中文题名: | 盆栽用乒乓花型菊花种质的评价与创新 |
姓名: | |
学号: | 2022104094 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0902Z1 |
学科名称: | 农学 - 园艺学 - 观赏园艺学 |
学生类型: | 硕士 |
学位: | 农学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 观赏植物遗传育种与分子生物学 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2025-05-30 |
答辩日期: | 2025-05-29 |
外文题名: | Evaluation and Innovation of Potted Pompon Chrysanthemum |
中文关键词: | |
外文关键词: | pompon chrysanthemum ; potted plants ; genetic analysis ; KASP molecular markers ; dwarfing effect |
中文摘要: |
菊花(Chrysanthemum morifolium Ramat.)是世界四大切花之一。乒乓(蜂窝)菊是国内最近十多年兴起的一类切花品种群,因其花型饱满浑圆、花期长等特点而广受欢迎,并因此被矮化栽培应用到盆栽菊生产,成为盆栽菊花的一个独特类型。但由于均采用切花品种,生产中在株高、叶面积和花径等方面的控制存在较大困难。因此,筛选和培育具有茎秆粗短、节间短、花型大、叶片较肥厚的盆栽专用乒乓花型品种,以进一步提升该类盆栽产品的品质、节省人工、降低成本,并减少生长抑制剂的应用,是菊花育种的一个重要方向之一。 本研究选取120份乒乓菊种质,对其株型、叶部、花型、分枝和抗逆性状相关的16个指标进行测定,并结合层次分析法和K-means聚类分析构建盆栽型乒乓菊的综合评价体系,筛选适于盆栽的优异种质。并选取三个杂交后代群体对株型性状的变异情况进行混合遗传分析,进一步对杂交后代中初选的36份优选株系开展综合评价,以筛选创制适宜盆栽的乒乓花型优异种质。同时,选取200个切花菊品种,针对株高性状进行GBS测序,筛选SNPs位点,以探索开发对菊花后代群体株高性状进行苗期鉴定的KASP标记。此外,进一步比较了丁酰肼(B9)对新创制种质和商业品种的矮化效应差异。本研究结果如下: 对120份乒乓菊种质的株型性状(株高、节间长、茎粗)、叶部性状(叶长、叶宽、叶面积、叶柔韧性)、花型性状(花径、花高/花径、舌状花数、管状花数)、分枝性状(侧芽数、侧蕾数、脚芽数)、抗逆性状(抗茎腐病能力、抗干旱能力)的16个与盆栽乒乓菊相关指标进行连续两年测定。并利用层次分析法,建立盆栽型乒乓菊综合评价体系,各指标权重值以株高(0.187)权重最大,其次是花高/花径(0.183)、花径(0.112)和节间长度(0.108),占总权重59%,说明它们是影响盆栽用乒乓菊选择育种的关键因素。通过K-Means聚类分析法将120份种质划分为4个等级,筛选出Q21-13-49、Q21-13-23、‘南农仙桃’、Q21-11-9、‘南农粉蜂窝’等综合性状优异的27份Ⅰ级种质,占比22.5%,具有株高矮、节间较短、叶片宽厚、抗逆性状强,花序大而圆润等特征,具有较好的盆栽型乒乓菊生产和育种利用的潜力。 调查‘南农黄蜂窝’× H44-1 、‘Momokoo’× H32-3、Q21-11-1×H32-3这三个杂交组合的杂交后群体各单株的株高、茎粗和节间长指标。结果表明,3个株型相关指标均存在广泛分离,株高性状的变异范围较大,说明其具有较高的遗传多样性。3个组合株型性状均呈正态分布或近似正态分布,且大部分株型性状介于双亲之间,属于多基因控制的数量性状。相关性分析表明株高性状均与茎粗、节间长性状有着显著相关性,说明在株型性状中,株高性状与多性状相关联,对整体影响最大。杂种优势分析发现,‘南农黄蜂窝’× H44-1杂交后代的3个株型性状中亲优势值均达到极显著水平,中亲优势率为−33.3% ~ −1.41%,存在显性遗传效应;‘Momokoo’× H32-3杂交后代的3个株型性状中亲优势率为−9.6% ~ 0.36%,株高性状和茎粗性状的遗传趋小变异,存在超亲优势;Q21-11-1×H32-3杂交后代的3个株型性状中亲优势率为−5.95% ~ 0.38%,其中株高性状和节间长性状的超亲优势率分别为76.06%和77.46%。 从杂交获得的952份F1代株系中以株高小于50cm、花型饱满的乒乓球型为主要目标初选出36份优良株系为材料,测量其株型性状、叶部性状、花型性状、分枝性状和抗逆性状5个方面的16个指标。应用建立好的盆栽型乒乓菊综合评价体系,根据描述性统计和抗逆结果制定评分标准,得到各株系的综合得分。利用K-means聚类分析划分为优(Ⅰ)、良(Ⅱ)、中(Ⅲ)、差(Ⅳ)4个等级。等级Ⅰ的综合得分范围为3.004-3.509,共8份株系,占比22.2%,分别为Q23-5-77、Q23-27-29、Q23-27-59、Q23-27-25、Q23-27-20、Q23-24-23、Q23-27-100和Q23-27-34,均具有株型低矮整齐、叶片肥厚、花型圆润饱满、适应性强等特点,为进一步盆栽乒乓菊新品种选育奠定了基础。等级Ⅱ包括10份株系,占比27.8%,这些种质在某几个性状方面有较好表现,但尚不够全面;等级Ⅲ包括11份株系,占比30.56,等级Ⅳ包括7份株系,占比19.4%,其综合性状均不适宜作为盆栽乒乓菊种质资源。 选取200份切花菊材料进行简化基因组测序(Genotyping by Sequencing,GBS),通过全基因组关联分析(Genome-wide association studies,GWAS)检测到12个与株高性状显著关联的SNPs,根据KASP标记开发的要求对变异位点进行筛选。首先对不同等位基因的株高进行显著性差异分析,筛选出差异显著的9个SNP位点;并在每个位点前后各100bp的区间,筛选出变异位点数小于等于5的8个SNP位点;在菊花基因组中进行序列比对,筛选出拷贝数低,GC含量低的SNP位点。最终筛选出在99和95阈值下拷贝数均低于4个SNP特异位点,分别为Chr1__339370594、Chr4__13976903、Chr12__270808478和Chr26__184971991,用于KASP分子标记的开发。结果显示Chr12__8478和Chr26__1991共2个标记分型成功。基于构建混池所用株系以及杂交验证群体样本分别计算两个标记的选择效率,Chr12__8478标记检测出2个基因型,整体选择效率为55.56%;Chr26__1991标记检测出2个基因型,整体选择效率为55.55%。将两个标记混合后对测序群体的选择效率为60.38%,对验证群体的选择效率为56.15%,整体选择效率为57.02%。 选取14个适于盆栽种植的乒乓菊切花品种和杂种优株及2个商业品种‘Momokoo’和‘白乒乓’, 探究丁酰肼(B9)处理对各种质株高、茎粗、节间长、花径、花高/花径的效应,以进一步比较不同种质的盆栽特性。结果表明,B9处理下,优选种质的株高变矮、茎秆增粗、节间缩短,花径和花高/花径无显著变化;B9施用浓度越高,株高的矮化效应越明显。施用浓度为500 mg/L时,株高矮化效应平均值为21.61%,施用浓度为800 mg/L时,株高矮化效应平均值为32.71%。综合评估筛选出3个优异盆栽乒乓菊种质,分别为‘南农粉蜂窝’、Q23-24-23和Q21-13-23,其株高性状的平均矮化效应分别为34.69%、36.77%和33.43%,在两个浓度的处理下都显著高于商业品种的平均矮化效应(29.72%)。且各优选种质在500 mg/L浓度的B9喷施下,均优于商业品种26.52%的矮化效应,可以满足生产需要,达到节约成本,绿色生产的目的。 |
外文摘要: |
Chrysanthemum morifolium Ramat. is one of the four major cut flowers in the world. The pompon chrysanthemum is a recent variety of cut flower that has emerged in China over the past decade. It is widely popular due to its full, round flower shape and long blooming period. As a result, it has been dwarf-cultivated and applied to potted chrysanthemum production, becoming a unique type of potted chrysanthemum. However, since it is cultivated using cut flower varieties, there are significant challenges in controlling plant height, leaf area, and flower diameter during production. Therefore, selecting and breeding potted-specific pompon chrysanthemum varieties with short, thick stems, short internodes, large flowers, and thicker leaves is an important direction in chrysanthemum breeding. This would further improve the quality of these potted products, save labor, reduce costs, and minimize the use of growth inhibitors. This study selected 120 varieties of