- 无标题文档
查看论文信息

中文题名:

 硬粒小麦-簇毛麦双二倍体籽粒相关性状的鉴定与分析    

姓名:

 范锴文    

学号:

 2021101137    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090102    

学科名称:

 农学 - 作物学 - 作物遗传育种    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 南京农业大学    

院系:

 农学院    

专业:

 作物遗传育种    

研究方向:

 小麦分子细胞遗传学    

第一导师姓名:

 邢莉萍    

第一导师单位:

  南京农业大学    

完成日期:

 2024-04-30    

答辩日期:

 2024-05-28    

外文题名:

 Identification and Analysis of Grain Related Traits in Durum Wheat-Haynaldia Villosa Amphidiploid     

中文关键词:

 簇毛麦 ; 双二倍体 ; 籽粒 ; 蛋白 ; 转录组测序    

外文关键词:

 Haynaldia villosa ; Amphidiploid ; Grain ; Protein ; Transcriptome sequencing    

中文摘要:

小麦遗传育种及基础研究的重要目标是提高小麦产量和改进小麦品质。种质资源是现代育种的物质基础,作物育种成效的大小很大程度决定于关键性优异种质资源的发现与利用。目前小麦初级基因库已得到比较充分的开发,而小麦近缘种属多数携带优异的产量和品质性状,是拓宽小麦遗传基础的宝贵种质资源库,其产量和品质相关优异基因挖掘和向小麦转移利用尚在起步阶段。目前小麦遗传改良的主要工作是选育携带优异性状及相关基因的新品种,并解析小麦优异性状形成的分子机制。二倍体簇毛麦(Haynaldia Villosa ,2n=14,VV)因携带广谱抗白粉病基因Pm21,前期已通过创制普通小麦-簇毛麦易位系成功在生产上获得广泛应用。簇毛麦还具有籽粒高蛋白含量、分蘖能力强、多穗多小花、耐贫瘠等优异性状,尤其产量和品质相关性状基因及等位变异还有待挖掘。实验室目前新创制了一套由22个不同簇毛麦品系与同一硬粒小麦品种“中引1286”杂交后经染色体加倍获得的硬粒小麦-簇毛麦双二倍体,拟用于鉴定和挖掘簇毛麦产量和品质相关优异性状和基因,并通过染色体工程技术创制新的育种中间材料。本研究聚焦与产量和品质都密切相关的籽粒性状,开展硬粒小麦-簇毛麦双二倍体籽粒产量性状、蛋白性状多年多点多世代考察,基于转录组测序探索导致硬粒小麦-簇毛麦双二倍体间籽粒蛋白含量差异的机制,并创制异染色体系材料,以期推进簇毛麦产量和品质性状优异基因的挖掘,为向普通小麦的转移与利用奠定理论和材料基础。主要研究结果如下:

1、硬粒小麦-簇毛麦双二倍体籽粒产量性状考察

(1)成熟籽粒整体观察:对涉及3年、3点、3个世代的田间收获材料成熟籽粒进行主要产量性状考察与分析,结果表明:硬粒小麦-簇毛麦双二倍体籽粒粒长主要分布9.50~10.00mm,最长可达12.20mm。粒宽和千粒重受环境影响在多年多点波动较大,粒宽分布为1.70mm~3.40mm,千粒重分布为12.67~59.93g。与硬粒小麦“中引1286”相比,硬粒小麦-簇毛麦双二倍体籽粒粒长增加,但粒宽和粒重整体上不及“中引1286”,但也有优于“中引1286”的种质。

(2)成熟籽粒个体观察:对涉及3年、3点、3个世代的田间收获材料成熟籽粒进行主要产量性状考察与分析,结果表明:粒型和粒重受遗传控制,根据单个品系考察结果挑选出15个大粒品系,涉及7个不同簇毛麦品系遗传背景,挑选出6个小粒品系,涉及6个不同簇毛麦品系遗传背景,这些材料可供后续进一步研究使用。

(3)未成熟籽粒表型观察:本研究对2022-2023生长季白马基地大棚种植材料的未成熟籽粒按照授粉后籽粒发育进程进行剥粒观察,结果表明:授粉后0~15天是粒长增长主要阶段,授粉后10~30天是粒宽增长的主要阶段,粒长增长缓慢。籽粒两次明显的体积变化发生在授粉后15天和30天,正好对应淀粉积累与蛋白质积累的主要时期。

2、硬粒小麦-簇毛麦双二倍体籽粒蛋白性状考察

(1)籽粒蛋白含量考察:对涉及2年3点2个世代的田间收获材料成熟籽粒进行近红外光谱仪检测与分析,结果表明:硬粒小麦-簇毛麦双二倍体的籽粒蛋白含量大部分可超20%。籽粒蛋白含量受环境影响在多年多点间波动较大,但蛋白质含量提升是硬粒小麦-簇毛麦双二倍体的共性。根据单个品系考察结果,挑选出5个不同簇毛麦品系遗传背景的双二倍体品系具有相对更高的籽粒蛋白含量,这些材料可供后续进一步研究使用。

(2)蛋白含量提升机制:对千粒重相似而粗蛋白含量具有较大差异的双二倍体STH66-5(高)与STH69-5(低)进行蛋白组分分析,结果表明具有高低籽粒蛋白含量的品系各组分所占比例相似,籽粒蛋白含量提升是由于各组成蛋白含量整体提升。为进一步解析硬粒小麦-簇毛麦双二倍体籽粒蛋白含量差异的分子机制,选择STH66-5(高)与STH69-5(低)的授粉后25天(25DAP)籽粒样品进行RNA-seq,获得25DAP籽粒基因表达谱。利用GO、KEGG等数据库对差异表达基因进行分析,结果表明:种子贮藏蛋白、应激/胁迫、转录与翻译、蛋白质合成与组装相关基因具有高表达和较大差异表达。

3、异染色体系创制与鉴定

本研究为了将籽粒产量和蛋白优异性状基因导入普通小麦,针对蛋白含量较高的双二倍体品系STH66-5和籽粒较大的双二倍体品系STH52-5,与综合农艺性状优良的普通小麦0686回交并自交获得后代群体,经1V-7V染色体专化的分子标记鉴定,初步筛出23株携带单个V染色体臂(可能是端体或易位)或单条V染色体(可能是添加或代换)的异染色体系材料。这些材料的创制为进一步定位籽粒和蛋白相关基因、改良育种可用亲本奠定了材料基础。

外文摘要:

