- 无标题文档
查看论文信息

中文题名:

 日粮添加蚕豆皮对育肥湖羊小肠发育、功能和肌肉品质的影响     

姓名:

 刘静    

学号:

 2020805104    

保密级别:

 保密两年    

论文语种:

 chi    

学科代码:

 095133    

学科名称:

 农学 - 农业 - 畜牧    

学生类型:

 硕士    

学位:

 农业硕士    

学校:

 南京农业大学    

院系:

 动物科技学院    

专业:

 畜牧(专业学位)    

研究方向:

 肉羊繁育    

第一导师姓名:

 茆达干    

第一导师单位:

 南京农业大学    

完成日期:

 2022-04-12    

答辩日期:

 2022-05-27    

外文题名:

 Effects Of Dietary Broad Bean Skin On Small Intestine Development,Function And Muscle Quality Of Fattening Hu Sheep    

中文关键词:

 蚕豆皮 ; 湖羊 ; 小肠发育 ; 小肠功能 ; 肌肉品质    

外文关键词:

 broad bean skin ; Hu sheep ; small intestine development ; small intestine function ; muscle quality    

中文摘要:

肉羊产业是畜牧业的重要组成部分,其经济效益受到品种、饲料、环境和管理等因素的影响,且肉羊产业中饲料成本约占养殖成本的60%~70%。蚕豆皮作为蚕豆副产物之一,不仅含有多种常规营养物质,如膳食纤维、粗蛋白、微量元素等,还含有原花青素生物活性物质,可以作为一种比较理想的非常规饲料原料使用。课题组前期在等能等氮的基础上,分别用基础日粮和添加10%、20%、30%蚕豆皮的日粮饲喂湖羊,饲养试验结果表明添加30%蚕豆皮日粮组的湖羊生长性能显著提高。因此,本研究应用HE、RT-qPCR和高通量测序等研究方法,深入探究日粮添加30%蚕豆皮对育肥湖羊肠道形态、免疫屏障基因表达、消化酶活性、肠道微生物,以及肌肉品质、肌纤维特性和肌肉氨基酸组成的影响,进一步阐明日粮添加蚕豆皮改善湖羊生产性能的潜在机制,为开发利用蚕豆皮资源,提高畜牧业经济效益提供科学依据。

1日粮添加蚕豆皮对湖羊小肠形态、免疫屏障功能、消化酶活性和微生物菌群的影响

本试验旨在研究日粮添加30%蚕豆皮对育肥湖羊小肠形态、免疫屏障相关基因表达水平、消化酶活性和微生物菌群多样性、相对丰度及功能的影响。试验选取30只4月龄体重相近(27±2.0kg)湖羊公羊,平均分为2个处理组,每处理组3个重复共15只羊。分别饲喂基础日粮(对照组,CON)和添加30%蚕豆皮日粮(蚕豆皮组,BBS)。试验期60天,含10天预饲期。试验结束后每组各选5只羊屠宰,采集小肠组织及其内容物,应用HE染色观察小肠组织形态,RT-qPCR检测空肠紧密连接蛋白Claudin-1、Occludin、MUC-2、ZO-1和炎症因子IL-6、IL-10、IL-1β、TNF-α mRNA表达量;生化试剂盒检测小肠消化酶活性,高通量测序检测空肠微生物菌群多样性、相对丰度和功能。HE结果表明,与对照组相比,BBS组湖羊十二指肠组织形态无显著变化(P>0.05),回肠绒毛高度和绒毛高度/隐窝深度值显著升高(P<0.05),隐窝深度有下降趋势(P=0.074)。RT-qPCR结果表明:BBS组空肠紧密连接蛋白Claudin-1、Occludin、MUC-2、ZO-1 mRNA表达量无显著变化(P>0.05);促炎因子IL-1β的mRNA表达量显著降低(P<0.05),IL-6、IL-10和TNF-α mRNA表达量无显著变化(P>0.05)。生化结果表明:小肠α-淀粉酶、胰蛋白酶、脂肪酶活性无显著变化(P>0.05)。微生物测序结果表明:BBS组Shannon指数、Chao1指数和Observed_otus指数显著降低(P<0.05);门水平上,变形菌门相对丰度显著升高(P<0.05),厚壁菌门、髌骨细菌门和厚壁菌门/拟杆菌门值显著降低(P<0.05);属水平上,BBS组糖单胞菌属、糖酵解菌属等的相对丰度显著降低(P<0.05);BBS组丰度差异显著类群降低,且增强了菌群在糖、脂肪和蛋白质代谢途径的富集。因此,日粮添加蚕豆皮可以改善育肥湖羊小肠组织形态,抑制炎症因子表达,降低空肠微生物多样性,抑制有害菌增殖,增强机体糖、脂肪和蛋白质代谢。

