- 无标题文档
查看论文信息

中文题名:

 葫芦科作物三种病毒快检方法的建立和种质资源抗病性鉴定     

姓名:

 植爱萍    

学号:

 2022802259    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 095132    

学科名称:

 农学 - 农业 - 资源利用与植物保护    

学生类型:

 硕士    

学位:

 农业硕士    

学校:

 南京农业大学    

院系:

 植物保护学院    

专业:

 资源利用与植物保护(专业学位)    

研究方向:

 农作物病害综合治理    

第一导师姓名:

 朱敏    

第一导师单位:

 南京农业大学    

第二导师姓名:

 古勤生    

完成日期:

 2024-04-11    

答辩日期:

 2024-05-31    

外文题名:

 Establishment of a Rapid Detection Method for Three viruses in Cucurbit Virus and Identification of Disease Resistance in Germplasm Resources    

中文关键词:

 新德里番茄曲叶病毒 ; 西瓜花叶病毒 ; 小西葫芦黄化花叶病毒 ; 侵染性克隆 ; 快速检测    

外文关键词:

 Tomato leaf curl New Delhi virus ; Watermelon mosaic virus ; Zucchini yellow mosaic virus ; Infectious clone ; Rapid detection    

中文摘要:

我国是蔬菜生产和消费大国,包括黄瓜、甜瓜和小西葫芦等在内的葫芦科作物因其食用和药用价值而受到农民和消费者的广泛青睐。然而随着种植规模的增大,葫芦科作物病毒病的威胁也日益严重,特别是菜豆金色花叶病毒属(Begomovirus)和马铃薯Y病毒属(Potyvirus)的一些病毒对葫芦科作物的生产构成了巨大威胁。新德里番茄曲叶病毒(tomato leaf curl new delhi virus, ToLCNDV)于2022年在我国首次发现,约一年的时间就对葫芦科作物造成了近1亿元的经济损失,因此被视为葫芦科作物的“超级”病毒。西瓜花叶病毒(watermelon mosaic virus, WMV)近年来的发生率显著上升,导致的产量损失约为30%-50%,严重时甚至导致绝产。小西葫芦黄化花叶病毒(zucchini yellow mosaic virus, ZYMV)严重影响葫芦科作物的产量和品种,苗期感染会造成极为严重的损失,感病植株所收获种子的发芽率显著降低。因此,加强对葫芦科作物病毒病的监测预警和综合防控尤为重要。另外,种植抗病品种是防控病毒病最有效的方法之一。筛选和创制抗病毒的葫芦科作物种质资源能够为病毒病的防控提供有力的支撑。

1. 葫芦科作物三种病毒快速检测方法的建立

开发和建立植物病毒的快速检测技术对于病害的监测预警和防控十分重要。重组酶聚合酶扩增(recombinase polymerase amplification, RPA)是近几年新兴的一种病毒检测技术,具有操作简单、快捷和灵敏度高等特点。本研究建立了ToLCNDV、WMV和ZYMV的RPA检测体系,并进行了一系列特异性和灵敏度测试。结果表明,三种病毒的RPA检测方法均能特异性的检测到相应的病毒,且检测灵敏度均比普通聚合酶链式反应(polymerase chain reaction, PCR)高。其中,ToLCNDV  RPA检测的灵敏度比普通PCR反应至少高104倍,WMV和ZYMV RPA检测的灵敏度比普通PCR反应至少高103倍。

2. 葫芦科作物三种病毒侵染性克隆的构建

为了更好保存病毒的毒源以便于后续的研究工作,本研究构建了ToLCNDV、WMV和ZYMV的全长侵染性克隆。通过农杆菌浸润的方法分别将三种病毒的侵染性克隆接种到本氏烟和黄瓜,发现ToLCNDV和WMV能同时侵染以上两种植物, ZYMV虽不能侵染本氏烟但能成功侵染黄瓜。以上结果说明,本研究构建的三种病毒侵染性克隆均具有侵染性。