The important goal of wheat genetic breeding and basic research is to increase wheat yield and improve wheat quality. Germplasm resources are the material foundation of modern breeding, and the effectiveness of crop breeding is largely determined by the discovery and utilization of key and excellent germplasm resources. At present, the primary gene pool of wheat has been fully developed, and most of the wheat related species carry excellent yield and quality traits, which is a valuable germplasm resource pool for expanding the genetic basis of wheat. The mining and transfer of excellent genes related to yield and quality to wheat are still in the initial stage. At present, the main work of wheat genetic improvement is to select new varieties carrying excellent traits and related genes, and to analyze the molecular mechanism of the formation of excellent traits in wheat. Haynaldia Villosa(2n=14, VV) carrying the broad-spectrum resistance gene Pm21 to powdery mildew has been widely used in production through the creation of a common wheat-Haynaldia Villosa translocation line. Haynaldia Villosa also has excellent traits such as high protein content in grains, strong tillering ability, multiple spikes and small flowers, and tolerance to poor soil conditions. In particular, the correlation between yield and quality related genes and allelic variations still needs to be explored. At present, our laboratory has created a batch of durum wheat-Haynaldia villosa amphidiploid obtained by chromosome doubling after hybridization of 22 different varieties of Haynaldia villosa with the same durum wheat variety "ZY 1286". The aim is to identify and explore excellent traits and genes related to yield and quality of durum wheat, and to create new breeding intermediate materials through chromosome engineering technology. This study focuses on grain traits closely related to yield and quality, and conducts multi year, multi point, and multi generation investigations of grain yield and protein traits in the durum wheat-Haynaldia villosa amphidiploid. Based on transcriptome sequencing, the mechanism leading to differences in grain protein content between durum wheat-Haynaldia villosa amphidiploid is explored, and alien chromosome lines are created to promote the exploration of excellent genes for yield and quality traits in Haynaldia villosa, laying a theoretical and material foundation for the transfer and utilization to common wheat. The main research findings are as follows:

1、Investigation on grain yield traits of durum wheat-Haynaldia villosa amphidiploid

(1)Overall observation of mature grains: Through the investigation and analysis of mature grains in  field harvest materials from 3 years、3 location and 3 generations, the main yield related traits were identified and analyzed. The results showed that the grain length of durum wheat-Haynaldia villosa amphidiploid was mainly distributed between 9.50 ~10.00mm, with a maximum length of 12.20mm. The grain width and thousand grain weight fluctuate greatly over many years due to environmental influences, with a grain width of 1.70mm~3.40mm and a thousand grain weight of 12.67~59.93g. Compared with durum wheat "ZY 1286", durum wheat-Haynaldia villosa amphidiploid grains have increased grain length, but overall grain width and weight are not as good as "ZY 1286", but there are also better germplasm than "ZY 1286".

(2)Observation of mature grain individuals: Through the investigation and analysis of the main yield traits of mature grains in field harvest materials from 3 years 、3 location and 3 generations, the results showed that grain type and weight were controlled by genetics. Based on the investigation results, 15 large grain lines were selected, involved in the genetic background of 7 different Haynaldia villosa, and 6 small grain lines were selected, involved in the genetic background of 6 different Haynaldia villosa. These materials can be used for further research in the future.

(3)Observation of immature grain phenotype: This study observed the immature grains of greenhouse planting materials in the BAIMA base during the 2022-2023 growth season by peeling them according to the post flowering grain development process. The results showed that 0-15 days after pollination was the main stage of grain length growth, and 10-30 days after pollination was the main stage of grain width growth, with a slow increase in grain length. The two significant volume changes in grains occur at 15 and 30 days after pollination, which correspond to the main period of starch and protein accumulation.

2、Investigation on grain protein traits of durum wheat-Haynaldia villosa amphidiploid

(1)Examination of grain protein content: Mature grains of field harvested materials from 2 years 、 3 locations and 2 generations were detected by near-infrared spectroscopy, and the results showed that the protein content in the grains of durum wheat-Haynaldia villosa amphidiploid could mostly exceed 20%. It was found that the protein content in grains fluctuates greatly over many years due to environmental influences, but the increase in protein content is a common feature in durum wheat-Haynaldia villosa amphidiploid. Based on the examination results of individual strains, selecting 5 different Haynaldia villosa with different genetic backgrounds has relatively higher grain protein content , These materials can be used for further research in the future.

(2)Mechanism of protein content increase: The protein composition analysis was conducted on STH66-5 (high) and STH69-5 (low), which have similar thousand grain weight but significant differences in crude protein content. The results showed that the proportion of each component in the strains with high and low grain protein content was similar, and the increase in grain protein content was due to the increase in total protein content. To further elucidate the molecular mechanism behind the significant differences in grain protein content between durum wheat-Haynaldia villosa amphidiploid, RNA-seq was performed on the 25 days after pollination(25DAP)grain samples of STH66-5 (high) and STH69-5 (low) to obtain the 25DAP grain gene expression profile. The analysis of differentially expressed genes using databases such as GO and KEGG showed that genes related to seed storage proteins, stress/stress, transcription and translation, protein synthesis and assembly had high expression and significant differential expression.

3、Creation and identification of alien chromosome lines

In order to introduce genes with excellent grain and protein traits into common wheat, this study aimed to backcross the amphidiploid line STH66-5 with higher protein content and the amphidiploid line STH52-5 with larger grain size , backcross and self cross with common wheat 0686 with excellent agronomic traits to obtain offspring population. Through identification of 1V-7V chromosomal specialization molecular marker, 23 alien chromosome lines carrying a single V chromosome arm (possibly an ditelosomic or translocation) or a single V chromosome (possibly an addition or substitution) were preliminarily screened. The creation of these materials laid the material foundation for further locating genes related to grains and proteins, and improving the available parents for breeding.

参考文献:

[1] 鲍文奎.作物遗传育种理论发展与前景展望[J].作物杂志,1993(03):1-6.

[2] 程舒唯,王惠,赵心宇,等.小偃麦的创制及应用研究进展[J].植物遗传资源学报,2023,24(01):86-101.

[3] 崔勇. 优质小麦陕253灌浆期籽粒发育的差异蛋白组学研究[D].西北农林科技大学,2017.

[4] 杜登峰. 小麦粒重基因TaGW2-6A编码区不同等位变异系灌浆特性、转录水平及蛋白组学分析[D].西北农林科技大学,2016.

[5] 方乾. 减氮调追对弱筋小麦品质影响及其生理机制[D].南京农业大学,2024.

[6] 付莲. 硬粒小麦—簇毛麦双二倍体籽粒发育多倍体化分子机制解析[D].南京农业大学,2020.

[7] 高春蕾. 长江中下游小麦品种NAM基因单倍型及其氮素利用效率[D].南京农业大学,2020.

[8] 郭韬,余泓,邱杰,等.中国水稻遗传学研究进展与分子设计育种[J].中国科学:生命科学,2019,49(10):1185-1212.

[9] 黄禹. 小麦谷蛋白差异蛋白质组学及其对品质影响的初步研究[D].四川农业大学,2008.

[10] 韩颜超,王长有,陈春环,等.普通小麦-华山新麦草1Ns二体异附加系的分子细胞遗传学研究[J].麦类作物学报,2015,35(08):1044-1049.

[11] 何中虎,庄巧生,程顺和,等.中国小麦产业发展与科技进步[J].农学学报,2018,8(01):99-106.

[12] 江薛丽. 高蛋白含量小麦突变体筛选及其籽粒品质与氮素积累转运特征[D].河南农业大学,2024.

[13] 李家创. 5份小麦-华山新麦草衍生后代的分子细胞遗传学鉴定及重要农艺性状评价[D].西北农林科技大学,2022.

