogg, C.H. Imprint of oaks on nitrogen availability and δ15N in California grassland-savanna: A case of enhanced N inputs? [J] Plant Ecology, 2007, 191: 209–220.

[96] Philippot, L., Raaijmakers, J.M., Lemanceau, P., et al. Going back to the roots: the microbial ecology of the rhizosphere[J]. Nature Reviews Microbiology, 2013, 11: 789–799.

[97] Putten, W.H.V. der, Dijk, C. van & Peters, B.A.M. Plant-specific soil-borne diseases contribute to succession in foredune vegetation[J]. Nature, 1993, 362: 53–56.

[98] Rasmann, S., Köllner, T.G., Degenhardt, J., et al. Recruitment of entomopathogenic nematodes by insect-damaged maize roots[J]. Nature, 2005, 434: 732–737.

[99] Reynolds, H.L., Packer, A., Bever, J.D., et al. Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics[J]. Ecology, 2003, 84: 2281–2291.

[100] Rillig, M.C., Ryo, M., Lehmann, A., et al. The role of multiple global change factors in driving soil functions and microbial biodiversity[J]. Science, 2019, 366: 886–890.

[101] Ruess, L., Michelsen, A., Schmidt, I.K., et al. Simulated climate change affecting microorganisms, nematode density and biodiversity in subarctic soils[J]. Plant and Soil, 1999, 212: 63–73.

[102] Sarathchandra, S.U., Ghani, A., Yeates, G.W., et al. Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils. Soil Biology and Biochemistry, 2001, 33: 953–964.

[103] Scheublin, T.R., van Logtestijn, R.S.P. & van der Heijden, M.G.A. Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species[J]. Journal of Ecology, 2007, 95: 631–638.

[104] Schmid, B., Eisenhauer, N., Hines, J., et al. Plant diversity maintains multiple soil functions in future environments[J]. Elife, 2018, 7: 1–20.

[105] Semchenko, M., Leff, J.W., Lozano, Y.M., et al. Fungal diversity regulates plant-soil feedbacks in temperate grassland[J]. Science Advances, 2018, 4: 1–9.

[106] Shao, Y., Zhang, W., Eisenhauer, N., et al. Nitrogen deposition cancels out exotic earthworm effects on plant-feeding nematode communities[J]. The Journal of animal ecology, 2017, 86: 708–717.

[107] Shaw, E.A., Boot, C.M., Moore, J.C., et al. Long-term nitrogen addition shifts the soil nematode community to bacterivore-dominated and reduces its ecological maturity in a subalpine forest[J]. Soil Biology and Biochemistry, 2019, 130: 177–184.

[108] Shi, L., Zhang, H., Liu, T., et al. Consistent effects of canopy vs. understory nitrogen addition on the soil exchangeable cations and microbial community in two contrasting forests[J]. Science of the Total Environment, 2016, 553: 349–357.

[109] Simmons, B.L., Wall, D.H., Adams, B.J., et al. Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica[J]. Soil Biology and Biochemistry, 2009, 41: 2052–2060.

[110] Smolander, A. & Kitunen, V. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species[J]. Soil Biology and Biochemistry, 2002, 34: 651–660.

[111] Song, M., Li, X., Jing, S., et al. Responses of soil nematodes to water and nitrogen additions in an old-field grassland[J]. Applied Soil Ecology, 2016, 102: 53–60.

[112] Steinauer, K., Chatzinotas, A. & Eisenhauer, N. Root exudate cocktails: the link between plant diversity and soil microorganisms? [J] Ecology and Evolution, 2016, 6: 7387–7396.

[113] Steinauer, K., Tilman, D., Wragg, P.D., et al. Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment[J]. Ecology, 2015, 96: 99–112.

[114] Sun, X., Zhang, X., Zhang, S., et al. Soil nematode responses to increases in nitrogen deposition and precipitation in a temperate forest[J]. PlOS one, 2013, 8: 1–8.