pompon chrysanthemums and measured 16 indicators related to plant type, leaves, flower shape, branching, and stress resistance. An integrated evaluation system for potted pompon chrysanthemums was constructed using hierarchical analysis and K-means cluster analysis to screen superior germplasm suitable for potted cultivation. Additionally, three hybrid progeny populations were selected to analyze the variation in plant type traits through mixed genetic analysis. A comprehensive evaluation was conducted on 36 selected lines from the hybrid progeny to screen for superior germplasm suitable for potted pompon chrysanthemums. Meanwhile, 200 cut flower chrysanthemum varieties were selected, and GBS sequencing was performed on plant height traits to identify SNPs, aiming to develop KASP markers for early-stage identification of plant height traits in chrysanthemum progeny populations. Furthermore, the study compared the dwarfing effects of B9 on newly developed germplasm and commercial varieties. The results of this study are as follows: 1、The plant type traits (plant height, internode length, stem diameter), leaf traits (leaf length, leaf width, leaf area, leaf flexibility), flower traits (flower diameter, flower height/diameter ratio, number of ray florets, number of tubular florets), branching traits (number of lateral buds, number of flower buds, number of foot buds), and stress resistance (stem rot resistance, drought resistance) of 120 pompon chrysanthemum germplasms were continuously measured for two years. Using hierarchical analysis, an integrated evaluation system for potted pompon chrysanthemums was established. The weight values of each trait showed that plant height (0.187) had the highest weight, followed by flower height/diameter (0.183), flower diameter (0.112), and internode length (0.108), accounting for 59% of the total weight. This indicates that these traits are the key factors affecting the selection and breeding of potted pompon chrysanthemums. Through K-Means cluster analysis, the 120 varieties were divided into four levels, and 27 top-performing germplasms with comprehensive traits, such as Q21-13-49, Q21-13-23, ‘Nannong Xiantao’, Q21-11-9, and ‘Nannong Fenfengwo’, were selected as Level I, accounting for 22.5%. These varieties exhibit characteristics like shorter plant height, shorter internodes, wider and thicker leaves, strong stress resistance, and large, round flower, showing good potential for production and breeding use in potted pompon chrysanthemums. 2、The study investigated the plant height, stem diameter, and internode length of individual plants in the hybrid progeny of three cross combinations: ‘Nannong Huangfengwo’ × H44-1, ‘Momokoo’ × H32-3, and Q21-11-1 × H32-3. The results showed that all three plant-type-related traits exhibited extensive segregation, with the variation range of plant height being relatively large, indicating a high genetic diversity. The plant-type traits of all three combinations followed a normal or near-normal distribution, with most traits falling between the values of the two parents, suggesting that these traits are controlled by multiple genes and are quantitative traits. Correlation analysis indicated that plant height was significantly correlated with both stem diameter and internode length, suggesting that plant height is the most influential trait in the overall plant type. Hybrid vigor analysis revealed that in the ‘Nannong Huangfengwo’ × H44-1 hybrid progeny, the parental dominance values for the three plant-type traits were highly significant, with mid-parent heterosis rates ranging from −33.3% to −1.41%, indicating a dominant genetic effect. In the ‘Momokoo’ × H32-3 hybrid progeny, the parental dominance rates for the three plant-type traits ranged from −9.6% to 0.36%, with smaller genetic variations in plant height and stem diameter, showing overparental vigor. In the Q21-11-1 × H32-3 hybrid progeny, the parental dominance rates for the three plant-type traits ranged from −5.95% to 0.38%, with overparental vigor rates of 76.06% and 77.46% for plant height and internode length, respectively. 