[14] 林元文, 赵长林, 楼彭寿.新作物小黑麦开发价值研究[J].四川草原,1994(04):24-27.

[15] 李雪,吕新业.现阶段中国粮食安全形势的判断: 数量和质量并重[J].农业经济问题,2021,(11):31-44.

[16] 刘博,武银玉,王敏,等.一年生簇毛麦基因资源挖掘与利用研究进展[J].植物遗传资源学报,2024,25(03):303-311.

[17] 刘大钧,陈佩度,吴沛良,等.硬粒小麦—簇毛麦双二倍体[J].作物学报,1986(03):155-162.

[18] 刘大钧.向小麦转移外源抗病性的回顾与展望[J].南京农业大学学报,1994(03):1-7.

[19] 刘天红. 小麦HMW-GS对谷蛋白大聚体形成和面筋二级结构及显微结构的影响[D].西北农林科技大学,2016.

[20] 刘喜,牟昌铃,周春雷,等.水稻粒型基因克隆和调控机制研究进展[J].中国水稻科学,2018,32(01):1-11.

[21] 邱玉亮. 利用HPCE对小麦HMW-GS标准图谱构建与品种品质效应鉴定[D].西北农林科技大学,2016.

[22] 宿振起. 小麦粒重基因TaGW2的克隆、标记的开发及功能验证[D].中国农业科学院,2012.

[23] 唐建卫,刘建军,张平平,等.贮藏蛋白组分对小麦面团流变学特性和食品加工品质的影响[J].中国农业科学,2008(10):2937-2946.

[24] 王栋. 野生二粒小麦NAM-B1基因导入川农16后的表达情况及对品质的影响[D].四川农业大学,2016.

[25] 王龙啟. 小麦远缘杂交育成新品系遗传组成鉴定及性状评价[D].山东农业大学,2023.

[26] 王瑞霞. 不同生态环境下小麦籽粒灌浆速率及有关性状的QTL定位分析[D].中国农业科学院,2008.

[27] 王珊珊. 小黑麦饲草产量与品质性状全基因组关联分析[D].石河子大学,2023.

[28] 王卫东. 小麦高分子量谷蛋白亚基HPCE高效分离及图谱鉴定研究[D].西北农林科技大学,2019.

[29] 王秀娟,赵继新,庞玉辉,等.小麦-华山新麦草7Ns异附加系的分子细胞遗传学研究[J].麦类作物学报,2014,34(04):454-459.

[30] 王琰. 高分子量谷蛋白Dy10和Dx5亚基影响小麦加工品质的机制[D].四川农业大学,2022.

[31] 王玉杰. 利用HPCE对小麦LMW-GS标准图谱构建初探[D].西北农林科技大学,2016.

[32] 王真真. 野生二粒小麦y-型HMW-GS基因渗入普通小麦的遗传特性及其对品质改良的潜在价值[D].四川农业大学,2020.

[33] 杨帆. 一年生簇毛麦α-醇溶蛋白基因的克隆、原核表达和功能鉴定[D].西北农林科技大学,2015.

[34] 杨莉. 普通小麦籽粒相关性状QTL定位与验证[D].中国农业科学院,2021.

[35] 杨涛. 高分子量麦谷蛋白亚基(HMW-GS)缺失对弱筋小麦加工品质的影响及机制[D].南京农业大学,2023.

[36] 杨涛,王沛,周琴,等.醇溶蛋白和麦谷蛋白配比对饼干品质的影响[J].食品科学,2020,41(06):8-15.

[37] 闫媛媛. 小麦骨干亲本蚂蚱麦重要农艺性状的QTL定位的分析[D].河北科技师范学院,2012.

[38] 游永亮,李源,赵海明,等.饲用小黑麦在海河平原区的生产性能及适应性评价[J].草原与草坪,2015,35(03):32-38.

[39] 游永亮,赵海明,李源,等.抗逆高产国审‘冀饲3号’饲用小黑麦新品种的选育[J].草地学报,2020,28(04):1145-1152.

[40] 张平平, 肖永贵, 刘建军, 马鸿翔, 何中虎. 2008. SDS 不溶性谷蛋白大聚体含量与和面仪参数的关系. 作物学报, 34(06):1074-1079

[41] 张肖飞. 小麦低分子量麦谷蛋白基因的鉴定和功能分析[D].中国农业科学院,2012.

[42] 张雪珂. 小麦面筋品质相关低分子量麦谷蛋白亚基的鉴定、基因克隆与分析[D].河南农业大学,2022.

[43] 赵传志. 小麦近缘种中白粉病抗性和籽粒蛋白质含量相关基因的同源克隆[D].中国农业大学,2016.

[44] 赵继新,武军,程雪妮,等.普通小麦-华山新麦草1Ns二体异附加系的农艺性状和品质[J].作物学报,2010,36(09):1610-1614.

[45] 周阳,何中虎,张改生,等.1BL/1RS易位系在我国小麦育种中的应用[J].作物学报,2004(06):531-535.

[46] Anderson O D, Hsia C C, Torres V 2001. The wheat γ-gliadin genes:: characterization of ten new sequences and further understanding of γ-gliadin gene family structure. Theoretical and Applied Genetics [J], 103: 323-330.

[47] Bonnot T, Bancel E, Chambon C, et al. 2015. Changes in the nuclear proteome of developing wheat ( Triticum aestivum L.) grain. Frontiers in Plant Scienceence [J], 6.

[48] Boudet J, Merlino M, Plessis A, et al. 2019. The bZIP transcription factor SPA Heterodimerizing Protein represses glutenin synthesis in Triticum aestivum . Plant Journalournal [J], 97: 858-871.

[49] Branlard G, Dardevet M, Amiour N, et al. 2003. Allelic diversity of HMW and LMW glutenin subunits and omega-gliadins in French bread wheat ( Triticum aestivum L.). Genetic Resources and Crop Evolution [J], 50: 669-679.

[50] Brönneke V, Zimmermann G, Killermann B 2000. Effect of high molecular weight glutenins and D-zone gliadins on breadmaking quality in German wheat varieties. Cereal Research Communications [J], 28: 187-194.

[51] Cao A H, Xing L P, Wang X Y, et al. 2011. Serine/threonine kinase gene Stpk - V , a key member of powdery mildew resistance gene Pm21 , confers powdery mildew resistance in wheat. Proceedings of the National Academy of Sciences of the United States of America [J], 108: 7727-7732.

[52] Cassidy B G, Dvorak J, Anderson O D 1998. The wheat low-molecular-weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theoretical and Applied Genetics [J], 96: 743-750.

[53] Chen K, Łyskowski A, Jaremko Ł, et al. 2021. Genetic and Molecular Factors Determining Grain Weight in Rice. Frontiers in Plant Scienceence [J], 12: 605799.

[54] Chen W, Cheng Z, Liu L, et al. 2019. Small Grain and Dwarf 2, encoding an HD-Zip II family transcription factor, regulates plant development by modulating gibberellin biosynthesis in rice. Plant Science [J], 288: 110208.