[115] SY Chen, D.D.D.M. Effects of soil treatments on the survival of soil microorganisms[J]. Journal of Nematology, 1995, 27: 661–663.

[116] Teste, F.P., Kardol, P., Turner, B.L., et al. Plant-soil feedback and the maintenance of diversity in mediterranean-climate shrublands[J]. Science, 2017, 355: 173–176.

[117] Thakur, M.P., Reich, P.B., Fisichelli, N.A., et al. Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone[J]. Oecologia, 2017, 175: 713–723.

[118] Thakur, M.P., Tilman, D., Purschke, O., et al. Climate warming promotes species diversity, but with greater taxonomic redundancy, in complex environments[J]. Science Advances, 2017, 3: 1–10.

[119] Thomma, B.P.H.J., Penninckx, I.A.M.A., Broekaert, W.F., et al. The complexity of disease signaling in Arabidopsis[J]. Current opinion in immunology, 2001, 13: 63–68.

[120] Tian, D. & Niu, S. A global analysis of soil acidification caused by nitrogen addition[J]. Environmental Research Letters, 2015, 10: 1–10.

[121] Tjoelker, M.G., Craine, J.M., Wedin, D., et al. Linking leaf and root trait syndromes among 39 grassland and savannah species[J]. New Phytologist, 2005, 167: 493–508.

[122] van der Heijden, M.G.A., Bardgett, R.D. & van Straalen, N.M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters, 2008, 11: 296–310.

[123] van der Heijden, M.G.A., Streitwolf-Engel, R., Riedl, R., et al. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland[J]. New Phytologist, 2006, 172: 739–752.

[124] van den Hoogen, J., Geisen, S., Routh, D., et al. Soil nematode abundance and functional group composition at a global scale[J]. Nature, 2019, 572: 194–198.

[125] van der Putten, W.H. & van der Stoel, C.D. Plant parasitic nematodes and spatio-temporal variation in natural vegetation[J]. Applied Soil Ecology, 1998, 10: 253–262.

[126] van der Wal, A., Geerts, R.H.E.M., Korevaar, H., et al. Dissimilar response of plant and soil biota communities to long-term nutrient addition in grasslands[J]. Biology and Fertility of Soils, 2009, 45: 663–667.

[127] Verhoef, H.A. & Brussaard, L. Decomposition and nitrogen mineralization in natural and agroecosystems: the contribution of soil animals[J]. Biogeochemistry, 1990, 11: 175–211.

[128] Verschoor, B.C., de Goede, R.G.M., de Vries, F.W., et al. Changes in the composition of the plant-feeding nematode community in grasslands after cessation of fertiliser application[J]. Applied Soil Ecology, 2001, 17: 1–17.

[129] Verschoor, B.C., Pronk, T.E., de Goede, R.G.M., et al. Could plant-feeding nematodes affect the competition between grass species during succession in grasslands under restoration management? [J] Journal of Ecology, 2002, 90: 753–761.

[130] Viketoft, M., Bengtsson, J., Sohlenius, B., et al. Long-term effects of plant diversity and composition on soil nematode communities in model grasslands[J]. Ecology, 2009, 90: 90–99.

[131] Viketoft, M., Palmborg, C., Sohlenius, B., et al. Plant species effects on soil nematode communities in experimental grasslands[J]. Applied Soil Ecology, 2005, 30: 90–103.

[132] Wagg, C., Bender, S.F., Widmer, F., et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proc Natl Acad Sci USA, 2014, 111: 5266–5270.

[133] Wang, M., De Deyn, G.B. & Bezemer, T.M. Separating effects of soil microorganisms and nematodes on plant community dynamics[J]. Plant and Soil, 2019, 441: 455–467.

[134] Wang, M., Ruan, W., Kostenko, O., et al. Removal of soil biota alters soil feedback effects on plant growth and defense chemistry[J]. New Phytologist, 2019, 221: 1478–1491.