2日粮添加蚕豆皮对湖羊肌肉品质、肌纤维特性和氨基酸组成的影响

本试验旨在研究日粮添加蚕豆皮对育肥湖羊肌肉品质、肌纤维组织形态和肌肉氨基酸组成影响。试验分组和试验过程同试验一,试验结束后采集湖羊背最长肌组织。应用pH计、肉色仪、肌肉嫩度仪、压力仪、游标卡尺和硫酸绘图纸分别测定肌肉pH、肉色、剪切力、失水率、GR值和眼肌面积,应用HE染色观察并计算肌纤维横截面积、直径和密度,应用全自动氨基酸分析仪测定肌肉氨基酸组成。结果表明,与对照组相比,BBS组眼肌面积显著增高(P<0.05);肌纤维横截面积显著降低(P<0.05),肌纤维密度显著增高(P<0.05);Glu、Arg和NEAA含量显著增高(P<0.05),Val(P=0.086)和EAA(P=0.071)含量较对照组有上升趋势。因此,日粮添加30%蚕豆皮能够提高肌肉嫩度,改善氨基酸组成。

外文摘要:

The mutton sheep industry is an important part of animal husbandry, and its economic benefits are affected by species, feed, environment and management, etc and the cost of feed in the mutton sheep industry accounts for about 60% to 70%. Broad bean skin(BBS), one of the by-products of broad bean, contains a variety of conventional nutrients, such as dietary fiber, crude protein, trace elements, etc., and also contains proanthocyanidin bioactive substances, which can be used as an ideal unconventional feed material. Our previous study of diet supplemented with different proportions of BBS, on the basis of isoenergy and nitrogen, showed that the diet supplemented with 30% BBS significantly improved the growth performance of Hu sheep. Therefore, this study applied HE, RT-qPCR and high-throughput sequencing methods to deeply explore the effect of dietary supplementation of 30% BBS on intestinal morphology, digestive enzyme activity, barrier function, microbial diversity, muscle quality, the effect of muscle fiber characteristics and muscle amino acid composition to further elucidate the potential mechanism of dietary BBS the performance of Hu sheep, which will provide a scientific basis for the development and utilization of BBS resources and the improvement of animal husbandry economic benefits.

1 Effects of dietary broad bean skin on small intestine morphology, digestive enzyme activity, immune barrier function and microbial flora in Hu sheep

The purpose of this experiment was to investigate the effects of dietary supplementation of 30% BBS on intestinal morphology, immune barrier-related gene expression levels, digestive enzyme activities, and microbial flora structure and function in fattening Hu sheep. Thirty 4-month-old male Hu sheep with similar body weight (27±2.0kg) were divided into 2 treatment groups(n=15), with 3 replicates in each group, fed with the basal diet (control group, CON) and the diet supplemented with 30% broad bean skin (broad bean skin, BBS), respectively. The trial period is 60 days including a pre-trial period of 10 days. At the end of the experiment, 5 sheep in each group were selected for slaughter, the small intestine tissue and its contents were collected. HE staining was used to observe the intestinal tissue morphology, and RT-qPCR was used to detect the mRNA expression of intestinal tight junction protein including Claudin-1, Occludin, MUC-2 and ZO-1, inflammatory factor including IL-6, IL-10, IL-1β and TNF-α, biochemical kit to detect digestive enzyme activity, high-throughput sequencing to detect jejunum microbiota diversity, relative abundance and function. HE results show that, compared with the control group, the duodenal tissue morphology of Hu sheep in the experimental group had no significant change (P>0.05), the ileal villus height and V/C value increased significantly (P<0.01), and the crypt depth showed a downward trend (P=0.074) in BBS group. RT-qPCR results show that, there was no significant change in the mRNA expression of Claudin-1, Occludin, MUC-2, ZO-1, IL-6, IL-10 and TNF-α(P>0.05), but the mRNA expression of pro-inflammatory factor IL-1β was significantly decreased (P<0.05) in BBS group. Biochemical results showed that, there was no significant change in the activities of α-amylase, trypsin and lipase in the small intestine (P>0.05). Jejunal microbial sequencing results show that, the Shanon index, Chao1 index and Observed_otus index were significantly decreased in BBS group(P<0.05); At the phylum level, the relative abundance of Proteobacteria increased significantly (P<0.05), while Firmicutes, Patescibacteria and F/B values decreased significantly in BBS group(P<0.05); At the genus level, the relative abundances of Candidatus_Saccharimonas, Saccharofermentans, etc, decreased significantly (P<0.05) in BBS group; Significant differences in the abundance of taxa in the BBS group were reduced, and the enrichment of bacteria in sugar, fat and protein metabolism pathways was enhanced. Therefore, adding broad bean skin to the diet can improve the small intestine tissue morphology and immune function, reduce the jejunal microbial diversity, inhibit harmful flora, and enhance the sugar, fat and protein metabolism of fattening Hu sheep.