3. 葫芦科作物种质资源对ToLCNDV和ZYMV的抗病性鉴定

利用构建的侵染性克隆,分别鉴定了一些葫芦科作物种质资源对ToLCNDV和ZYMV的抗病性。为提高结果的准确性,同时采用病情指数测算和分子检测的方法评估了各种质资源的抗感性。综合两种评估方法的结果,判定NS和科尔多瓦为ToLCNDV的耐病材料,Cucumis metuliferus、HB No.5和南水2号为ToLCNDV的抗病材料;判定Cucumis metuliferus、一口瓜、一休强雌、戴多星为ZYMV的耐病材料,Cucumis hystrix、Cucumis sp、Cucumis africanus、Cucumis anguria、CCMC和南抗3号为ZYMV的抗病材料。

综上所述,本研究成功建立了ToLCNDV、WMV和ZYMV的RPA快速检测方法,构建了三种病毒的侵染性克隆,并筛选到了ToLCNDV和ZYMV的抗病和耐病材料。上述研究结果为深入研究三种病毒的基因功能和致病分子机制奠定了基础,也将十分有助于葫芦科作物病毒病的检测预警和综合防控体系的建立。 另外,本研究筛选得到的ToLCNDV和ZYMV的抗病材料为葫芦科作物抗病种质的创制提供了重要的资源。

外文摘要:

China is a major producer and consumer of vegetables, and cucurbit crops, including cucumbers, melons, and zucchinis, are widely favored by farmers and consumers for their edible and medicinal value. However, as the scale of cultivation increases, the threat of viral diseases to cucurbit crops is becoming increasingly severe. In particular, some viruses from the Begomovirus and Potyvirus genera pose a significant threat to the production of cucurbit crops. The tomato leaf curl new delhi virus (ToLCNDV) was first discovered in our country in 2022 and has caused nearly 100 million yuan in economic losses to cucurbit crops in about a year, thus being considered a "super" virus for cucurbit crops. The incidence of watermelon mosaic virus (WMV) has risen significantly in recent years, resulting in yield losses of about 30%-50%, and even leading to complete crop failure in severe cases. zucchini yellow mosaic virus (ZYMV) severely affects the yield and variety of cucurbit crops, and infection during the seedling stage can cause extremely severe losses, with a significant reduction in the germination rate of seeds harvested from diseased plants. Therefore, strengthening the monitoring and early warning of cucurbit crop viral diseases and comprehensive prevention and control is particularly important. In addition, planting disease-resistant varieties is one of the most effective methods for controlling viral diseases. Selecting and creating virus-resistant cucurbit crop germplasm resources can provide strong support for the prevention and control of viral diseases.

Establishment of a rapid detection methods for three viruses of cucurbit crops

Developing and establishing rapid detection technology for plant viruses is very important for disease monitoring, early warning, and prevention and control. Recombinase Polymerase Amplification (RPA) is an emerging virus detection technology in recent years, characterized by simple operation, rapidity, and high sensitivity. This study established RPA detection systems for ToLCNDV, WMV, and ZYMV, and conducted a series of specificity and sensitivity tests. The results show that the RPA detection methods for the three viruses can specifically detect the corresponding viruses, and the detection sensitivity is higher than that of the conventional Polymerase Chain Reaction (PCR). Among them, the sensitivity of ToLCNDV RPA detection is at least 10^4 times higher than that of conventional PCR, and the sensitivity of WMV and ZYMV RPA detection is at least 10^3 times higher than that of conventional PCR.

Construction of Infectious Clones for Three Viruses Infecting Cucurbitaceae Crops

To better preserve the viral pathogens for subsequent research work, this study constructed full-length infectious clones for ToLCNDV, WMV, and ZYMV. The infectious clones of the three viruses were inoculated into Nicotiana benthamiana and cucumber via Agrobacterium infiltration. It was found that ToLCNDV and WMV can simultaneously infect both plants, while ZYMV, although unable to infect N. benthamiana, can successfully infect cucumber. The results indicate that the infectious clones of the three viruses constructed in this study are all infectious.