3、From the 952 F1 progeny lines obtained through hybridization, 36 superior lines with plant height less than 50 cm and a full, rounded flower shape resembling a pompon ball were selected as the primary materials. These lines were measured for 16 indicators across five traits: plant type, leaf characteristics, flower shape, branching, and stress resistance. Using the established potted pompon chrysanthemum comprehensive evaluation system, a scoring standard was developed based on descriptive statistics and stress resistance results to determine the overall scores of each line. K-means clustering analysis was used to classify the lines into four categories: excellent (I), good (II), medium (III), and poor (IV). The overall score range for category I was 3.004-3.509, consisting of 8 lines, accounting for 22.2%, namely Q23-5-77, Q23-27-29, Q23-27-59, Q23-27-25, Q23-27-20, Q23-24-23, Q23-27-100, and Q23-27-34. These lines exhibited characteristics such as low, tidy plant types, thick leaves, round and full flowers, and strong adaptability, laying a foundation for the further breeding of new potted pompon chrysanthemum varieties. Category II included 10 lines, accounting for 27.8%. These germplasm lines performed well in certain traits but were not yet comprehensive. Category III included 11 lines, accounting for 30.56%, and category IV included 7 lines, accounting for 19.4%. The overall traits of the lines in category IV were not suitable as potted pompon chrysanthemum germplasm resources. 4、A total of 200 cut chrysanthemum samples were selected for GBS, and 12 SNPs significantly associated with plant height traits were identified through Genome-wide Association Studies. Variants were screened based on the requirements for developing KASP markers. First, a significance difference analysis was performed on the plant height of different allele types, and 9 SNP sites with significant differences were selected. Next, within a 100 bp interval before and after each SNP site, 8 SNP sites with fewer than or equal to 5 variant sites were selected. Finally, sequence alignment was conducted in the chrysanthemum genome, and SNP sites with low copy numbers and low GC content were selected. Ultimately, 4 SNP specific sites specifically Chr1__339370594, Chr4__13976903, Chr12_270808478, and Chr26__184971991,were selected with copy numbers below 99% and 95% thresholds, for the development of KASP molecular markers. The results showed that two markers, Chr12__8478 and Chr26__1991, were successfully genotyped. Based on the lines used for pooling and the hybrid validation population samples, the selection efficiency of the two markers was calculated. The Chr12__8478 marker detected 2 genotypes, with an overall selection efficiency of 55.56%; the Chr26__1991 marker detected 2 genotypes, with an overall selection efficiency of 55.55%. When the two markers were combined, the selection efficiency for the sequencing population was 60.38%, for the validation population was 56.15%, and the overall selection efficiency was 57.02%. 5、Fourteen potted chrysanthemum cut flower varieties and hybrid superior strains, as well as two commercial varieties, 'Momokoo' and 'Pompon White', were selected to explore the effects of B9 treatment on various traits, including plant height, stem diameter, internode length, flower diameter, and flower height/diameter ratio, in order to further compare the potted characteristics of different germplasms. The results showed that under B9 treatment, the selected germplasm lines exhibited shorter plant height, thicker stems, and shorter internodes, with no significant changes in flower diameter or flower height/diameter ratio. The higher the concentration of B9 applied, the more pronounced the plant height reduction effect. At a concentration of 500 mg/L, the average plant height reduction effect was 21.61%, while at 800 mg/L, it was 32.71%. After comprehensive evaluation, three superior potted chrysanthemum germplasm lines were selected: ‘Nannong Fenfengwo’, Q23-24-23, and Q21-13-23. Their average plant height reduction effects were 34.69%, 36.77%, and 33.43%, respectively, which were significantly higher than the average reduction effect of the commercial varieties (29.72%) at both concentrations. Additionally, under the 500 mg/L B9 treatment, all selected germplasms had a higher plant height reduction effect (26.52%) than the commercial varieties, meeting production needs and achieving the goals of cost savings and green production. |
参考文献: |