2 Effects of dietary broad bean skin on muscle quality, muscle fiber tissue morphology and muscle amino acid composition in Hu sheep

The purpose of this experiment was to study the effect of adding broad bean skin to the diet on muscle quality, muscle fiber tissue morphology and muscle amino acid composition in fattening Hu sheep. The experiment grouping and experiment process were the same as experiment 1, after the experiment, the longissimus dorsi muscle of Hu sheep was collected. The pH meter, meat color meter, muscle tenderness meter, pressure meter, vernier caliper and sulfuric acid drawing paper were used to measure muscle pH, meat color, shear force, water loss rate, and GR value respectively, the cross-sectional area, diameter and density of muscle fibers were observed and calculated by HE staining, and the amino acid composition of muscle was determined by automatic amino acid analyzer. The results showed that the eye muscle area of BBS group was higher than that of the control group (P<0.05); In BBS group, the cross-sectional area of muscle fibers was lower (P<0.05), and the density of muscle fibers was higher than that of the control group (P<0.05); The contents of Glu, Arg and NEAA were higher (P<0.05), and the contents of Val (P=0.086) and EAA (P=0.071) tend to increase compared with the control group. Therefore, adding 30% BBS to the diet can increase meat yield and muscle tenderness, and improve the amino acid composition in Hu sheep.

参考文献:

[1] 耿爽, 王斯佳. 非常规饲料资源开发的思路与方法[J]. 饲料研究, 2020,43(05):97-100.

[2] 朱勇, 余思佳, 包健 等. 发酵鲜食大豆秸秆对母羊繁殖性能、初乳品质及消化性能的影响[J]. 中国畜牧兽医, 2017,44(01):100-105.

[3] 樊庆山, 屠焰, 刁其玉 等. 含棕榈仁粕、油茶籽粕或茶籽粕饲粮对3~5月龄犊牛生长性能、抗氧化能力及免疫性能的影响[J]. 中国畜牧杂志, 2018,54(07):76-82.

[4] 孟梅娟, 涂远璐, 白云峰 等. 饲粮中补饲非常规饲料对育肥羊屠宰性能、血液生化指标及肉品质的影响[J]. 江苏农业学报, 2018,34(02):390-398.

[5] Molist F, S A J P. Effect of wheat bran on the health and performance of weaned pigs challenged with Escherichia coli K88 +[J]. Livestock Science, 2010,133(01):214-217.

[6] 吴维达, 解竞静, 张宏福. 不同日粮纤维对生长猪养分消化率和肠道结构形态的影响[J]. 畜牧与兽医, 2016,48(06):57-60.

[7] Chen H, Chen D, Michiels J, et al. Dietary fiber affects intestinal mucosal barrier function by regulating intestinal bacteria in weaning pigs.[J]. Communications in Agricultural and Applied Biological Sciences, 2013,78(01):71-78.

[8] 王健, 龚高全, 麻小凤. 白酒糟替代部分青贮料饲喂肉羊效果比较试验[J]. 畜牧兽医杂志, 2018,37(03):6-8.

[9] 钟方寅, 郑琛, 李发弟 等. 向日葵秆和向日葵盘对绵羊营养价值的评定[J]. 草业学报, 2014,23(03):205-214.

[10] 冯文晓, 陶莲, 王玉荣 等. 菌制剂和酶制剂处理小麦秸秆对肉用绵羊生长性能和屠宰性能的影响[J]. 中国畜牧兽医, 2017,44(06):1666-1672.

[11] 陈海燕. 非常规饲料资源的开发利用[J]. 丽水师专学报, 1998(05):21-22.

[12] 曹日亮, 胡广英. 非粮型饲料资源的开发利用[J]. 农产品加工, 2003.

[13] 杨英超, 昝林森. 非常规饲料在反刍动物生产中的应用进展[J]. 中国牛业科学, 2020,46(01):6.

[14] 林祥金. 非常规饲料资源在现代肉牛业的发展应用[J]. 北方牧业, 2009(09):2.

[15] 孙瑞健, 米海峰, 潘化祥 等. 非常规原料在饲料中应用的研究进展[J]. 中国饲料, 2015(17):5-9.

[16] 陈艳, 唐式校. 粗、青饲料的特性和利用[J]. 现代畜牧科技, 2016(02):46-47.

[17] 王泳, 张英杰. 植物性非常规饲料在反刍动物上的应用研究进展[J]. 中国草食动物科学, 2018,38(02):61-65.

[18] 冯文晓, 陈国顺, 陶莲 等. 不同生物处理水稻秸秆对肉用绵羊生长性能、屠宰性能及器官发育的影响[J]. 动物营养学报, 2017,29(04):9.

[19] 魏敏雒, 秋江, 王东宝 等. 棉花秸秆作为绵羊粗饲料的研究[J]. 草食家畜, 2003(03):47-49.

[20] 李忠喜, 张江涛, 王新建 等. 浅谈我国木本饲料的开发与利用[J]. 世界林业研究, 2007(04):49-53.

[21] Miguel M, Jose E G, Wolfgang P. Rough agave flowers as a potential feed resource for growing goats[J]. Rangeland Ecology & Management, 2008,61(06):640-646.

[22] 倪晓燕, 黄清波, 周建华 等. 竹叶复合颗粒饲料加工工艺及其喂羊试验[J]. 畜牧与饲料科学, 2010,31(02):50-51.