[55] Cheng M, Yuan H, Wang R, et al. 2023. Identification and characterization of BES1 genes involved in grain size development of Oryza sativa L. International Journal of Biological Macromolecules [J], 253: 127327.

[56] Cho S H, Kang K, Lee S H, et al. 2016. OsWOX3A is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice (Oryza sativa). Journal of Experimental Botany [J], 67: 1677-1687.

[57] Cho S H, Yoo S C, Zhang H, et al. 2013. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. New Phytologist [J], 198: 1071-1084.

[58] D'ovidio R, Masci S 2004. The low-molecular-weight glutenin subunits of wheat gluten. Journal of Cereal Science [J], 39: 321-339.

[59] Deng X, Han X, Yu S, et al. 2020. OsINV3 and Its Homolog, OsINV2, Control Grain Size in Rice. International Journal of Molecular Sciences [J], 21.

[60] Dong G Q, Ni Z F, Yao Y Y, et al. 2007. Wheat Dof transcription factor WPBF interacts with TaQM and activates transcription of an alpha-gliadin gene during wheat seed development. Plant Molecular Biology [J], 63: 73-84.

[61] Dovidio R, Porceddu E, Lafiandra D 1994. PCR ANALYSIS OF GENES ENCODING ALLELIC VARIANTS OF HIGH-MOLECULAR-WEIGHT GLUTENIN SUBUNITS AT THE GLU-D1 LOCUS. Theoretical and Applied Genetics [J], 88: 175-180.

[62] Du W L, Wang J, Lu M, et al. 2013a. Molecular cytogenetic identification of a wheat- Psathyrostachys huashanica Keng 5Ns disomic addition line with stripe rust resistance. Molecular Breeding [J], 31: 879-888.

[63] Du W L, Wang J, Pang Y H, et al. 2013b. Isolation and Characterization of a Psathyrostachys huashanica Keng 6Ns Chromosome Addition in Common Wheat. Plos One [J], 8.

[64] Du W L, Wang J, Pang Y H, et al. 2014a. Development and application of PCR markers specific to the 1Ns chromosome of Psathyrostachys huashanica Keng with leaf rust resistance. Euphytica [J], 200: 207-220.

[65] Du W L, Wang J, Wang L M, et al. 2014b. Molecular characterization of a wheat- Psathyrostachys huashanica Keng 2Ns disomic addition line with resistance to stripe rust. Molecular Genetics And Genomics [J], 289: 735-743.

[66] Du W L, Wang J, Wang L M, et al. 2013c. Development and Characterization of a Psathyrostachys huashanica Keng 7Ns Chromosome Addition Line with Leaf Rust Resistance. Plos One [J], 8.

[67] Du X, Feng X B, Li R X, et al. 2022. Cytogenetic identification and molecular marker development of a novel wheat- Leymus mollis 4Ns(4D) alien disomic substitution line with resistance to stripe rust and Fusarium head blight. Frontiers in Plant Scienceence [J], 13.

[68] Du X Y, Jia Z Z, Yu Y, et al. 2019. A wheat- Aegilops umbellulata addition line improves wheat agronomic traits and processing quality. Breeding Science [J], 69: 503-507.

[69] Du X Y, Ma X, Min J Z, et al. 2018. Development of a wheat- Aegilops searsii substitution line with positively affecting Chinese steamed bread quality. Breeding Science [J], 68: 289-293.

[70] Duan P, Rao Y, Zeng D, et al. 2014. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Plant Journal [J], 77: 547-557.

[71] Dupont F M, Vensel W H, Tanaka C K, et al. 2011. Deciphering the complexities of the wheat flour proteome using quantitative two-dimensional electrophoresis, three proteases and tandem mass spectrometry. Proteome Science [J], 9: 10.

[72] Feng Z, Wu C, Wang C, et al. 2016. SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. Journal of Experimental Botany [J], 67: 4241-4253.

[73] Feng Z Y, Song L, Song W J, et al. 2021. The decreased expression of GW2 homologous genes contributed to the increased grain width and thousand-grain weight in wheat- Dasypyrum villosum 6VS•6DL translocation lines. Theoretical and Applied Genetics [J], 134: 3873-3894.

[74] Flavell R B, Goldsbrough A P, Robert L S, et al. 1989. Gentic-variation in wheat HMW glutenin subunits and the molecular-basis of bread-making quality. Bio-technology [J], 7: 1281-1285.

[75] Forde J, Malpica J M, Halford N G, et al. 1985. The nucleotide-sequence of a HMW glutenin subunit gene located on chromosome-1A of wheat (Triticum-aestivum L). Nucleic Acids Research [J], 13: 6817-6832.

[76] Gao X, Zhang J Q, Zhang X, et al. 2019. Rice qGL3/OsPPKL1 Functions with the GSK3/SHAGGY-Like Kinase OsGSK3 to Modulate Brassinosteroid Signaling. Plant Cell [J], 31: 1077-1093.

[77] Gao Y J, An K X, Guo W W, et al. 2021. The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. Plant Cell [J], 33: 603-622.

[78] Gianibelli M C, Larroque O R, Macritchie F, et al. 2001. Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chemistry [J], 78: 635-646.

[79] Giuliani M M, Palermo C, De Santis M A, et al. 2015. Differential Expression of Durum Wheat Gluten Proteome under Water Stress during Grain Filling. Journal of Agricultural and Food Chemistry [J], 63: 6501-6512.

[80] Goldenberg D P, Creighton T E 1984. Gel electrophoresis in studies of protein conformation and folding. Analytical biochemistry [J], 138: 1-18.

[81] Gradzielewska A 2006. The genus Dasypyrum -: Part 2.: Dasypyrum villosum -: a wild species used in wheat improvement. Euphytica [J], 152: 441-454.

[82] Graveland A, Bosveld P, Lichtendonk W J, et al. 1985. A MODEL FOR THE MOLECULAR-STRUCTURE OF THE GLUTENINS FROM WHEAT-FLOUR. Journal of Cereal Science [J], 3: 1-16.

[83] Gu A Q, Hao P C, Lv D W, et al. 2015. Integrated Proteome Analysis of the Wheat Embryo and Endosperm Reveals Central Metabolic Changes Involved in the Water Deficit Response during Grain Development. Journal of Agricultural and Food Chemistry [J], 63: 8478-8487.

[84] Guo G, Lv D, Yan X, et al. 2012. Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.). BMC Plant Biology [J], 12: 147.

[85] Guo L, Ma M, Wu L, et al. 2022. Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (Triticum aestivum L.). Plant Biotechnology Journal [J], 20: 168-182.

[86] Guo L, Yu L W, Tong J Y, et al. 2021. Addition of Aegilops geniculata 1Ug chromosome improves the dough rheological properties by changing the composition and micro-structure of gluten. Food Chemistry [J], 358.

[87] Guo T, Lu Z Q, Shan J X, et al. 2020. ERECTA1 Acts Upstream of the OsMKKK10-OsMKK4-OsMPK6 Cascade to Control Spikelet Number by Regulating Cytokinin Metabolism in Rice. Plant Cell [J], 32: 2763-2779.