[1]白晓倩,于澎湃,卢华雨,等. 高丹草叶部性状数量遗传分析[J]. 分子植物育种,2019,17(14):4808-4816. [2]白艳荣,蒋亚莲,瞿素萍. 矮壮素和多效唑对鲜切花香石竹矮化的影响[J]. 安徽农业科学,2017,45(27):74-79. [3]毕晓静,史秀秀,马守才,等. 小麦农艺性状的主基因+多基因遗传分析[J]. 麦类作物学报,2013,33(4):630-634. [4]蔡露,杨欢,王勇,等. 利用GBS技术开发烟草SNP标记及遗传多样性分析[J]. 中国烟草科学,2018,39(05):17-24. [5]曹奕鸯,夏朝水,陈玮婷,等. 应用SSR分子标记鉴定非洲菊F1代杂种的真实性[J]. 福建农业学报,2023,38(7):842-850. [6]常宝亮,陈俊杰,钱萍,等. 基于层次分析(AHP)-灰色关联分析的盆栽荷花早花品种的综合评价与筛选[J]. 植物资源与环境学报,2021,30(3):54-60. [7]陈发棣,陈素梅,房伟民,等. 菊花优异种质资源挖掘与种质创新研究[J]. 中国科学基金,2016,30(02):112-115. [8]陈发棣,蒋甲福,郭维明. 小菊花器若干性状在F1代的表现[J]. 园艺学报,2003,30(2):175-182. [9]陈封怀,王秋圃. 菊花探源[J]. 自然杂志,1979,10:62-63. [10]陈会敏,刘从霞. 浅析我国花卉育种途径及研究进展[J]. 河北林业科技,2011,1:70-71. [11]陈佳敏,西饶主赞,王智灵,等. 果香型菊花新品种‘小葵香’[J]. 园艺学报,2023,50(S1):117-118. [12]陈俊愉,戴思兰,李文彬. 菊花起源的RAPD分析[J]. 植物学报,1998,11:76-82. [13]陈乐,刘引,陈昌婕,等. 药用及茶用菊花种质资源农艺性状的遗传多样性分析[J]. 分子植物育种,2022,20(15):5172-5188. [14]陈霞,周利斌. 菊花辐射诱变种质创新研究进展[J]. 安徽农业大学学报,2022,49(06):893-898. [15]陈仲芳,张霖,尚富德. 利用层次分析法综合评价湖北省部分桂花品种[J]. 园艺学报,2004,6:825-828. [16]陈子琳,吴泽,张德花,等. 南京地区盆栽百合引种适应性研究[J]. 南京农业大学学报,2021,44(1):78-88. [17]程红梅,周耘峰,窦维奇. 蜡梅品种园艺学性状综合评价模型及其应用[J]. 北京林业大学学报,2010,32(S2):160-165. [18]成丽娜,魏倩,Imtiaz Muhammad,等. 转基因育种技术在菊花性状改良中的应用进展[J]. 园艺学报,2013,40(09):1813-1825. [19]崔召阳,韩伊伟,周小琴,等. 莆田引种月季的综合评价[J]. 分子植物育种,2024:1-16. [20]单萍. 白色单头切花菊新品种选育[D]. 南京农业大学,2014. [21]丁华侨,刘建新,王炜勇,等. 不同植物生长延缓剂对姜荷花的矮化效果[J]. 浙江农业科学,2013,5:559-562. [22]董运斋,王四清. 生长延缓剂在观赏植物中应用的研究进展[J]. 北方园艺,2004,6:14-16. [23]杜淑凤. 百日草优良自交系选育及不同处理矮化效应的研究[D]. 武汉:华中农业大学,2013. [24]段国旗,吕娜,石颖怡,等. 高粱株高相关基因SbPH11分子标记的开发和应用[J]. 植物遗传资源学报,2024,25(01):111-119. [25]范宏虹,徐婷婷,苏江硕,等. 切花菊耐寒性相关SNP位点挖掘与候选基因分析[J]. 园艺学报,2019,46(11):2201-2212. [26]樊靖,戴思兰. 国产盆栽多头菊国内市场消费前景调查[C],浙江临安,2009. [27]付存念,潘可可,杨程鹏,等. 基于层次分析法的温州月季资源适应性评价[J]. 安徽农业大学学报,2021,48(05):763-770. [28]高筱钰,雷丽群,龚理,等. 华南地区朱槿品种园林开发综合评价[J]. 分子植物育种,2024:1-24. [29]高雅迪,张振豪,王一帆,等. DNA分子标记技术在菊花种质资源中的应用研究[J]. 杭州师范大学学报(自然科学版),2022,21(2):152-157. [30]宫彬彬,吴晓蕾,张斌,等. 草莓种苗壮苗指数模型的构建与质量评价[J]. 应用生态学报,2021,32(08):2809-2817. [31]古丽娜,李雨晴,罗建让,等. 基于切花应用的芍药品种评价与筛选[J]. 分子植物育种,2025:1-14. [32]郭方其,黑银秀,刘君,等. 基于层次分析法的切花多头菊品质性状评价[J]. 中国农学通报,2020,36(17):51-56. [33]郭淑青,宋慧,杨清华,等. 谷子株高及穗部性状主基因+多基因混合遗传模型分析[J]. 中国农业科学,2021,54(24):5177-5193. [34]郭燕,张树航,李颖,等. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价[J]. 园艺学报,2020,47(06):1033-1046. [35]韩霜. 22个菊花品种耐阴指标筛选与综合评价分析[J]. 河北农业大学学报,2015,38(06):46-51. [36]韩勇,陈发棣,房伟民,等. 单头切花菊品质性状综合评价体系构建[J]. 南京农业大学学报,2011,34(05):32-36. [37]郝春磊. 切花乒乓菊茎尖脱毒体系建立及盆栽矮化技术研究[D]. 宁夏:宁夏大学,2021. [38]郝春雨. 切花乒乓菊矮化盆栽技术研究[J]. 河南农业,2022,11:11-13. [39]郝文雅,刘德辉,徐飞,等. 施肥对栽培菊花土壤的有机无机复合性状和菊花产量与品质的影响[J]. 土壤,2008,4:616-621. [40]贺菡莹. 比久和多效唑调控切花菊‘Mona Lisa Sunny’的株型的研究[D]. 北京:中国林业科学研究院,2018. [41]何雪娇,余智城,史国强,等. 基于AHP的姜荷花盆栽种质资源综合评价[J]. 福建农业科技,2024,55(07):44-51. [42]何臻. 标准切花菊分枝特性评价及其遗传分析[D]. 南京:南京农业大学,2015. [43]何臻,赵凤,张飞,等. 标准切花菊杂交F1代群体侧枝侧蕾性状的杂种优势和遗传分析[J]. 植物资源与环境学报,2017,26(1):1-9. [44]洪艳,白新祥,孙卫,等. 菊花品种花色表型数量分类研究[J]. 园艺学报,2012,39(07):1330-1340. [45]胡馨,张职亮,张飞,等. 大花型茶专用菊杂交后代株系的综合评价与筛选[J]. 中国农业科学,2022,55(20):4036-4051. [46]胡玥. 切花菊盆栽的株型调控技术研究[D]. 南京:南京农业大学,2013. [47]黄桂海,车玉芹,曹杰. 盆栽菊花的矮化方法[J]. 现代园艺,2007,1:37. [48]姜贝贝. 菊花侧芽形成过程中内源激素变化及DgLsL基因遗传转化研究[D]. 南京:南京农业大学,2009. [49]姜凤英,冯辉. 现代育种技术在切花菊上的应用[J]. 北方园艺,2004,4:34-35. [50]姜英,彭彦,李志辉,等. 植物生长延缓剂对金钱树抗寒性指标的影响[J]. 草业科学,2010,27(9):51-56. [51]解松峰,吉万全,王长有,等. 小麦穗部性状的主基因+多基因混合遗传模型分析[J]. 中国农业科学,2019,52(24):4437-4452. [52]金潇潇,陈发棣,陈素梅,等. 20个菊花品种花瓣的营养品质分析[J]. 浙江林学院学报,2010,27(01):22-29. [53]李丹. 基于BSA-seq技术的豇豆株高相关基因的初步分析[D]. 南昌:江西农业大学,2024. [54]李国卫,秦圣豪,刘译阳,等. 花生株型相关性状研究进展[J]. 中国油料作物学报,2020,42(06):934-939. [55]李洪戈. 甘蓝型油菜分枝角度和茎秆倒伏性状的遗传基础解析[D]. 武汉:华中农业大学,2018. [56]李鸿渐,张效平,王彭伟. 切花菊新品种选育的研究[J]. 南京农业大学学报,1991,3:31-35. [57]李娜娜. 单头切花菊新品种培育[D]. 北京:北京林业大学,2012. [58]李娜娜,张德平,朱珺,等. 利用层次分析法初选单头切花菊杂种F1代优良单株的研究[J]. 西北农林科技大学学报(自然科学版),2012,40(02):129-135. [59]李沛曈,迟天华,刘颖鑫,等. 异色菊×菊花脑种间杂交F1代SSR遗传多态性分析、耐旱性鉴定及关联分析[J]. 南京农业大学学报,2020,43(02):238-246. [60]李丕睿,蒋甲福,陈素梅,等. 菊属植物SCoT分子标记技术在遗传多样性分析中的应用[J]. 园艺学报,2013,40(10):2015-2025. [61]李仁伟,王晨,戴思兰,等. 菊花品种表型性状与SRAP分子标记的关联分析[J]. 中国农业科学,2012,45(07):1355-1364. [62]李文建. 园林花卉学[J]. 现代园艺,2024,47(23):184-185. [63]李仙梅. 蜂窝型切花菊种质创新与评价[D]. 南京:南京农业大学,2020. [64]李仙梅,陈发棣,张飞,等. 蜂窝型切花菊观赏性状综合评价与筛选[J]. 园艺学报,2021,48(01):107-116. [65]李艳,王庆,刘国宇,等. 4种地被植物干旱胁迫下的生理响应及抗旱性评价[J]. 中南林业科技大学学报,2019,39(06):9-15. [66]李振芳,张新叶,陈慧玲,等. 紫薇品种性状综合评价选择体系[J]. 东北林业大学学报,2017,45(03):39-43. [67]梁芳. 菊花对低温弱光胁迫的响应机理以及ASA和Ca2+的缓解效应的研究[D]. 泰安:山东农业大学,2009. [68]刘浩杰. 少侧芽大花型切花菊种质创新与 KASP 标记开发[D]. 南京:南京农业大学,2024. [69]刘俊娟. 