[23] Laura B H, Debbie J R C. Okara as a protein supplement affects feed intake and milk composition of ewes and growth performance of lambs[J]. Animal Nutrition, 2017,3(02):171-174.

[24] 杨瑞萍, 杨瑞玲, 张志军 等. 四类非常规饲料的利用现状及研究进展[J]. 草食家畜, 2015(05):14-19.

[25] 修建成. 非常规饲料资源的开发及其在畜牧生产中的应用[J]. 饲料博览, 2015(12):19-23.

[26] 田晓燕. 几种动物性蛋白质饲料的开发利用[J]. 饲料与畜牧, 2002(04):26-28.

[27] 钱坤, 杨慧杰. 动物性食品中兽药和饲料添加剂的残留与控制[J]. 畜禽业, 2020,31(01):14.

[28] C Caserta L, G Noll JC, Singrey A, et al. Stability of senecavirus A in animal feed ingredients and infection following consumption of contaminated feed[J]. Transboundary and Emerging Diseases, 2022,69(01):88-96.

[29] Jones S W, Karpol A, Friedman S, et al. Recent advances in single cell protein use as a feed ingredient in aquaculture[J]. Current Opinion in Biotechnology, 2020,61:189-197.

[30] 李婷婷, 邓雪娟. 单细胞蛋白饲料研究进展及其在动物中的应用[J]. 饲料与畜牧, 2015(05):57-61.

[31] Gamboa-Delgado J, Fernández-Díaz B, Nieto-Lopez M, et al. Nutritional contribution of torula yeast and fish meal to the growth of shrimp Litopenaeus vannamei as indicated by natural nitrogen stable isotopes[J]. Aquaculture, 2016,453:116-121.

[32] 杨云燕, 武婷婷, 韦泽阳 等. 非常规饲料对水牛生长性能、养分消化率及血清生化指标的影响[J]. 中国畜牧杂志, 2018,54(12):88-91.

[33] Noftsger S M, Hopkins B A, Diaz D E, et al. Effect of whole and expanded-expelled cottonseed on milk yield and blood gossypol[J]. Journal of Dairy Science, 2000,83(11):2539-2547.

[34] Awawdeh M S. Alternative feedstuffs and their effects on performance of Awassi sheep: a review[J]. Tropical Animal Health and Production, 2011,43(07):1297-1309.

[35] Ramadan S. Impact of supplementation of moringa oleifera in diet of broiler chicks on their behavior, welfare, performance and immune responses[J]. Alexandria Journal of Veterinary Sciences, 2017,55(01):50.

[36] 杨青春, 陈绍红, 刘铀. 构树叶对育肥猪生产性能、肉品质及营养物质表观消化率的影响[J]. 河南农业科学, 2014,43(07):133-137.

[37] Obeidat B S, Aloqaily B H. Using sesame hulls in Awassi lambs diets: Its effect on growth performance and carcass characteristics and meat quality[J]. Small Ruminant Research, 2010,91(2-3):225-230.

[38] Farghaly M M, Youssef I, Radwan M A, et al. Effect of feeding Sesbania sesban and reed grass on growth performance, blood parameters, and meat quality of growing lambs[J]. Tropical Animal Health and Production, 2021,54(01):3.

[39] 李硕, 龚晗, 赵敏孟 等. 饲粮中添加醋糟对肉鹅生长性能、屠宰性能和肉品质的影响[J]. 扬州大学学报(农业与生命科学版), 2019,40(01):72-76.

[40] Awawdeh M S, Obeidat B S, Abdullah A Y, et al. Effects of yellow grease or soybean oil on performance, nutrient digestibility and carcass characteristics of finishing Awassi lambs[J]. Animal Feed Science & Technology, 2009,153(3-4):216-227.

[41] Du E, Guo W, Zhao N, et al. Effects of diets with various levels of forage rape (Brassica napus) on growth performance, carcass traits, meat quality and rumen microbiota of Hu lambs[J]. J Sci Food Agric, 2022,102(03):1281-1291.

[42] 刘斌峰. 高玉鹏. 郭久荣. 热应激环境蛋鸡免疫力变化机理研究Ⅱ 免疫力、氧自由基代谢、耐热力间的关系[J]. 西北农林科技大学学报(自然科学版), 2001(05):33-36.

[43] Chen X Y, Zhang T, Xin W, et al. A chemical investigation of the leaves of morus alba L.[J]. Molecules, 2018,23(05):1018.

[44] Liu Y, Li Y, Xiao Y, et al. Mulberry leaf powder regulates antioxidative capacity and lipid metabolism in finishing pigs[J]. Animal Nutrition, 2021,7(02):421-429.

[45] 吕宗浩, 王金全, 乔增强 等. 柠条、沙柳颗粒饲料对小尾寒羊血清生化、抗氧化和免疫指标的影响[J]. 草业科学, 2021,38(06):1165-1170.

[46] 孙廷, 李伟. 蘑菇菌渣对蛋鸡生产性能、养分消化及血清抗氧化性能的影响[J]. 中国饲料, 2021(18):113-116.