[88] Guo W W, Yang H, Liu Y Q, et al. 2015. The wheat transcription factor TaGAMyb recruits histone acetyltransferase and activates the expression of a high-molecular-weight glutenin subunit gene. Plant Journal [J], 84: 347-359.

[89] Gupta R B, Khan K, Macritchie F. 1993. Biochemical basis of flour properties in bread wheats: I. Effects of variation in the quantity and size distribution of polymeric protein. Journal of Cereal Science, 18(1):23-41

[90] Gupta R B, Shepherd K W 1990. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin : 1. Variation and genetic control of the subunits in hexaploid wheats. Theoretical and Applied Genetics [J], 80: 65-74.

[91] Henkrar F, El-Haddoury J, Iraqi D, et al. 2017. Allelic variation at high-molecular weight and low-molecular weight glutenin subunit genes in Moroccan bread wheat and durum wheat cultivars. 3 Biotech [J], 7.

[92] Hong Z, Ueguchi-Tanaka M, Fujioka S, et al. 2005. The Rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell [J], 17: 2243-2254.

[93] Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, et al. 2002. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant Journal [J], 32: 495-508.

[94] Hong Z, Ueguchi-Tanaka M, Umemura K, et al. 2003. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell [J], 15: 2900-2910.

[95] Hou W Q, Feng W, Yu G H, et al. 2017. Cloning and functional analysis of a novel x-type high-molecular-weight glutenin subunit with altered cysteine residues from Aegilops umbellulata . Crop & Pasture Science [J], 68: 409-414.

[96] Hsia C C, Anderson O D 2001. Isolation and characterization of wheat ω-gliadin genes. Theoretical and Applied Genetics [J], 103: 37-44.

[97] Hu T, Tian Y, Zhu J, et al. 2018. OsNDUFA9 encoding a mitochondrial complex I subunit is essential for embryo development and starch synthesis in rice. Plant Cell Reports [J], 37: 1667-1679.

[98] Hu X, Qian Q, Xu T, et al. 2013a. The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate Brassinosteroid-mediated growth in rice. Plos Genetics [J], 9: e1003391.

[99] Hu X G, Wu B H, Liu D C, et al. 2013b. Variation and their relationship of NAM-G1 gene and grain protein content in Triticum timopheevii Zhuk. Journal of Plant Physiologyogy [J], 170: 330-337.

[100] Huang K, Wang D, Duan P, et al. 2017. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. Plant Journal [J], 91: 849-860.

[101] Huang R, Jiang L, Zheng J, et al. 2013. Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Science [J], 18: 218-226.

[102] Huang Y, Wang H, Zhu Y, et al. 2022. THP9 enhances seed protein content and nitrogen-use efficiency in maize. Nature [J], 612:292–300.

[103] Ikeda T M, Nagamine T, Fukuoka H, et al. 2002. Identification of new low-molecular-weight glutenin subunit genes in wheat. Theoretical and Applied Genetics [J], 104: 680-687.

[104] Jamar C, Loffet F, Frettinger P, et al. 2010. NAM-1gene polymorphism and grain protein content in Hordeum. Journal of Plant Physiologyogy [J], 167: 497-501.

[105] Ji X, Du Y, Li F, et al. 2019. The basic helix-loop-helix transcription factor, OsPIL15, regulates grain size via directly targeting a purine permease gene OsPUP7 in rice. Plant Biotechnology Journal [J], 17: 1527-1537.

[106] Jia S, Xiong Y, Xiao P, et al. 2019. OsNF-YC10, a seed preferentially expressed gene regulates grain width by affecting cell proliferation in rice. Plant Science [J], 280: 219-227.

[107] Jiang Y, Wang D-l, Hao M, et al. 2023. Development and characterization of wheat–Aegilops kotschyi 1Uk(1A) substitution line with positive dough quality parameters. Journal of Integrative Agriculture [J], 22: 999-1008.

[108] Jiao Y, Wang Y, Xue D, et al. 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics [J], 42: 541-544.

[109] Kasarda D D, Autran J C, Lew E J L, et al. 1983. N-terminal amino acid sequences of ω-gliadins and ω-secalins: implications for the evolution of prolamin genes. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology[J], 747(1-2): 138-150.

[110] Kumar A, Garg M, Kaur N, et al. 2017. Rapid Development and Characterization of Chromosome Specific Translocation Line of Thinopyrum elongatum with Improved Dough Strength. Frontiers in Plant Scienceence [J], 8: 1593.

[111] Kumar A, Kapoor P, Chunduri V, et al. 2019. Potential of Aegilops sp. for Improvement of Grain Processing and Nutritional Quality in Wheat ( Triticum aestivum ). Frontiers in Plant Scienceence [J], 10.

[112] Li J, Chu H, Zhang Y, et al. 2012. The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight. Plos One [J], 7: e34231.

[113] Li J H, Wang K, Li G Y, et al. 2019a. Dissecting conserved cis -regulatory modules of Glu-1 promoters which confer the highly active endosperm-specific expression via stable wheat transformation. Crop Journal [J], 7: 8-18.

[114] Li J H, Xie L N, Tian X L, et al. 2021. TaNAC100 acts as an integrator of seed protein and starch synthesis exerting pleiotropic effects on agronomic traits in wheat. Plant Journal [J], 108: 829-840.

[115] Li N, Li Y 2014. Ubiquitin-mediated control of seed size in plants. Frontiers in Plant Scienceence [J], 5: 332.

[116] Li N, Li Y 2016. Signaling pathways of seed size control in plants. Current Opinion in Plant Biology [J], 33: 23-32.

[117] Li X, Shi S, Tao Q, et al. 2019b. OsGASR9 positively regulates grain size and yield in rice (Oryza sativa). Plant Science [J], 286: 17-27.

[118] Liu C Y, Shepherd K W 1995. Inheritanceof B-subunits of glutenin and omega-gliadin and gamma-gliadin in tetraploid wheats. Theoretical and Applied Genetics [J], 90: 1149-1157.

[119] Liu D, Zhang X, Li Q, et al. 2023. The U-box ubiquitin ligase TUD1 promotes brassinosteroid-induced GSK2 degradation in rice. Plant Communications [J], 4: 100450.

[120] Liu E, Zeng S, Zhu S, et al. 2019. Favorable Alleles of GRAIN-FILLING RATE1 Increase the Grain-Filling Rate and Yield of Rice. Plant Physiology [J], 181: 1207-1222.

[121] Liu H, Li H, Hao C, et al. 2020a. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnology Journal [J], 18: 1330-1342.

[122] Liu J, Chen J, Zheng X, et al. 2017. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nature Plants [J], 3: 17043.

[123] Liu L, Ikeda T M, Branlard G, et al. 2010. Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat. BMC Plant Biology [J], 10: 124.

[124] Liu S, Hua L, Dong S, et al. 2015. OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production. Plant Journal [J], 84: 672-681.