[135] Wardle, D.A., Gundale, M.J., Jäderlund, A., et al. Decoupled long-term effects of nutrient enrichment on aboveground and belowground properties in subalpine tundra[J]. Ecology, 2013, 94: 904–919.

[136] Wei, C., Zheng, H., Li, Q., et al. Nitrogen addition regulates soil nematode community composition through ammonium suppression[J]. PLOS ONE, 2012, 7: 1–9.

[137] Wei, C.L., Ma, H.L. & Gao, R. Effects of simulated nitrogen deposition on soluble nitrogen in subtropical forest soils[J]. Journal of Subtropical resources and Environment, 2012, 25: 678–684.

[138] WH Putten, B.P. How soil-borne pathogens may affect plant competition[J]. Ecology, 1997, 78: 1785–1795.

[139] Wilschut, R.A. & Geisen, S. Nematodes as Drivers of Plant Performance in Natural Systems[J]. Trends in Plant Science, 2021, 26: 237–247.

[140] Wilschut, R.A., van der Putten, W.H., Garbeva, P., et al. Root traits and belowground herbivores relate to plant–soil feedback variation among congeners[J]. Nature Communications, 2019, 10: 1–9.

[141] Wu, J., Fu, C., Chen, S. & Chen, J. Soil faunal response to land use: Effect of estuarine tideland reclamation on nematode communities[J]. Applied Soil Ecology, 2002, 21: 131–147.

[142] Wu, JH. & Yu, SX. Effect of root exudates of Eucalyptus urophylla and Acacia mearnsii on soil microbes under simulated warming climate conditions[J]. BMC Microbiology, 2019,19:1–12.

[143] Wu, Y., Zhou, H.K., Chen, W.J., et al. Response of the soil food web to warming and litter removal in the Tibetan Plateau, China[J]. Geoderma, 2021, 401: 1–10.

[144] Wurst, S., Allema, B., Duyts, H., et al. Earthworms counterbalance the negative effect of microorganisms on plant diversity and enhance the tolerance of grasses to nematodes[J]. Oikos, 2008, 117: 711–718.

[145] Xin, W.D., Yin, X.Q. & Song, B. Contribution of soil fauna to litter decomposition in Songnen sandy lands in northeastern China[J]. Journal of Arid Environments, 2012, 77: 90–95.

[146] Yeates, G.W. & Bongers, T. Nematode diversity in agroecosystems[J]. Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes, 1999, 74: 113–135.

[147] Yeates, G.W., Bongers, T., de Goede, R.G.M., et al. Feeding habits in soil nematode families and genera—An outline for soil ecologists[J]. Journal of Nematology, 1993, 25: 315–331.

[148] Yeates, G.W., Hawke, M.F. & Rijkse, W.C. Changes in soil fauna and soil conditions under Pinus radiata agroforestry regimes during a 25-year tree rotation[J]. Biology and Fertility of Soils, 2000, 31: 391–406.

[149] Yu, G., Jia, Y., He, N., et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoscience, 2019, 12: 424–429.

[150] Yuan hu, S. The diversity and functions of soil nematodes[J]. Biodiversity Science, 2007, 15: 116–123.

[151] Zak, D.R., Holmes, W.E., White, D.C., et al. Plant diversity, soil microbial communities, and ecosystem function: are there any links? [J] Ecology, 2003, 84: 2042–2050.

[152] Zhang, C., Wang, J., Ren, Z., et al. Root traits mediate functional guilds of soil nematodes in an ex-arable field[J]. Soil Biology and Biochemistry, 2020, 151: 1–9.

[153] Zhang, Z., Zhou, H., Zhao, X., et al. Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai-Tibet Plateau[J], Biodiversity Science, 2018, 26: 111–129.

[154] Zhou, J., Wu, J., Huang, J., et al. A synthesis of soil nematode responses to global change factors[J]. Soil Biology and Biochemistry, 2022, 165: 1–10.

[155] 白洁冰, 徐兴良, 付刚, 等. 温度和氮素输入对青藏高原3种高寒草地土壤氮矿化的影响[J].安徽农业科学, 2011, 53(6): 1–23.