[47] Toghyani M, Toghyani M, Gheisari A, et al. Growth performance, serum biochemistry and blood hematology of broiler chicks fed different levels of black seed ( Nigella sativa) and peppermint ( Mentha piperita)[J]. Livestock science, 2010,129(01):173-178.

[48] 王明海, 邢红飞, 陈雨 等. 黄秋葵对肉兔生产性能、肉品质和血清生化指标的影响[J]. 中国饲料, 2021(09):129-133.

[49] Omar A E, Al-Khalaifah H S, Ismail T A, et al. Performance, serum biochemical and immunological parameters, and digestive enzyme and intestinal barrier-related gene expression of broiler chickens fed fermented fava bean by-products as a substitute for conventional feed[J]. Frontiers in Veterinary Science, 2021,8:696841.

[50] 毛鑫, 刘桂琼, 姜勋平 等. 饲料油菜鲜饲对哺乳母羊和羔羊体质量和血清生化指标的影响[J]. 河南农业科学, 2020,49(05):161-167.

[51] 殷海成, 周孟清. 饲粮中添加苜蓿草粉或发酵苜蓿草粉对鹅生长性能、血清抗氧化酶及消化酶活性的影响[J]. 动物营养学报, 2015,27(05):1492-1500.

[52] 金焰, 徐艳, 董瑞兰 等. 营养水平和发酵果渣对断奶仔猪生长性能、血清生化指标和消化酶活性的影响[J]. 中国畜牧杂志, 2021,57(08):187-192.

[53] McCleary B V. Importance of enzyme purity and activity in the measurement of total dietary fiber and dietary fiber components[J]. Journal of AOAC International, 2000,83(04):997-1005.

[54] Gopinger E, Xavier E G, Elias M C, et al. The effect of different dietary levels of canola meal on growth performance, nutrient digestibility, and gut morphology of broiler chickens[J]. Poultry Science, 2014,93(05):1130-1136.

[55] Drazbo A, Ognik K, Zaworska A, et al. The effect of raw and fermented rapeseed cake on the metabolic parameters, immune status, and intestinal morphology of turkeys[J]. Poultry Science, 2018,97(11):3910-3920.

[56] Xu Z R, Hu C H, Xia M S, et al. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers[J]. Poultry Science, 2003,82(06):1030-1036.

[57] Su G, Zhou X, Wang Y, et al. Dietary supplementation of plant essential oil improves growth performance, intestinal morphology and health in weaned pigs[J]. Journal of Animal Physiology and Animal Nutrition, 2020,104(02):579-589.

[58] Nishio J, Honda K. Immunoregulation by the gut microbiota[J]. Cellular and Molecular LifeSciences, 2012,69(21):3635-3650.

[59] Liu, Shi, Wang, et al. AT1R blocker losartan attenuates intestinal epithelial cell apoptosis in a mouse model of Crohn's disease[J]. Molecular Medicine Reports, 2015,13(02):1156.

[60] Kief S, Houdek P, Brandner J M, et al. Tight junction proteins in the skin[J]. Skin Pharmacol Appl Skin Physiol, 2006,19(02):71-77.

[61] Ouyang W, Rutz S, Crellin N K, et al. Regulation and functions of the IL-10 family of cytokines in inflammation and disease[J]. Annual Review of Immunology, 2011,29:71-109.

[62] Song J, Li Q, Everaert N, et al. Effects of inulin supplementation on intestinal barrier function and immunity in specific pathogen-free chickens with Salmonella infection[J]. Journal of Animal Science, 2020,98(01):z396.

[63] Shang Q, Liu S, Liu H, et al. Maternal supplementation with a combination of wheat bran and sugar beet pulp during late gestation and lactation improves growth and intestinal functions in piglets[J]. Food & Function, 2021,12(16):7329-7342.

[64] Luo Y, Liu Y, Shen Y, et al. Fermented alfalfa meal instead of "Grain-Type" feedstuffs in the diet improves intestinal health related indexes in weaned pigs[J]. Frontiers in Microbiology, 2021,12:797875.

[65] Yang K M, Jiang Z Y, Zheng C T, et al. Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88[J]. Journal of Animal Science, 2014,92(04):1496-1503.

[66] Ohland C L, Jobin C. Microbial activities and intestinal homeostasis: A delicate balance between health and disease[J]. Cellular and Molecular Gastroenterology and Hepatology, 2015,1(01):28-40.

[67] 汤文杰, 何鹏, 刁慧 等. 山楂提取物对断奶仔猪生长性能、免疫功能、抗氧化能力及肠道微生物的影响研究[J]. 中国饲料, 2022(03):47-52.

[68] 顾文松. 仙人掌提取物对肉鸡生产性能,营养物质利用和肠道微生物区系的影响[J]. 中国饲料, 2009(21):14-16.

[69] Sheng Y, Liu J, Zheng S, et al. Mulberry leaves ameliorate obesity through enhancing brown adipose tissue activity and modulating gut microbiota[J]. Food & Function, 2019,10(08):4771-4781.

[70] 黄蓉, 刘敦华. 水煮蚕豆加工中存在的问题及防治措施[J]. 农业科学研究, 2010,31(02):73-75.