Evaluation of Disease Resistance in Cucurbitaceae Germplasm Resources to ToLCNDV and ZYMV

Using the constructed infectious clones, the disease resistance of some Cucurbitaceae germplasm resources to ToLCNDV and ZYMV was evaluated. To improve the accuracy of the results, both disease index calculation and molecular detection methods were used to assess the susceptibility of various germplasm resources. Based on the results of both assessment methods, NS and Cordoba were identified as tolerant materials for ToLCNDV, while Cucumis metuliferus, HB No.5, and Nan Shui No.2 were identified as resistant materials for ToLCNDV. Cucumis metuliferus, Yi Kou Gua, Yi Xiu Qiang Ci, and Dai Duoxing were identified as tolerant materials for ZYMV, while Cucumis hystrix, Cucumis sp., Cucumis africanus, Cucumis anguria, CCMC, and Nan Kang No.3 were identified as resistant materials for ZYMV.

In summary, this study successfully established a rapid detection method using RPA for ToLCNDV, WMV, and ZYMV, constructed infectious clones for the three viruses, and screened for resistant and tolerant materials for ToLCNDV and ZYMV. The research findings lay the foundation for in-depth studies on the gene functions and pathogenic molecular mechanisms of the three viruses and will greatly contribute to the establishment of detection and early warning systems, as well as integrated control systems for viral diseases in Cucurbitaceae crops. Additionally, the resistant materials for ToLCNDV and ZYMV screened in this study provide important resources for the development of disease-resistant germplasm in Cucurbitaceae crops.

参考文献:

[1] 班一云, 丁波, 周雪平. 2017. 湖南省番茄和牵牛花上双生病毒的分子鉴定[J]. 植物保护. 43: 134-138.

[2] 陈远超. 2014. 湖南小西葫芦黄花叶病毒的检测及株系进化分析 [M].

[3] 程兆榜, 任春梅, 缪倩, 等. 2013. 江苏黄瓜绿斑驳花叶病毒的发生和防治[J]. 江苏农业科学. 41: 114-117.

[4] 古勤生, 严蕾艳, 刘莉铭, 等. 2023. 瓜类作物新病毒——新德里番茄曲叶病毒 [J]. 中国瓜菜. 36:1-4

[5] 郊光宇. 1991. 在新疆发生的小西葫芦黄化花叶病毒的研究初报[J]. 植物病理学报. 74.

[6] 雷仲仁. 2016. 病虫害生物防治是实现蔬菜安全生产的主要途径[J]. 中国农业科学. 49: 2932-2934.

[7] 李海真, 张国裕, 张帆, 等. 2014. 抗ZYMV西葫芦新品种京葫CRV4的选育[J]. 中国蔬菜. 49-51.

[8] 李向东, 朱汉城, 严敦余, 等. 1995. 山东省侵染西瓜的西瓜花叶病毒(WMV-2)和黄瓜花叶病毒(CMV)的研究[J]. 山东农业大学学报. 299-306.

[9] 李战彪, 杨世安, 谢慧婷, 等. 2018. 甜瓜坏死斑点病毒广西分离物近全基因组序列克隆及分析[J]. 植物保护学报. 45: 647-648.

[10] 刘金亮, 邵云华, 张广民, 等. 2009. 小西葫芦黄花叶病毒山东南瓜分离物的分子特性[J].植物病理学报. 39: 96-100.

[11] 刘金亮, 王凤婷, 魏毅, 等. 2010a. 烟草花叶病毒南瓜分离物CP基因的克隆、序列分析及其原核表达[J]. 华北农学报. 25: 6-10.

[12] 刘金亮, 王凤婷, 魏毅, 等. 2010b. 侵染南瓜的西瓜花叶病毒和黄瓜花叶病毒CP基因的克隆和序列分析[J]. 中国农学通报. 26: 262-266.