洛阳高山地区牡丹品种的综合性状评价[J]. 南方农业学报,2019,50(04):809-815. [70]刘霞,雷梦林,王艳珍,等. 山西小麦地方品种品质相关基因的KASP标记分析[J]. 植物遗传资源学报,2022,23(03):881-908. [71]刘洋,郑殿峰,冯乃杰,等. 鼓粒期叶施烯效唑和激动素对绿豆叶片碳代谢及籽粒产量的影响[J]. 西南农业学报,2016,29(7):1584-1589. [72]吕鹏雁. 盆栽多头大菊的品种选育和栽培试验[D]. 北京:北京林业大学,2011. [73]罗水木. 矮壮素对中国水仙的矮化效应及机理研究[J]. 邵阳学院学报(自然科学版),2015,12(1):38-41. [74]雒新艳,张俊丽,张二海. 盆栽小菊育种研究进展[J]. 山东林业科技,2021,51(1):81-86. [75]马婉茹,房伟民,王海滨,等. 多头切花菊品种茎、枝特性评价体系构建与品种评价[J]. 中国农业科学,2019,52(14):2515-2524. [76]孟盼盼,何海燕,曹钰昕,等. 5个栽培类型药菊分枝期抗旱性综合评价[J]. 中国农业科技导报,2024,26(02):90-99. [77]聂洧洁,王晨赫,马婉茹,等. 切花小菊品种花枝性状综合评价[J]. 园艺学报,2021,48(06):1150-1162. [78]宁惠娟,邵锋,戴思兰,等. 40个品种菊的切花用途评价[J]. 浙江林学院学报,2009,26(03):389-394. [79]欧阳素影,王志权,李青,等. 辣椒株型调控研究进展[J]. 植物遗传资源学报,2023,24(05):1248-1256. [80]邱民得,胡振阳,李宇辉,等. 切花菊矮化盆栽品种评价[J]. 安徽农业科学,2017,45(01):49-51. [81]沈瑶,王晗璇,侯海娴,等. 基于表型和SRAP标记的盆栽菊遗传多样性分析[J]. 热带作物学报,2020,41(11):2156-2164. [82]沈瑶,王晗璇,侯海娴,等. 引进盆栽小菊品种观赏价值及园林应用的综合评价[J]. 广西植物,2021,41(08):1363-1371. [83]史峰霖. 彩色标准型切花菊品种收集评价与选育[D]. 南京:南京农业大学,2017. [84]石俊,陈之琳,秦波,等. 紫薇匍匐平展性状相关表型遗传分析[C],长沙,2016:109-118. [85]宋兴荣,袁蒲英,何相达,等. AHP法构建不同用途蜡梅品种评价体系研究[J]. 中国园林,2020,36:55-59. [86]宋雪彬. 菊花品种表型性状的数量化定义及其遗传分析[D]. 北京:北京林业大学,2018. [87]苏江硕,贾棣文,王思悦,等. 中国菊花遗传育种60年回顾与展望[J]. 园艺学报,2022,49(10):2143-2162. [88]唐小敏,齐鸣. 矮牵牛杂交一代优势研究初报[J]. 浙江农业科学,2001,3:18-21. [89]汤肖玮,苏江硕,管志勇,等. 茶用菊苗期抗旱性和耐涝性的综合评价[J]. 园艺学报,2021,48(12):2443-2457. [90]王富强. 葡萄KASP标记的开发及在种质资源鉴定中的应用[D]. 北京:中国农业科学院,2021. [91]王静. 环境因素对花卉生长的影响及调控效应研究[D]. 咸阳:西北农林科技大学,2005. [92]王莉飞,徐佳洁,黄晓霞,等. 57份现代月季种质资源表型性状及综合评价[J]. 西南林业大学学报(自然科学),2022,42(01):83-90. [93]王灵婧. 切花菊茎腐病抗性评价及其防控技术初步研究[D]. 南京:南京农业大学,2020. [94]王巧妹,王继武,管志勇,等. 茶用菊‘七月白’ב 苏菊7号’F1代群体与产量相关性状的变异分析及高产植株筛选[J]. 江苏农业学报,2022,38(02):512-520. [95]王铁固,马娟,张怀胜,等. 玉米茎粗主基因+多基因遗传模型分析[J]. 江苏农业学报,2012,28(3):467-471. [96]王小雷,李炜星,欧阳林娟,等. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报,2022,48(5):1141-1151. [97]汪燕. 切花菊连作障碍抗性品种筛选及抗性机理研究[D]. 南京:南京农业大学,2020. [98]卫晓轶,杨海峰,魏锋,等. 不同基因型玉米株型性状的杂种优势分析[J]. 农学学报,2022,12(01):1-5. [99]吴建设,钟淮钦,黄敏玲,等. 切花型向日葵新品种‘闽日1号’的选育[J]. 福建农业学报,2009,24(03):231-236. [100]吴盼婷,王江民,沈佳逾,等. 不同菊花品种根系、地上部和叶片相关指标分析及抗逆性评价[J]. 植物资源与环境学报,2017,26(02):46-54. [101]吴星星. 矮壮素与多效唑对一品红生长的影响[J]. 现代农业科技,2016,8:132-134. [102]夏伯顺. 菊花杂交育种及后代遗传规律研究[D]. 武汉:华中农业大学,2009. [103]肖晓凤,谢学强. 季节和植物生长调节剂对郁金香矮化栽培的影响[J]. 安徽农业科学,2015,18:67-70. [104]徐文辉,高海卿,陈华进. 菊花某些性状遗传规律的初步探讨[J]. 浙江林学院学报,2000,17(1):37. [105]徐亚萍,贺菡莹,赵鑫,等. B9和PP333对菊花‘Mona Lisa Sunny’观赏性状和生理指标的影响[J]. 北方园艺,2021,5:69-76. [106]徐雁飞. 菊花自交亲和特性与自交衰退现象初探[D]. 南京:南京农业大学,2008. [107]许瑛. 菊花抗寒特性研究及抗寒评价体系的建立[D]. 南京:南京农业大学,2007. [108]薛守纪. 中国菊花类型图谱[J]. 中国花卉盆景,2005,10:2-3. [109]杨青青,唐家琪,张昌泉,等. KASP标记技术在主要农作物中的应用及展望[J]. 生物技术通报,2022,38(4):58-71. [110]杨祎凡,周婷,范俊俊,等. 基于切花应用的观赏海棠品种评价与筛选[J]. 南京林业大学学报(自然科学版),2019,43(04):70-76. [111]杨宇杰. 菊花与匍地菊种间遗传图谱构建及重要性状遗传分析[D]. 北京:北京林业大学,2021. [112]杨镇宇,祝绪礼,曹译戈,等. 拟南芥株高性状全基因组上位互作网络构建[J]. 北京林业大学学报,2023,45(9):21-32. [113]叶志琴,杨娟. 菊花新品种‘紫鬓云’[J]. 园艺学报,2022,49(S2):173-174. [114]于瑞宁,马琦,孙炜,等. 标准切花菊分枝性状的杂种优势和混合遗传分析[J]. 核农学报,2020,34(10):2143-2151. [115]张飞,陈发棣,房伟民,等. 菊花营养性状杂种优势表现与主基因+多基因混合遗传分析[J]. 林业科学,2011,47(2):46-52. [116]张飞,陈发棣,房伟民,等. 菊花花器性状在F1代变异及相关联的SRAP分子标记[J]. 林业科学,2010,46(11):162-167. [117]张付春,张秀新,王合理,等. 几种生长延缓剂对微型盆栽牡丹促成栽培的影响[J]. 中国农学通报,2008,24(4):314-317. [118]张文洋,于春雷. 北方盆栽菊花植株矮化及花期调控技术[J]. 现代园艺,2013,10:30. [119]张焱,祁巍巍,王怡婧,等. 脱落酸对日本牵牛顶端优势的影响[J]. 江苏农业学报,2008,5:728-730. [120]张艳,孙妍妍,张春宝. 分子标记辅助选择在作物杂交种亲本选育中的研究进展[J]. 分子植物育种,2022:1-11. [121]赵国扬,洪波,高俊平,等. 菊花新品种‘雀欢’[J]. 南京林业大学学报(自然科学版),2024 ,49(02): 254-255. [122]赵云龙,李朝婵,陈训. 植物生长延缓剂对大白杜鹃的矮化效果[J]. 贵州农业科学,2013,41(4):143-146. [123]郑强卿,陈奇凌,王晶晶,等. 隶属函数法综合评价外源植物生长调节剂对骏枣果实品质的影响[J]. 黑龙江农业科学,2021,1:99-106. [124]郑文燕,常源升,何平,等. ‘鲁丽’ב红1#’苹果杂交群体全基因组KASP标记开发及验证[J]. 中国农业科学,2023,56(5):935-950. [125]周晓楠,徐金青,雷雨晴,等. 基于GBS-seq的青藏扁蓿豆SNP标记开发[J]. 生物技术通报,2022,38(04):303-310. [126]周迎雪,李沛曈,苏江硕,等. 37份菊花近缘种的抗旱性评价[J]. 南京农业大学学报,2023,46(06):1060-1068. [127]周志凯,任旭琴. B9和CCC对菊花生长、开花及生理特性的影响[J]. 安徽农业科学,2008,27:11648-11649. [128]朱德宁,韩宇,房伟民,等. 多花型园林小菊品质评价与品种筛选[J]. 南京农业大学学报,2018,41(02):266-274. [129]朱文莹. 利用属间杂交创造菊花抗性新种质[D]. 