[71] 郁二蒙, 张振男, 谢骏 等. 蚕豆替代鱼类饲料的应用研究[J]. 广东农业科学, 2013,40(24):82-86.

[72] 徐晓俞, 李爱萍, 吴凌云 等. 蚕豆秸秆综合利用研究进展[J]. 福建农业学报, 2015,30(02):4.

[73] 潘伟丽, 周天星. 肉羊对不同处理蚕豆秸秆的喜食性研究[J]. 浙江畜牧兽医, 2019,44(06):8-25.

[74] 王婷婷, 刘敦华. 蚕豆皮膳食纤维在面包中的开发与应用研究[J]. 黑龙江科学, 2017,8(15):34-35.

[75] 韩丽, 彭翔, 蔡辉益 等. 发酵功能性膳食纤维饲料在动物生产中的应用研究[J]. 养猪, 2021(04):25-31.

[76] 兰佳佳, 杨希娟, 党斌 等. 蚕豆皮中原花青素的提取工艺优化及品种间含量差异与抗氧化活性评价[J]. 核农学报, 2017,31(11):2164-2174.

[77] 杨万荣. 肉绵羊的快速育肥管理要点[J]. 现代畜牧科技, 2016(02):18.

[78] 胡忠昌, 张然, 李向琴. 湖羊养殖效益及技术要点探讨[J]. 当代畜牧, 2021(02):1-3.

[79] Pham V H, Kan L, Huang J, et al. Dietary encapsulated essential oils and organic acids mixture improves gut health in broiler chickens challenged with necrotic enteritis.[J]. Journal of Animal Science and Biotechnology, 2020,11(01):18.

[80] Mongkol S, Koh-en Y. Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto[J]. Comparative Biochemistry and Physiology, Part A, 2002,133(01):95-104.

[81] Lindvall H, Nevsten P, Strom K, et al. A novel hormone-sensitive lipase isoform expressed in pancreatic beta-cells[J]. The Journal of Biological Chemistry, 2004,279(05):3828-3836.

[82] Ngoc T T, Hong T T, Len N T, et al. Effect of fibre level and fibre source on gut morphology and micro-environment in local (Mong Cai) and exotic (LandracexYorkshire) pigs[J]. Asian-Australasian Journal of Animal Sciences, 2012,25(12):1726-1733.

[83] 张叶秋. 高米糠日粮对苏淮猪肠道发育和肠道微生物的影响[D]. 南京农业大学, 2016.

[84] 李玲, 孙小红, 连旭 等. 凉茶渣替代象草对育肥牛空肠组织形态、屏障功能以及菌群结构的影响[J]. 动物营养学报, 2022,34(02):1087-1097.

[85] Chen H, Mao X B, Chen L Q, et al. Impact of fiber types on gut microbiota, gut environment and gut function in fattening pigs[J]. Animal Feed Science & Technology, 2014,195:101-111.

[86] 刘远升, 赵书平. 日粮纤维营养价值及其应用[J]. 河南职业技术师范学院学报, 2002(02):41-43.

[87] Mowat A M. Anatomical basis of tolerance and immunity to intestinal antigens[J]. Nature Reviews. Immunology, 2003,3(04):331-341.

[88] Turner J R. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application.[J]. The American Journal of Pathology, 2006,169(06):1901-1909.

[89] Rodrigues R, Guerra G, Soares J, et al. Lactobacillus rhamnosus EM1107 in goat milk matrix modulates intestinal inflammation involving NF-κB p65 and SOCs-1 in an acid-induced colitis model[J]. Journal of Functional Foods, 2018,50:78-92.

[90] Bruewer M, Luegering A, Kucharzik T, et al. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms[J]. Journal of Immunology, 2003,171(11):6164-6172.

[91] Frazier T H, DiBaise J K, McClain C J. Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury[J]. JPEN. Journal of Parenteral and Enteral Nutrition, 2011,35(5 Suppl):14S-20S.

[92] Zhu L, Shi T, Zhong C, et al. IL-10 and IL-10 receptor mutations in very early onset inflammatory bowel disease[J]. Gastroenterology Research and Practice, 2017,10(02):65-69.

[93] Hutchins A P, Diez D, Miranda-Saavedra D. The IL-10/STAT3-mediated anti-inflammatory response: recent developments and future challenges[J]. Briefings in Functional Genomics, 2013,12(06):489-498.

[94] Waugh D J, Wilson C. The interleukin-8 pathway in cancer[J]. Clinical Cancer Research, 2008,14(21):6735-6741.

[95] Suzuki T. Regulation of the intestinal barrier by nutrients: The role of tight junctions[J]. Animal Science Journal, 2020,91(01):e13357.

[96] Chen H, Mao X, He J, et al. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets[J]. The British Journal of Nutrition, 2013,110(10):1837-1848.

[97] 曲星梅, 薛复来, 黄晓瑜 等. 断奶日龄和日粮营养水平对陕北白绒山羊小肠形态发育和消化酶活性的影响[J]. 中国农业科学, 2019,52(19):3460-3470.