[13] 刘莉铭, 康保珊, 彭斌, 等. 2021. 携带eGFP的ZYMV侵染性克隆的构建及其侵染性[J]. 植物病理学报. 51: 734-740.

[14] 刘莉铭, 彭斌, 康保珊, 等. 2023. 小西葫芦黄花叶病毒甜瓜分离物的基因组及其侵染性克隆[J]. 中国瓜菜. 36: 9-15-32.

[15] 刘勇, 李凡, 李月月, 等. 2019. 侵染我国主要蔬菜作物的病毒种类、分布与发生趋势[J]. 中国农业科学. 52: 239-261.

[16] 尚巧霞, 向海英, 韩成贵, 等. 2008. 南瓜蚜传黄化病毒湖北和云南分离物的部分序列分析[J]. 植物病理学报. 64-68.

[17] 汤亚飞, 何自福, 杜振国, 等. 2015. 番茄黄化曲叶病毒在湖北首次报道[J]. 植物保护. 41: 233-236.

[18] 汪琳, 罗英, 周琦, 等. 2011. 核酸恒温扩增技术研究进展[J]. 生物技术通讯. 22: 296-302.

[19] 王威麟, 张昊, 于祥泉, 等. 2010. 侵染西瓜的5种病毒ZYMV、WMV、TMV、SqMV和CMV的多重RT-PCR检测体系的建立与检测应用[J]. 植物病理学报. 40: 27-32.

[20] 肖钦之, 邓斌, 邹海露, 等. 2021. 植物病毒病生物防治研究进展 %J 南方农业. 15: 64-69.

[21] 袁俊杰, 魏霜, 龙阳, 等. 2018. 一步法逆转录重组酶聚合酶常温扩增技术(RT-RPA)检测大豆花叶病毒[J]. 检验检疫学刊. 28: 1-4.

[22] 张建新 2007. 西瓜花叶病毒基因组全序列分析及其蚜虫体内受体蛋白的分离与鉴定 [M].

[23] 张俊, 曾照芳 2012. 滚环扩增技术的原理及其应用的研究[J]. 生物信息学. 10: 12-14.

[24] 张雨良, 黄启星, 郭安平, 等. 2013. 海南番木瓜PRSV和PLDMV病毒发生情况及分子鉴定[J]. 热带作物学报. 34: 2436-2441.

[25] 赵荣乐 郑 2003. 桃蚜可高效率地传播小西葫芦黄化花叶病毒新疆株[J].北京师范大学学报(自然科学版). 382-385.

[26] 郑棚峻, 张宇, 张松柏, 等. 2017. 葫芦科作物重要种传病毒研究进展[J]. 江苏农业科学. 45: 5-9.

[27] 周健, 顾兴芳, 张圣平, 等. 2012. 黄瓜对西瓜花叶病毒病抗性的研究进展[J]. 中国蔬菜. 7-13.

[28] 周莹, 杨丽梅, 刘梅, 等. 2019. 重组酶聚合酶扩增技术在番茄黄化曲叶病毒检测中的应用[J]. 中国蔬菜. 36-40.

[29] 朱红菊, 路绪强, 刘文革, 等. 2014. 西瓜花叶病毒对四倍体西瓜叶片细胞超微结构的影响[J]. 中国瓜菜. 27: 14-16.

[30] AGUIAR R W D S, MARTINS A R, NASCIMENTO V L, et al. 2019. Multiplex RT-PCR identification of five viruses associated with the watermelon crops in the Brazilian Cerrado[J]. African Journal of Microbiology Research, 13(3): 60-69.

[31] ANIKINA I, KAMAROVA A, ISSAYEVA K, et al. 2023. Plant protection from virus: a review of different approaches[J]. Frontiers in Plant Science, 14: 1163270.

[32] CHANDEL R S, BANYAL D K, SINGH B P, et al. 2010. Integrated Management of Whitefly, Bemisia tabaci (Gennadius) and Potato Apical Leaf Curl Virus in India[J]. Potato Research, 53: 129-139.