南京:南京农业大学,2012. [130]Ahmad I, Kamran M, Meng X. Effects of plant growth regulators on seed filling, endogenous hormone contents and maize production in semiarid regions[J]. Journal of Plant Growth Regulation, 2019, 38(4): 1467-1480. [131]Archana D, Prasanth P, Seenivasan N, et al. Evaluation of chrysanthemum cultivars for pot mums[J]. Journal of Pharmacognosy and Phytochemistry, 2019, 6(8): 1522-1525. [132]Baskaran V, Jayanthi R, Janakiram T, et al. Evaluation of post harvest quality of some cultivars of chrysanthemum[J]. Journal of Horticultural Sciences, 2010, 5(1): 81-83. [133]Borlaug N E. Contributions of conventional plant breeding to food production[J]. Science, 1983, 219(4585): 689-693. [134]Carver S T, Arnold M A, Byrne D H, et al. Growth and flowering responses of sea marigold to daminozide, paclobutrazol, or uniconazole applied as drenches or sprays[J]. Journal of Plant Growth Regulation, 2014, 33(3): 626-631. [135]Challis A, Blackman C, Ahrens C, et al. Adaptive plasticity in plant traits increases time to hydraulic failure under drought in a foundation tree[J]. Tree Physiology, 2022, 42(4): 708-721. [136]Chen Z J. Genomic and epigenetic insights into the molecular bases of heterosis[J]. Nature Reviews Genetics, 2013, 14(7): 471-482. [137]Chong X, Su J, Wang F, et al. Identification of favorable SNP alleles and candidate genes responsible for inflorescence-related traits via GWAS in chrysanthemum[J]. Plant Molecular Biology, 2019, 99(4-5): 407-420. [138]Deshmukh P, Malode S. Selection response and correlation studies for agronomic traits in mutant genotypes of dianthus Caryophyllous L. Var. Chabaud[M]. International Conference on Recent Trends in Science and Technology, 2018, 26: 293-298. [139]Dierck R, Leus L, Dhooghe E, et al. Branching gene expression during chrysanthemum axillary bud outgrowth regulated by strigolactone and auxin transport[J]. Plant Growth Regulation, 2018, 86(1): 23-36. [140]Dill A, Jung H S, Sun T P. The DELLA motif is essential for gibberellin-induced degradation of RGA.[J]. Proceedings of the National Academy of sciences, 2001, 98(24): 14162-14167. [141]Dipta B, Sood S, Mangal V, et al. KASP: a high-throughput genotyping system and its applications in major crop plants for biotic and abiotic stress tolerance[J]. Molecular Biology Reports, 2024, 51(1): 508. [142]Dolan J G. Shared decision-making-transferring research into practice: the Analytic Hierarchy Process (AHP)[J]. Patient Education and Counseling, 2008, 73(3): 418-425. [143]Dombi J. Membership function as an evaluation[J]. Fuzzy Sets and Systems, 1990, 35(1): 1-21. [144]Dong J, Xu J, Xu X, et al. Inheritance and quantitative trait locus mapping of fusarium wilt resistance in cucumber[J]. Frontiers in Plant Science, 2019, 10: 1425. [145]Fan Z, Gao Y, Liu R, et al. The major gene and polygene effects of ornamental traits in bearded iris (Iris germanica) using joint segregation analysis[J]. Scientia Horticulturae, 2020, 260: 0304-4238. [146]Fu X, Su J, Yu K, et al. Genetic variation and association mapping of aphid (Macrosiphoniella sanbourni) resistance in chrysanthemum (Chrysanthemum morifolium Ramat.)[J]. Euphytica, 2018, 214(2): 21. [147]Galic V, Franic M, Jambrovic A, et al. Genetic correlations between photosynthetic and yield performance in maize are different under two heat scenarios during flowering[J]. Frontiers in Plant Science, 2019, 10: 566. [148]Gao S, Su Z, Ma J, et al. Identification of a novel and plant height-independent QTL for coleoptile length in barley and validation of its effect using near isogenic lines[J]. Theoretical and Applied Genetics, 2024, 137(3): 53. [149]Han B H, Suh E J, Lee S Y, et al. Selection of non-branching lines induced by introducing Ls-like cDNA into Chrysanthemum (Dendranthema×grandiflorum (Ramat.) Kitamura)‘Shuho-no-chikara’[J]. Scientia Horticulturae, 2007, 115(1): 70-75. [150]He N, Huang F, Yang D. Fine mapping and cloning of a qRA2 affect the ratooning ability in rice (Oryza sativa L.)[J]. International Journal of Molecular Sciences, 2023, 24(2): 967. [151]Hemant U, Abhinav J, Hamza T, et al. Exploration of crucial factors involved in plants development using the fuzzy AHP method[J]. Mathematical Problems in Engineering, 2022, 9: 4279694. [152]Hirano K, Asano K, Tsuji H, et al. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice[J]. Plant Cell, 2010, 22(8): 2680-2696. [153]Hu X, Qian Q, Xu T, et al. The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric g alpha subunit to regulate brassinosteroid-mediated growth in rice[J]. PLoS Genetics, 2013, 9(3): e1003391. [154]Huang D, Li X, Sun M, et al. Identification and characterization of CYC-Like genes in regulation of ray floret development in chrysanthemum morifolium[J]. Frontiers in Plant Science, 2016, 7: 1633. [155]Huang J, Tang D, Shen Y, et al. Activation of gibberellin 2-oxidase 6 decreases active gibberellin levels and creates a dominant semi-dwarf phenotype in rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics, 2010, 37(1): 23-36. [156]Hussein M, Bekheta M, Zaki S. Influence of uniconazole on growth characters, photosynthetic pigments, total carbohydrates and total soluble sugars of hordium vulgare L. plants grown under salinity stress[J]. International Journal of Science and Research, 2015, 52(3): 201-213. [157]Ichida H, Morita R, Shirakawa Y, et al. Targeted exome sequencing of unselected heavy-ion beam-irradiated populations reveals less-biased mutation characteristics in the rice genome[J]. Plant Journal, 2019, 98(2): 301-314. [158]Itoh H, Ueguchi-Tanaka M, Sato Y, et al. The gibberellin signaling pathway is regulated by the appearance and disappearance of slender rice 1 in nuclei[J]. Plant Cell, 2002, 14(1): 57-70. [159]Jiang B, Miao H, Chen S, et al. The Lateral Suppressor-Like Gene, DgLsL, Alternated the axillary branching in transgenic chrysanthemum by modulating IAA and GA content[J]. Plant Molecular Biology Reporter, 2010, 28(1): 144-151. [160]Jiang Y, Sun Y, Zheng D, et al. Physiological and transcriptome analyses for assessing the effects of exogenous uniconazole on drought tolerance in hemp (Cannabis sativa L.)[J]. Scientific Reports, 2021, 11(1): 14476. [161]Kessler, Raymond, Myers. S P. Floral initiation and vascular development in lateral buds of Kalanchoe.[J]. Hortscience, 1992, 2(27): 144-146. [162]Khitka B, Phanchaisri B, Sutipatanasomboon A, et al. Low-energy heavy-ion-beam-induced mutation of novel high-yielding drought-tolerant Thai Jasmine rice[J]. Nuclear Instruments and Methods in Physics Research Section B, 2021, 492: 34-42. [163]Klie M, Menz I, Linde M, et al. Strigolactone pathway genes and plant architecture: association analysis and QTL detection for horticultural traits in chrysanthemum[J]. Molecular Genetics and Genomics, 2016, 291(2): 957-969. [164]Le Roux S, Barry G H. Vegetative growth responses of citrus nursery trees to various growth retardants.[J]. Horttechnology, 2010, 20(1): 197-201. [165]Leiss K A, Maltese F, Choi Y H, et al. Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemum[J]. Plant Physiology, 2009, 150(3): 1567-1575. [166]Li D, Wang L, Wang M, et al. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield[J]. Plant Biotechnology Journal, 2009, 7(8): 791-806. [167]Li P, Su J, Guan Z, et al. Association analysis of drought tolerance in cut chrysanthemum (Chrysanthemum morifolium Ramat.) at seedling stage[J]. 3 Biotech, 2018, 8(5): 226. [168]Li P, Zhang F, Chen S, et al. Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.)[J]. Molecular Genetics and Genomics 2016, 291(3): 1117-1125. [169]Li W, Deng Y, Ning Y, et al. Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding[J]. Annual Review of Plant Biology, 2020, 71(1): 575-603. [170]Liang J, Chen Y, Tang X, et al. Comprehensive evaluation of appreciation of rhododendron based on analytic hierarchy process[J]. Plants-Basel, 2024, 13(4): 558. [171]Liang J, Zhao L, Challis R, et al. Strigolactone regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum)[J]. Journal of Experimental Botany, 2010, 61(11): 3069-3078. [172]Liu X, Tian Y, Chi W, et al. Alternative splicing of OsGS1;1 affects nitrogen-use efficiency, grain development, and amylose content in rice[J]. Plant Journal, 2022, 110(6): 1751-1762. [173]Liu Y, Shen K, Yin C, et al. Genetic basis of geographical differentiation and breeding selection for wheat plant architecture traits[J]. Genome Biology, 2023, 24(1): 114. [174]Lu L, Zhao L, Hu H, et al. A comprehensive evaluation of flowering plant diversity and conservation priority for national park planning in China[J]. Fundamental Research, 2023, 3(6): 939-950. [175]Ma J, Pei W, Ma Q, et al. QTL analysis and candidate gene identification for plant height in cotton based on an interspecific backcross inbred line population of Gossypium hirsutum × Gossypium barbadense[J]. Theoretical and Applied Genetics, 2019,132. [176]Morel P, Crespel L, Galopin G, et al. Effect of mechanical stimulation on the growth and branching of garden rose[J]. Scientia Horticulturae, 2012, 135: 59-64. [177]Olejnik