[98] Wang X B, Ogawa T, Suda S, et al. Effects of nutritional level on digestive enzyme activities in the pancreas and small intestine of calves slaughtered at same body weight[J]. Asian-Australasian Journal of Animal Sciences, 1998,11(04):375-380.

[99] Corring T, Chayvialle J A. Diet composition and the plasma levels of some peptides regulating pancreatic secretion in the pig[J]. Reproduction, Nutrition, Developpement, 1987,27(06):967-977.

[100] 张宏福, 李长忠, 顾宪红 等. 断奶日龄对仔猪胰腺和肠道中胰蛋白酶活性的影响[J]. 动物营养学报, 2001(01):25-30.

[101] Gorkiewicz G, Moschen A. Gut microbiome: a new player in gastrointestinal disease[J]. Virchows Archiv, 2018,472(01):159-172.

[102] Peterson L W, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis[J]. Nature Reviews. Immunology, 2014,14(03):141-153.

[103] Mao S, Zhang M, Liu J, et al. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function[J]. Scientific Reports, 2015,5:16116.

[104] Wang J, Fan H, Han Y, et al. Characterization of the microbial communities along the gastrointestinal tract of sheep by 454 pyrosequencing analysis[J]. Asian-Australasian Journal of Animal Sciences, 2017,30(01):100-110.

[105] Myer P R, Wells J E, Smith T P, et al. Microbial community profiles of the jejunum from steers differing in feed efficiency[J]. Journal of Animal Science, 2016,94(01):327-338.

[106] El A S, Merrifield C A, Derrien M, et al. The gut microbiota elicits a profound metabolic reorientation in the mouse jejunal mucosa during conventionalisation[J]. Gut, 2013,62(09):1306-1314.

[107] Bi Y, Zeng S, Zhang R, et al. Effects of dietary energy levels on rumen bacterial community composition in Holstein heifers under the same forage to concentrate ratio condition[J]. BMC Microbiology, 2018,18(01):69.

[108] Ward M A, Pierre J F, Leal R F, et al. Insights into the pathogenesis of ulcerative colitis from a murine model of stasis-induced dysbiosis, colonic metaplasia, and genetic susceptibility[J]. American Journal of Physiology., 2016,310(11):G973-G988.

[109] Shin N R, Whon T W, Bae J W. Proteobacteria: microbial signature of dysbiosis in gut microbiota[J]. Trends in Biotechnology, 2015,33(09):496-503.

[110] Moon C D, Young W, Maclean P H, et al. Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats[J]. Microbiologyopen, 2018,7(05):e677.

[111] 姜碧薇, 周玉香, 王甜 等. 酶菌混合处理稻草和苜蓿干草对滩羊生长性能、血清生化指标、瘤胃细菌多样性及KEGG通路的影响[J]. 动物营养学报, 2021,33(03):1482-1492.

[112] 周瑞. 牛至精油对羔羊胃肠道结构和功能及其微生物多样性的影响[D]. 甘肃农业大学, 2019.

[113] 杨明琛, 袁梦欣, 陆维 等. 黄精多糖体外消化特性及对Ⅱ型糖尿病小鼠肠道菌群的调节作用[J]. 现代食品科技, 2021,37(08):14-21.

[114] 臧凯丽, 贾彦, 崔文静 等. 瑞士乳杆菌调控小鼠肠道菌群变化规律的研究[J]. 食品科学, 2018,39(01):156-164.

[115] Hesong W, Xueqin N, Xiaodan Q, et al. Live probiotic lactobacillus johnsonii BS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, intestinal development, and gut microflora in broilers[J]. Frontiers in Microbiology, 2017,8:1073.

[116] Huang Y, Li M, Zhou L, et al. Effects of qingluo tongbi decoction on gut flora of rats with adjuvant-induced arthritis and the underlying mechanism[J]. Evidence-based Complementary and Alternative Medicine, 2019,2019:6308021.

[117] 王小龙, 武爽, 吴琦 等. 芍药苷对酒精戒断大鼠焦虑样行为、炎症因子及肠道菌群的影响[J]. 食品工业科技, 2021:1-19.

[118] 陈健, 张梁坤, 谷文超 等. 半夏泻心汤对右旋葡聚糖硫酸钠诱导的溃疡性结肠炎小鼠肠道菌群的影响[J]. 中国中药杂志, 2021,46(11):2871-2880.

[119] Kay C D, Kroon P A, Cassidy A. The bioactivity of dietary anthocyanins is likely to be mediated by their degradation products.[J]. Molecular Nutrition & Food Research, 2009,53 Suppl 1(S1).

[120] Reis F S, Ćirić A, Stojković D, et al. Effects of different culture conditions on biological potential and metabolites production in three Penicillium isolates.[J]. Drug Development and Industrial Pharmacy, 2015,41(02):253-262.

[121] Erukainure O L, Salau V F, Atolani O, et al. L-leucine stimulation of glucose uptake and utilization involves modulation of glucose - lipid metabolic switch and improved bioenergetic homeostasis in isolated rat psoas muscle ex vivo.[J]. Amino Acids, 2021,53(07):1135-1151.