[33] CHELLAPPAN P, VANITHARANI R, FAUQUET C M 2005. MicroRNA-binding viral protein interferes with Arabidopsis development[J]. Proceedings of the National Academy of Sciences of the United States of America, 102: 10381-10386.

[34] CHUNG B Y, MILLER W A, ATKINS J F, et al. 2008. An overlapping essential gene in the Potyviridae[J]. Proceedings of the National Academy of Sciences of the United States of America, 105: 5897-5902.

[35] COUTTS B A, KEHOE M A, WEBSTER C G, et al. 2011. Zucchini yellow mosaic virus: biological properties, detection procedures and comparison of coat protein gene sequences[J]. Archives of Microbiology, 156: 2119-2131.

[36] DESBIEZ C, GENTIT P, COUSSEAU-SUHARD P, et al. 2021. First report of Tomato leaf curl New Delhi virus infecting courgette in France[J]. New Disease Reports, 43: e12006.

[37] DESBIEZ C, LECOQ H. 2004. The nucleotide sequence of Watermelon mosaic virus (WMV, Potyvirus) reveals interspecific recombination between two related potyviruses in the 5' part of the genome[J]. Arch Virology, 149: 1619-1632.

[38] DOMIER L L, SHAW J G, RHOADS R E. 1987. Potyviral proteins share amino acid sequence homology with picorna-, como-, and caulimoviral proteins. Virology[J], 158: 20-27.

[39] FIRE A, XU S Q. 1995. Rolling replication of short DNA circles[J]. Proceedings of the National Academy of Sciences, 92: 4641-4645.

[40] FORTES I M, SáNCHEZ-CAMPOS S, FIALLO-OLIVé E, et al. 2016. A Novel Strain of Tomato Leaf Curl New Delhi Virus Has Spread to the Mediterranean Basin[J]. Viruses, 8(11):307.

[41] GIL-SALAS F M, PETERS J, BOONHAM N, et al. 2012. Co-infection with Cucumber vein yellowing virus and Cucurbit yellow stunting disorder virus leading to synergism in cucumber[J]. Plant Pathology, 61: 468-478.

[42] GU Q S, YAN L Y, LIU L M, et al. 2023. First Report of Tomato Leaf Curl New Delhi Virus Infecting Several Cucurbit Plants in China[J]. Plant disease, 107: 2563.

[43] HANLEY-BOWDOIN L, BEJARANO E R, ROBERTSON D, et al. 2013. Geminiviruses: masters at redirecting and reprogramming plant processes[J]. Nature Reviews Microbiology, 11: 777-788.

[44] HAO Z, XIE W, CHEN B. 2019. Arbuscular Mycorrhizal Symbiosis Affects Plant Immunity to Viral Infection and Accumulation[J]. Viruses, 11.

[45] HEINLEIN M. 2015. Plant virus replication and movement[J]. Virology, 479-480: 657-671.

[46] HOLMES E C. 2009. RNA virus genomics: a world of possibilities[J]. The Journal of Clinical Investigation, 119: 2488-2495.

[47] JERZAK G V, BROWN I, SHI P Y, et al. 2008. Genetic diversity and purifying selection in West Nile virus populations are maintained during host switching[J]. Virology, 374: 256-260.

[48] KARAMI A, GILL P, HOSEIN M, et al. 2011. A Review of the Current Isothermal Amplification Techniques: Applications, Advantages and Disadvantages[J]. Ournal of Global Infectious Diseases, 3: 293.

[49] KARWITHA M, FENG Z-K, SHEN Y, et al. 2016. Rapid Detection of Tomato chlorosis virus from Infected Plant and Whitefly by One-step Reverse Transcription Loop-mediated Isothermal Amplification[J]. Journal of Phytopathology, 164: 255-263.

[50] KUMAR R, TIWARI R K, JEEVALATHA A, et al. 2021. Potato apical leaf curl disease: current status and perspectives on a disease caused by tomato leaf curl New Delhi virus[J]. Journal of Plant Diseases and Protection, 128: 897-911.