[125] Liu Y, Hou J, Wang X, et al. 2020b. The NAC transcription factor NAC019-A1 is a negative regulator of starch synthesis in wheat developing endosperm. Journal of Experimental Botany [J], 71: 5794-5807.

[126] Lizana X C, Riegel R, Gomez L D, et al. 2010. Expansins expression is associated with grain size dynamics in wheat (Triticum aestivum L.). Journal of Experimental Botany [J], 61: 1147-1157.

[127] Lou G, Chen P, Zhou H, et al. 2021. FLOURY ENDOSPERM19 encoding a class I glutamine amidotransferase affects grain quality in rice. Molecular Breeding [J], 41: 36.

[128] Lu J, Chang C, Zhang H P, et al. 2015. Identification of a Novel Allele of TaCKX6a02 Associated with Grain Size, Filling Rate and Weight of Common Wheat. Plos One [J], 10: e0144765.

[129] Lukaszewski A J 1993. Reconstruction in wheat of complete chromosome-1B and chromosome-1R from the 1RS.1BLtranslocation of KAVKAZ ORIGIN. Genome [J], 36: 821-824.

[130] Lyu J, Wang D, Sun N, et al. 2024. The TaSnRK1-TabHLH489 module integrates brassinosteroid and sugar signalling to regulate the grain length in bread wheat. Plant Biotechnology Journal [J], 1-18.

[131] Ma C Y, Yang Y, Li X H, et al. 2013. Molecular cloning and characterization of six novel HMW-GS genes from Aegilops speltoides and Aegilops kotschyi. Plant Breeding [J], 132: 284-289.

[132] Ma C Y, Zhou J W, Chen G X, et al. 2014. iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. BMC Genomics [J], 15.

[133] Ma L, Li T, Hao C, et al. 2016. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnology Journal [J], 14: 1269-1280.

[134] Ma M, Wang Q, Li Z, et al. 2015. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size. Plant Journal [J], 83: 312-325.

[135] Masci S, Lew E J L, Lafiandra D, et al. 1995. Characterization of low-molecular-weight glutenin subunits in Durun-wheat by reversed-phase high-performance liquid-chromatography and N-terminal sequencing. Cereal Chemistry [J], 72: 100-104.

[136] Meng X H, Lou H Y, Zhai S S, et al. 2024. TaNAM-6A is essential for nitrogen remobilisation and regulates grain protein content in wheat ( Triticum aestivum L.). Plant Cell And Environment [J].

[137] Miles M J, Carr H J, Mcmaster T C, et al. 1991. Scanning tunneling microscopy of a wheat seed storage protein reveals details of an unusual supersecondary structure. Proceedings of the National Academy of Sciences of the United States of America [J], 88: 68-71.

[138] Nieto-Taladriz M T, Rodríguez-Quijano M, Carrillo J M 1998. Biochemical and genetic characterisation of a D glutenin subunit encoded at the Glu-B3 locus. Genome [J], 41: 215-220.

[139] Okita T W, Cheesbrough V, Reeves C D 1985. Evolution and heterogeneity of the alpha-type beta-type and gamma-type gliadin dna-sequences. Journal of Biological Chemistry [J], 260: 8203-8213.

[140] Pang Y H, Chen X H, Zhao J X, et al. 2014. Molecular Cytogenetic Characterization of a Wheat - Leymus mollis 3D(3Ns) Substitution Line with Resistance to Leaf Rust. Journal of Genetics and Genomics [J], 41: 205-214.

[141] Payne P I 1987. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annual Review of Plant Physiology and Plant Molecular Biology [J], 38: 141-153.

[142] Payne P I, Holt L M, Law C N 1981. Structural and genetical studies on the high-molecular-weight subunits of wheat glutenin : Part 1: Allelic variation in subunits amongst varieties of wheat (Triticum aestivum). Theoretical and Applied Genetics [J], 60: 229-236.

[143] Payne P I, Holt L M, Worland A J, et al. 1982. Structural and genetical studies on the high-molecular-weight subunits of wheat glutenin : Part 3. Telocentric mapping of the subunit genes on the long arms of the homoeologous group 1 chromosomes. Theoretical and Applied Genetics [J], 63: 129-138.

[144] Payne P I, Lawrence G J. Catalogue of alleles for the complex gene loci, Glu-Al, Glu-B1 and Glu-D1 which code for high molecular weight subunits of glutenin in hexaploid wheat[J]. Cereal Research Communication, 1983, 11: 29-35

[145] Payne P I, Nightingale M A, Krattiger A F, et al. 1987a. The relationship between HMW glutenin subunit composition and the bread-making quality of british-grown wheat-varieties. Journal of The Science of Food and Agriculture [J], 40: 51-65.

[146] Payne P I, Seekings J A, Worland A J, et al. 1987b. Allelic variation of glutenin subunits and gliadins and its effect on breadmaking quality in wheat - analysis of F5 progeny from chinese spring x chinese spring (hope-1A). Journal of Cereal Science [J], 6: 103-118.

[147] Qi L L, Pumphrey M O, Friebe B, et al. 2011. A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene ( Sr52 ) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theoretical and Applied Genetics [J], 123: 159-167.

[148] Qi P F, Wei Y M, Yue Y W, et al. 2006. Biochemical and molecular characterization of gliadins. Molecular Biology [J], 40: 713-723.

[149] Qi Z, Xiong L 2013. Characterization of a purine permease family gene OsPUP7 involved in growth and development control in rice. Journal of Integrative Plant Biology [J], 55: 1119-1135.

[150] Ravel C, Fiquet S, Boudet J, et al. 2014. Conserved cis -regulatory modules in promoters of genes encoding wheat high-molecular-weight glutenin subunits. Frontiers in Plant Scienceence [J], 5.

[151] Ren D, Ding C, Qian Q 2023. Molecular bases of rice grain size and quality for optimized productivity. Science Bulletin (Beijing) [J], 68: 314-350.

[152] Ruiz M, Carrillo J M 1993. Linkage relationships between prolamin genes on chromosomes 1A and 1B of durum wheat. Theoretical and Applied Genetics [J], 87: 353-360.

[153] She K C, Kusano H, Koizumi K, et al. 2010. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell [J], 22: 3280-3294.

[154] Shen L S, Luo G B, Song Y H, et al. 2021. A novel NAC family transcription factor SPR suppresses seed storage protein synthesis in wheat. Plant Biotechnology Journal [J], 19: 992-1007.

[155] Shewry P R, Halford N G, Lafiandra D 2003a. Genetics of wheat gluten proteins. Adv Genet [J], 49: 111-184.

[156] Shewry P R, Halford N G, Tatham A S 1992. High-molecular-weight subunits of wheat glutenin. Journal of Cereal Science [J], 15: 105-120.

[157] Shewry P R, Halford N G, Tatham A S, et al. 2003b. The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Advances in Food and Nutrition Research [J], 45: 219-302.

[158] Shewry P R, Popineau Y, Lafiandra D, et al. 2000. Wheat glutenin subunits and dough elasticity: findings of the EUROWHEAT project. Trends in Food Science & Technology [J], 11: 433-441.