[122] 杜光波. 饲料桑在家禽和肉羊上的应用前景[J]. 中国畜禽种业, 2019,15(10):178-179.

[123] 吴非凡, 茆建昱, 丁洛阳 等. 影响羊肉pH变化的因素及其糖原代谢通路机制的研究进展[J]. 动物营养学报, 2020,32(02):571-577.

[124] Watanabe A, Daly CC, CE D. The effects of the ultimate pH of meat on tenderness changes during ageing[J]. Meat Science, 1996,42(01):67-78.

[125] 沈林園, 郑梦月, 张顺华 等. 猪屠宰后pH变化对肉品质的影响[J]. 猪业科学, 2013,30(04):114-115.

[126] 张亚芬, 张晓辉. 肉品检验中pH值测定的意义[J]. 吉林农业, 2014(03):47.

[127] 侯川川, 马莲香, 邱家凌 等. 饲粮类型对育肥湖羊生长性能、屠宰性能和肉品质的影响[J]. 动物营养学报, 2018,30(12):5023-5031.

[128] 袁听, 韦剑锋. 日粮添加马铃薯粉对育肥猪生长性能、胴体性状和肉品质的影响[J]. 中国饲料, 2021(06):111-114.

[129] 白凤霞, 孔保华, 戴瑞彤. 肉类颜色的影响因素研究[J]. 肉类研究, 2008(04):15-19.

[130] Bünger L N E S L. Diet and growth effects in panel assessment of sheepmeat odour and flavour[J]. Meat Science, 1997,45(02):169-181.

[131] 司秀华, 王学恩. 非常规饲料原料日粮对肉牛生长性能、胴体性状、肉品质及经济效益的影响[J]. 中国饲料, 2021(08):105-108.

[132] Hamm R. Functional properties of the myofibrillar system and their measurements[M]. Muscle As Food, 1986.

[133] Rosenvold K, Andersen H J. Factors of significance for pork quality-a review[J]. Meat Science, 2003,64(03):219-237.

[134] Lefaucheur L, Lebret B, Ecolan P, et al. Muscle characteristics and meat quality traits are affected by divergent selection on residual feed intake in pigs. [J]. Journal of Animal Science, 2011,89(04):996-1010.

[135] 成文革, 仲伟光, 李子勇 等. 不同粗饲料对杂交绵羊生产性能和肉品质的影响[J]. 中国草食动物科学, 2016,36(05):24-27.

[136] 赵凤立, 刘庆权, 刘胜华 等. 苜蓿干草饲喂杂交肉羊肥育效果试验[J]. 辽宁畜牧兽医, 2002(02):23-24.

[137] 王玉. 不同添加水平的发酵豆秸对肉羊生长性能、屠宰性能及经济效益的影响[J]. 中国饲料, 2020(09):45-48.

[138] 尹丽卿. 不同饲养方式下苏尼特羊肌纤维特性和MyHC基因对肉质的影响[D]. 内蒙古农业大学, 2016.

[139] Bünger L, Navajas EA, Stevenson L, et al. Muscle fibre characteristics of two contrasting sheep breeds: Scottish Blackface and Texel[J]. Meat Science, 2008,81(02):372-381.

[140] Gap-Don K, Byeong-Woo K, Jin-Yeon J, et al. Relationship of carcass weight to muscle fiber characteristics and pork quality of crossbred (Korean Native Black Pig × Landrace) F2 pigs[J]. Food and Bioprocess Technology, 2013,6(02):2835-2843.

[141] 苗海明, 高爱武,杨金丽 等. 动物肌内脂肪沉积对肉嫩度影响的研究进展[J]. 中国农学通报, 2012,28(11):51-54.

[142] 黄金秀, 刘作华, 杨飞云 等. 品种、体重和营养对猪背最长肌肌纤维组织学特性的影响[J]. 中国畜牧杂志, 2010,46(13):39-43.

[143] 刘章忠, 曹娟, 向程举 等. 贵州黑山羊肉质营养特性与氨基酸模型研究[J]. 黑龙江畜牧兽医, 2013(23):70-72.

[144] 孙寿永, 张浩. 海门山羊不同部位肌肉中氨基酸含量的研究[J]. 中国畜牧兽医, 2012,39(12):77-81.

[145] 冯涛. 日粮蛋白质水平对舍饲羔羊育肥性能及肉品质影响的研究[D]. 西北农林科技大学, 2005.

[146] Kun L, Suyun G, Hailing L, et al. Effects of dietary vitamin E on muscle vitamin E and fatty acid content in Aohan fine-wool sheep[J]. Journal of Animal Science and Biotechnology, 2013,4(04):316-324.

[147] Maughan C, Tansawat R, Cornforth D, et al. Development of a beef flavor lexicon and its application to compare the flavor profile and consumer acceptance of rib steaks from grass- or grain-fed cattle[J]. Meat Science, 2012,90(01):116-121.

中图分类号:

 S816.5    

开放日期:

 2024-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式