[51] LECOQ H, DESBIEZ C. 2008. Watermelon Mosaic Virus and Zucchini Yellow Mosaic Virus[J]. Encyclopedia of Virology, 5: 433-440.

[52] LECOQ H, KATIS N. 2014. Chapter Five - Control of Cucurbit Viruses[C]//G. LOEBENSTEIN, N. KATIS[J]. Advances in Virus Research.Academic Press, 255-296.

[53] LI X H, VALDEZ P, OLVERA R E, et al. 1997. Functions of the tobacco etch virus RNA polymerase (NIb): subcellular transport and protein-protein interaction with VPg/proteinase (NIa)[J]. J Virol, 71: 1598-1607.

[54] LISA V, BOCCARDO G, D'AGOSTINO G, et al. 1981. Characterization of potyvirus that causes zucchini yellow mosaic[J]. Phytopathology, 71: 667-672.

[55] LIU D F, LIU C G, TIAN J, et al. 2015. Establishment of reverse transcription loop-mediated isothermal amplification for rapid detection and differentiation of canine distemper virus infected and vaccinated animals[J]. Infection Genetics and Evolution, 32: 102-106.

[56] LIU H, WU K, WU W, et al. 2019a. A multiplex reverse transcription PCR assay for simultaneous detection of six main RNA viruses in tomato plants[J]. Journal of Virological Methods, 265: 53-58.

[57] LIU X L, ZHAO X T, MUHAMMAD I, et al. 2014. Multiplex reverse transcription loop-mediated isothermal amplification for the simultaneous detection of CVB and CSVd in chrysanthemum[J]. Journal of Virological Methods, 210: 26-31.

[58] LIU Y, LI F, LI Y, et al. 2019b. Identification, distribution and occurrence of viruses in the main vegetables of China[J]. Scientia Agricultura Sinica, 52: 239-261.

[59] MEKURIA T A, ZHANG S, EASTWELL K C. 2014. Rapid and sensitive detection of Little cherry virus 2 using isothermal reverse transcription-recombinase polymerase amplification[J]. Journal of Virological Methods, 205: 24-30.

[60] MORIONES E, PRAVEEN S, CHAKRABORTY S. 2017. Tomato Leaf Curl New Delhi Virus: An Emerging Virus Complex Threatening Vegetable and Fiber Crops[J]. Viruses, 9.

[61] NASH T E, DALLAS M B, REYES M I, et al. 2011. Functional analysis of a novel motif conserved across geminivirus Rep proteins[J]. Journal of Virology, 85: 1182-1192.

[62] NICAISE V. 2014. Crop immunity against viruses: outcomes and future challenges[J]. Frontiers in Plant Science, 5: 660.

[63] NOTOMI T, MORI Y, TOMITA N, et al. 2015. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects[J]. Journal of Microbiological Methods, 53: 1-5.

[64] NOTOMI T, OKAYAMA H, MASUBUCHI H, et al. 2000. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research, 28: E63.

[65] PALUMBO J C, HOROWITZ A R, PRABHAKER N. 2001. Insecticidal control and resistance management for Bemisia tabaci[J]. Crop Protection, 20: 739-765.

[66] PENG J, SHI M, XIA Z, et al. 2012. Detection of cucumber mosaic virus isolates from banana by one-step reverse transcription loop-mediated isothermal amplification[J]. Archives of Virology, 157: 2213-2217.

[67] PICO B, DíEZ M J, NUEZ F. 1999. Improved Diagnostic Techniques for Tomato Yellow Leaf Curl Virus in Tomato Breeding Programs[J]. Plant Disease, 83: 1006-1012.

[68] PIEPENBURG O, WILLIAMS C H, STEMPLE D L, et al. 2006. DNA detection using recombination proteins[J]. PLoS Biology, 4: e204.

[69] PROVVIDENTI R. 1985. Sources of resistance to viruses in two accessions of Cucumis sativus[J]. Report, Cucurbit Genetics Cooperative, USA, 8: 12-12.