[159] Shewry P R, Tatham S, Halford N G. The prolamins of the Triticeae. In P R Shewry and R Casey (Eds.), Seed proteins[M]. Dordrecht, the Netherlands: Kluwer Academic Publishers, 1999, pp 37-84.

[160] Si L, Chen J, Huang X, et al. 2016. OsSPL13 controls grain size in cultivated rice. Nature Genetics [J], 48: 447-456.

[161] Singh J, Sheikh I, Sharma P, et al. 2016. Transfer of HMW glutenin subunits from Aegilops kotschyi to wheat through radiation hybridization. Journal of Food Science and Technology-Mysore [J], 53: 3543-3549.

[162] Song X J, Huang W, Shi M, et al. 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics [J], 39: 623-630.

[163] Song X J, Kuroha T, Ayano M, et al. 2015. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proceedings of the National Academy of Sciences of the United States of America [J], 112: 76-81.

[164] Sosso D, Luo D, Li Q B, et al. 2015. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics [J], 47: 1489-1493.

[165] Sreeramulu G, Singh N K 1997. Genetic and biochemical characterization of novel low molecular weight glutenin subunits in wheat (Triticum aestivum L). Genome [J], 40: 41-48.

[166] Su Z, Hao C, Wang L, et al. 2011. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics [J], 122: 211-223.

[167] Sun F S, Liu X Y, Wei Q H, et al. 2017. Functional Characterization of TaFUSCA3, a B3-Superfamily Transcription Factor Gene in the Wheat. Frontiers in Plant Scienceence [J], 8.

[168] Sun S, Wang L, Mao H, et al. 2018. A G-protein pathway determines grain size in rice. Nature Communications [J], 9: 851.

[169] Sun Y Y, Lyu M J, Han H M, et al. 2021. Identification and fine mapping of alien fragments associated with enhanced grain weight from Agropyron cristatum chromosome 7P in common wheat backgrounds. Theoretical and Applied Genetics [J], 134: 3759-3772.

[170] Tanabe S, Ashikari M, Fujioka S, et al. 2005. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell [J], 17: 776-790.

[171] Tao H P, Kasarda D D 1989. Two-dimensional gel mapping and N-terminal sequencing of LMW-glutenin subunits. Journal of Experimental Botany [J], 40: 1015-1020.

[172] Tatham A S, Miflin B J, Shewry P R 1985. The beta-turn conformation in wheat gluten proteins - relationship to gluten elasticity. Cereal Chemistry [J], 62: 405-412.

[173] Teng X, Zhong M, Zhu X, et al. 2019. FLOURY ENDOSPERM16 encoding a NAD-dependent cytosolic malate dehydrogenase plays an important role in starch synthesis and seed development in rice. Plant Biotechnology Journal [J], 17: 1914-1927.

[174] Uauy C, Distelfeld A, Fahima T, et al. 2006. A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science [J], 314: 1298-1301.

[175] Utsunomiya Y, Samejima C, Takayanagi Y, et al. 2011. Suppression of the rice heterotrimeric G protein β-subunit gene, RGB1, causes dwarfism and browning of internodes and lamina joint regions. Plant Journal [J], 67: 907-916.

[176] Vensel W H, Tanaka C K, Altenbach S B 2014. Protein composition of wheat gluten polymer fractions determined by quantitative two-dimensional gel electrophoresis and tandem mass spectrometry. Proteome Science [J], 12: 8.

[177] Veraverbeke W S, Delcour J A 2002. Wheat protein composition and properties of wheat glutenin in relation to breadmaking functionality. Critical Reviews in Food Science and Nutrition [J], 42: 179-208.

[178] Wan Y, Wang Y, Shi Z, et al. 2021. Wheat amino acid transporters highly expressed in grain cells regulate amino acid accumulation in grain. Plos One [J], 16: e0246763.

[179] Wang E, Wang J, Zhu X, et al. 2008. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics [J], 40: 1370-1374.

[180] Wang J, Wang R, Mao X, et al. 2020. RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat. Journal of Experimental Botany [J], 71: 5377-5388.

[181] Wang L, Xu Y Y, Ma Q B, et al. 2006. Heterotrimeric G protein alpha subunit is involved in rice brassinosteroid response. Cell Research [J], 16: 916-922.

[182] Wang L M, Liu Y, Du W L, et al. 2015. Anatomy and Cytogenetic Identification of a Wheat- Psathyrostachys huashanica Keng Line with Early Maturation. Plos One [J], 10.

[183] Wang S L, Yu Z T, Cao M, et al. 2013. Molecular Mechanisms of HMW Glutenin Subunits from 1Sl Genome of Aegilops longissima Positively Affecting Wheat Breadmaking Quality. Plos One [J], 8.

[184] Wang W, Pan Q, Tian B, et al. 2019a. Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. Plant Journal [J], 100: 251-264.

[185] Wang X L, Liu Y C, Hao C Y, et al. 2023. Wheat NAC-A18 regulates grain starch and storage proteins synthesis and affects grain weight. Theoretical and Applied Genetics [J], 136.

[186] Wang Y, Hou J, Liu H, et al. 2019b. TaBT1, affecting starch synthesis and thousand kernel weight, underwent strong selection during wheat improvement. Journal of Experimental Botany [J], 70: 1497-1511.

[187] Wen S S, Wen N A, Pang J S, et al. 2012. Structural genes of wheat and barley 5-methylcytosine DNA glycosylases and their potential applications for human health. Proceedings of the National Academy of Sciences of the United States of America [J], 109: 20543-20548.

[188] Weng J, Gu S, Wan X, et al. 2008. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Research [J], 18: 1199-1209.

[189] Wieser H 2007. Chemistry of gluten proteins. Food Microbiology [J], 24: 115-119.

[190] Wu M, Ren Y, Cai M, et al. 2019. Rice FLOURY ENDOSPERM10 encodes a pentatricopeptide repeat protein that is essential for the trans-splicing of mitochondrial nad1 intron 1 and endosperm development. New Phytologist [J], 223: 736-750.

[191] Wu Y, Fu Y, Zhao S, et al. 2016. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotechnology Journal [J], 14: 377-386.

[192] Wuriyanghan H, Zhang B, Cao W H, et al. 2009. The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. Plant Cell [J], 21: 1473-1494.

[193] Xiao J, Liu B, Yao Y Y, et al. 2022. Wheat genomic study for genetic improvement of traits in China. Science China-Life Sciences [J], 65: 1718-1775.

[194] Xiao Y, Liu D, Zhang G, et al. 2019. Big Grain3, encoding a purine permease, regulates grain size via modulating cytokinin transport in rice. Journal of Integrative Plant Biology [J], 61: 581-597.

[195] Xiao Y, Liu D, Zhang G, et al. 2017. Brassinosteroids Regulate OFP1, a DLT Interacting Protein, to Modulate Plant Architecture and Grain Morphology in Rice. Frontiers in Plant Scienceence [J], 8: 1698.

[196] Xiao Y, Zhang G, Liu D, et al. 2020. GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice. Plant Journal [J], 102: 1187-1201.