[156] 陈云峰, 韩雪梅, 李钮飞, 等. 线虫区系分析指示土壤食物网结构和功能研究进展[J]. 生态学报, 2014, 34(5): 1072–1084.

[157] 韩兴国, 王常慧, 邢雪荣. 草地生态系统中土壤氮素矿化影响因素的研究进展[J].应用生态学报, 2004, 11: 2184–2188.

[158] 黄凯灵. 青藏高原高寒草甸植物-土壤反馈及其对氮添加和增温的响应[D]. 南京农业大学, 2020.

[159] 胡靖. 青藏高原东缘高寒草甸土壤线虫群落对施肥和放牧的响应研究[D]. 兰州大学, 2020.

[160] 胡靖, 何贵勇, 尹鑫, 等. 放牧管理对青藏高原东缘高寒草甸土壤线虫的影响[J]. 土壤学报, 2016, 53(6), 1506–1515.

[161] 侯磊, 薛会英. 公路源重金属对青藏高原高寒草甸土壤线虫群落的影响[J].生态学报, 2021, 41(9), 3564–3571.

[162] 来国防, 陈纪军, 罗士德, 等. 紫菀属化学成分及药理活性研究进展[J]. 天然产物研究与开发, 2002, 14(5): 65–71.

[163] 李玉娟, 吴纪华, 陈家宽. 线虫作为土壤健康指示生物的方法及应用[J].应用生态学报, 2016, 16(8): 1–23.

[164] 李玉平, 龚宁, 慕小倩, 等. 菊科植物资源及其开发利用研究[J]. 西北农林科技大学学报, 2003, 31: 150–156.

[165] 刘艳方. 青藏高原高寒草地植物群落与土壤线虫相互关系研究[D]. 青海师范大学, 2020.

[166] 苏永红. 土壤呼吸与测定方法研究进展[J]. 中国沙漠, 2008, 28(1): 57–64.

[167] 王秀峰, 李文超. 根结线虫对日光温室黄瓜微量元素含量的影响[J]. 西北农业学报, 2006, 15(2): 1–5.

[168] 王静. 施肥对青藏高原东部高寒草甸土壤线虫群落组成的影响[D]. 兰州大学, 2020.

[169] 王静, 胡靖, 杜国祯. 施氮磷肥对青藏高原高寒草甸土壤线虫群落组成的影响[J].草叶学报, 2015, 24(12): 20–28.

[170] 王雨彤, 牛克昌. 青藏高原高寒草甸土壤环境对线虫功能多样性的影响[J].生物多样性[J], 2020, 28(6): 707–717.

[171] 吴新安, 朱有才, 花日茂, 等. 植物源抗菌、杀菌活性物质研究进展[J]. 安徽农业大学学报, 2002, 29(3): 245–249.

[172] 谢高地, 鲁春霞, 冷允法,等. 青藏高原生态资产的价值评估[J]. 自然资源学报, 2003, 18(2): 189–1951.

[173] 杨金睿. 植物抗虫生理研究进展[J]. 中国农学通报, 2021, 37: 130–136.

[174] 杨晓理. 高寒草甸不同优势植物对土壤线虫群落的直接和间接作用及其机制[D]. 兰州大学, 2019.

[175] 颜学宾. 氮添加、增温和施用杀真菌剂对青藏高原高寒草甸植物群落的影响[D]. 南京农业大学, 2018.

[176] 叶成龙. 不同施肥措施对华北地区小麦—玉米轮作下土壤线虫群落的影响[D]. 南京农业大学, 2014.

[177] 尹文英, 胡圣豪, 沈韫芬. 中国土壤动物检索图鉴 [M]. 北京: 科学出版社,1998.

[178] 张勇群, 毛庆功, 王聪, 等. 氮沉降对土壤线虫群落影响的研究进展[J]. 热带亚热带植物学报, 2020, 28: 105–114.

中图分类号:

 Q948    

开放日期:

 2022-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式