[70] RODRíGUEZ-CEREZO E, AMMAR E D, PIRONE T P, et al. 1993. Association of the non-structural P3 viral protein with cylindrical inclusions in potyvirus-infected cells[J]. Journal of General Virology, 74: 1945-1949.

[71] ROMAY G, PITRAT M, LECOQ H, et al. 2019. Resistance Against Melon Chlorotic Mosaic Virus and Tomato Leaf Curl New Delhi Virus in Melon[J]. Plant Disease, 103: 2913-2919.

[72] SHARMA N, PRASAD M. 2017. An insight into plant–Tomato leaf curl New Delhi virus interaction[J]. The Nucleus, 60: 335-348.

[73] SHUKLA D D, WARD C W. 1989. Structure of Potyvirus Coat Proteins and its Application in the Taxonomy of the Potyvirus Group Advances in virus research[C]. Advances in virus research, 36, 273–314.

[74] SINGH R K, RAI N, SINGH M, et al. 2015. Detection of tomato leaf curl virus resistance and inheritance in tomato (Solanum lycopersicum L.)[J]. The Journal of Agricultural Science, 153: 78-89.

[75] STANLEY J. 1985. The Molecular Biology of Geminiviruses Advances in Virus Research[C]. Academic Press, 139-177.

[76] URCUQUI-INCHIMA S, HAENNI A-L, BERNARDI F. 2001. Potyvirus proteins: a wealth of functions[J]. Virus Research, 74: 157-175.

[77] VOINNET O, PINTO Y M, BAULCOMBE D C. 1999. Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants[J]. Journal of Virology, 96: 14147-14152.

[78] WAMBULWA M, WACHIRA F, KARANJA L, et al. 2012. Rolling Circle Amplification Is More Sensitive than PCR and Serology-Based Methods in Detection of Banana streak virus in Musa Germplasm[J]. American Journal of Plant Sciences, 3: 1581-1587.

[79] WANG R, ZHANG F, WANG L, et al. 2017. Instant, Visual, and Instrument-Free Method for On-Site Screening of GTS 40-3-2 Soybean Based on Body-Heat Triggered Recombinase Polymerase Amplification[J]. Analytical Chemistry, 89: 4413-4418.

[80] XIA S, CHEN X. 2020. Single-copy sensitive, field-deployable, and simultaneous dual-gene detection of SARS-CoV-2 RNA via modified RT–RPA[J]. Cell Discovery, 6: 37.

[81] XIA X, YU Y, WEIDMANN M, et al. 2014. Rapid detection of shrimp white spot syndrome virus by real time, isothermal recombinase polymerase amplification assay[J]. PLoS One, 9: e104667.

[82] XU Y, KANG D, SHI Z, et al. 2004. Inheritance of resistance to zucchini yellow mosaic virus and watermelon mosaic virus in watermelon. Journal of Heredity, 95: 498-502.

[83] YONESAKI T, RYO Y, MINAGAWA T, et al. 1985. Purification and some of the functions of the products of bacteriophage T4 recombination genes, uvsX and uvsY[J]. European journal of biochemistry, 148: 127-134.

[84] ZHANG S, RAVELONANDRO M, RUSSELL P, et al. 2014. Rapid diagnostic detection of plum pox virus in Prunus plants by isothermal AmplifyRP(®) using reverse transcription-recombinase polymerase amplification[J]. Journal of Virological Methods, 207: 114-120.

[85] ZHAO L-M, LI G, GAO Y, et al. 2015. Reverse transcription loop-mediated isothermal amplification assay for detecting tomato chlorosis virus[J]. Journal of Virological Methods, 213: 93-97.

[86] ZHAO Z, XIANG J, TIAN Q, et al. 2022. Development of one-step multiplex RT-PCR assay for rapid simultaneous detection of five RNA viruses and Acidovorax citrulli in major cucurbitaceous crops in China[J]. Archives of Microbiology, 204: 696.

中图分类号:

 S43    

开放日期:

 2024-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式