[197] Xiong Y, Ren Y, Li W, et al. 2019. NF-YC12 is a key multi-functional regulator of accumulation of seed storage substances in rice. Journal of Experimental Botany [J], 70: 3765-3780.

[198] Xu J J, Zhang X F, Xue H W 2016. Rice aleurone layer specific OsNF-YB1 regulates grain filling and endosperm development by interacting with an ERF transcription factor. Journal of Experimental Botany [J], 67: 6399-6411.

[199] Xu R, Duan P, Yu H, et al. 2018. Control of Grain Size and Weight by the OsMKKK10-OsMKK4-OsMAPK6 Signaling Pathway in Rice. Molecular Plant [J], 11: 860-873.

[200] Xu Y, Sechet J, Wu Y, et al. 2017. Rice Sucrose Partitioning Mediated by a Putative Pectin Methyltransferase and Homogalacturonan Methylesterification. Plant Physiology [J], 174: 1595-1608.

[201] Yan X, Zhao L, Ren Y, et al. 2019. Genome-wide association study revealed that the TaGW8 gene was associated with kernel size in Chinese bread wheat. Scientific Reports [J], 9: 2702.

[202] Yang C, Shen W, He Y, et al. 2016. OVATE Family Protein 8 Positively Mediates Brassinosteroid Signaling through Interacting with the GSK3-like Kinase in Rice. Plos Genetics [J], 12: e1006118.

[203] Yang F, Jørgensen A D, Li H, et al. 2011. Implications of high-temperature events and water deficits on protein profiles in wheat (Triticum aestivum L. cv. Vinjett) grain. Proteomics [J], 11: 1684-1695.

[204] Yang J, Zhou Y, Wu Q, et al. 2019a. Molecular characterization of a novel TaGL3-5A allele and its association with grain length in wheat (Triticum aestivum L.). Theoretical and Applied Genetics [J], 132: 1799-1814.

[205] Yang J, Zhou Y, Zhang Y, et al. 2019b. Cloning, characterization of TaGS3 and identification of allelic variation associated with kernel traits in wheat (Triticum aestivum L.). BMC Genetics [J], 20: 98.

[206] Ye X L, Lu Y Q, Liu W H, et al. 2015. The effects of chromosome 6P on fertile tiller number of wheat as revealed in wheat- Agropyron cristatum chromosome 5A/6P translocation lines. Theoretical and Applied Genetics [J], 128: 797-811.

[207] Yildirim A, Jones S S, Murray T D 1998. Mapping a gene conferring resistance to Pseudocercosporella herpotrichoides on chromosome 4V of Dasypyrum villosum in a wheat background. Genome [J], 41: 1-6.

[208] Yin W, Xiao Y, Niu M, et al. 2020. ARGONAUTE2 Enhances Grain Length and Salt Tolerance by Activating BIG GRAIN3 to Modulate Cytokinin Distribution in Rice. Plant Cell [J], 32: 2292-2306.

[209] Zeibig F, Kilian B, Frei M. The grain quality of wheat wild relatives in the evolutionary context[J]. Theoretical and Applied Genetics, 2022, 135(11): 4029-4048.

[210] Zhang J, Zhang J P, Liu W H, et al. 2015a. Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length. Theoretical and Applied Genetics [J], 128: 1827-1837.

[211] Zhang L, Ren Y, Lu B, et al. 2016a. FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice. Journal of Experimental Botany [J], 67: 633-647.

[212] Zhang R Q, Cao Y P, Wang X E, et al. 2010. Development and characterization of a Triticum aestivum - H . villosa T5VS.5DL translocation line with soft grain texture. Journal of Cereal Science [J], 51: 220-225.

[213] Zhang R Q, Fan Y L, Kong L N, et al. 2018a. Pm62 , an adult-plant powdery mildew resistance gene introgressed from Dasypyrum villosum chromosome arm 2VL into wheat. Theoretical and Applied Genetics [J], 131: 2613-2620.

[214] Zhang R Q, Feng Y G, Li H F, et al. 2016b. Cereal cyst nematode resistance gene CreV effective against Heterodera filipjevi transferred from chromosome 6VL of Dasypyrum villosum to bread wheat. Molecular Breeding [J], 36.

[215] Zhang R Q, Hou F, Feng Y G, et al. 2015b. Characterization of a Triticum aestivum - Dasypyrum villosum T2VS•2DL translocation line expressing a longer spike and more kernels traits. Theoretical and Applied Genetics [J], 128: 2415-2425.

[216] Zhang R Q, Lu C T, Meng X R, et al. 2022. Fine mapping of powdery mildew and stripe rust resistance genes Pm5V / Yr5V transferred from Dasypyrum villosum into wheat without yield penalty. Theoretical and Applied Genetics [J], 135: 3629-3642.

[217] Zhang R Q, Sun B X, Chen J, et al. 2016c. Pm55 , a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theoretical and Applied Genetics [J], 129: 1975-1984.

[218] Zhang R Q, Xiong C A X, Mu H Q, et al. 2021. Pm67 , a new powdery mildew resistance gene transferred from Dasypyrum villosum chromosome 1V to common wheat ( Triticum aestivum L.). Crop Journal [J], 9: 882-888.

[219] Zhang X, Wang H Y, Sun H J, et al. 2023. A chromosome-scale genome assembly of Dasypyrum villosum provides insights into its application as a broad-spectrum disease resistance resource for wheat improvement. Molecular Plant [J], 16: 432-451.

[220] Zhang X D, Wei X, Xiao J, et al. 2017. Whole genome development of intron targeting (IT) markers specific for Dasypyrum villosum chromosomes based on next-generation sequencing technology. Molecular Breeding [J], 37.

[221] Zhang Y J, Zhang Y, Zhang L L, et al. 2018b. OsGATA7 modulates brassinosteroids-mediated growth regulation and influences architecture and grain shape. Plant Biotechnology Journal [J], 16: 1261-1264.

[222] Zhao C Z, Lv X D, Li Y H, et al. 2016. Haynaldia villosa NAM - V1 is linked with the powdery mildew resistance gene Pm21 and contributes to increasing grain protein content in wheat. BMC Genetics [J], 17.

[223] Zhao D S, Li Q F, Zhang C Q, et al. 2018. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nature Communications [J], 9: 1240.

[224] Zhao R H, Wang H Y, Xiao J, et al. 2013. Induction of 4VS chromosome recombinants using the CS ph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from Haynaldia villosa . Theoretical and Applied Genetics [J], 126: 2921-2930.

[225] Zhou L, Chang G, Shen C, et al. 2024. Functional divergences of natural variations of TaNAM-A1 in controlling leaf senescence during wheat grain filling . Journal of Integrative Plant Biology [J], 00: 1–20.

[226] Zhu J T, Fang L L, Yu J Q, et al. 2018. 5-Azacytidine treatment and TaPBF - D over-expression increases glutenin accumulation within the wheat grain by hypomethylating the Glu - 1 promoters. Theoretical and Applied Genetics [J], 131: 735-746.

中图分类号:

 S33    

开放日期:

 2024-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式