A, Parkitna K, Kozak B, et al. Assessment of the genetic diversity of chrysanthemum cultivars using SSR markers[J]. Agronomy, 2021, 11(11): 2318. [178]Peng S, Gurdev Khush S, Parminder V, et al. Progress in ideotype breeding to increase rice yield potential[J]. Field Crops Research, 2008, 108(1): 32-38. [179]Rohith R, Sindhu S, Swaroop K, et al. Standardization of growth retardants for production of potted bougainvillea: chemical science review and letters[C]. Chemical Science Review and Letters, 2021, 10 (38): 214-220. [180]Rubiolo P, Belliardo F, Cordero C, et al. Headspace-solid-phase microextraction fast GC in combination with principal component analysis as a tool to classify different chemotypes of chamomile flower-heads (Matricaria recutita l.)[J]. Phytochemical Analysis, 2006, 17(4): 217-225. [181]Semagn K, Babu R, Hearne S, et al. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement.[J]. Molecular Breeding, 2014, 33(1): 1-14. [182]Shen P, Gao S, Chen X, et al. Genetic analysis of main flower characteristics in the F1 generation derived from intraspecific hybridization between Plumbago auriculata and Plumbago auriculata f. alba[J]. Scientia Horticulturae, 2020, 274(1): 109652. [183]Shi S, Wang E, Li C, et al. Comprehensive evaluation of 17 qualities of 84 types of rice based on principal component analysis[J]. Foods, 2021, 10(11): 2883.. [184]Somssich M. The dawn of plant molecular biology: how three key methodologies paved the way[J]. Current Protocols, 2022, 2(4): e417. [185]Song A, Su J, Wang H, et al. Analyses of a chromosome-scale genome assembly reveal the origin and evolution of cultivated chrysanthemum[J]. Nature Communications, 2023, 14(1): 2021. [186]Song X, Zhao X, Fan G, et al. Genetic analysis of the corolla tube merged degree and the relative number of ray florets in chrysanthemum (Chrysanthemum morifolium Ramat.)[J]. Scientia Horticulturae, 2018, 242: 214-224. [187]Su J, Jiang J, Zhang F, et al. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review[J]. Horticulture Research, 2019, 6: 109. [188]Su J, Zhang F, Chong X, et al. Genome-wide association study identifies favorable SNP alleles and candidate genes for waterlogging tolerance in chrysanthemums[J]. Horticulture Research, 2019, 6: 21. [189]Su J, Zhang H, Yang Y, et al. BSA-seq identified candidate genes and diagnostic KASP markers for anemone type flower in chrysanthemum[J]. Scientia Horticulturae, 2024, 327: 112790. [190]Suh E, Han B, Lee Y, et al. The selection of domestically bred cultivars for spray-type chrysanthemum transformation[J]. Korean Journal of Horticultural Science and Technology, 2015, 33: 947-954. [191]Sun D, Zhang L, Su J, et al. Genetic diversity and genome-wide association study of architectural traits of spray cut chrysanthemum varieties[J]. Horticulturae, 2022, 8(5): 458. [192]Sun J, Gu J, Zeng J, et al. Changes in leaf morphology, antioxidant activity and photosynthesis capacity in two different drought-tolerant cultivars of chrysanthemum during and after water stress[J]. Scientia Horticulturae, 2013, 161: 249-258. [193]Sun R, Zhou X, Li Y, et al. Identifying quantitative trait locus and candidate genes for maize (Zea mays L.) plant architecture traits based on segregating populations constructed by high‐generation sister lines[J]. Plant Breeding, 2024, 143(3): 305-319. [194]Sun X, Liu L, Zhi X, et al. Genetic analysis of tomato internode length via mixed major gene plus polygene inheritance model[J]. Scientia Horticulturae, 2019, 246: 759-764. [195]Tadesse E B, Veronica O, Mosisa W, et al. Comparison of Kompetitive Allele Specific PCR (KASP) and genotyping by sequencing (GBS) for quality control analysis in maize[J]. BMC Genomics, 2015, 16(1): 908. [196]Wang W, Guo W, Le L, et al. Integration of high-throughput phenotyping, GWAS, and predictive models reveals the genetic architecture of plant height in maize[J]. Molecular Plant, 2023, 16(2): 354-373. [197]Wang Y, Chen X, Peng S, et al. Genetic transformation and regeneration of Hevea brasiliensis transgenic plant with GAI gene by microparticle bombardment[J]. Romanian Biotechnological Letters, 2013, 18: 7910-7919. [198]Wang Y, Li J, Guo P, et al. Ectopic expression of camellia oleifera Abel. gibberellin 20-oxidase gene increased plant height and promoted secondary cell walls deposition in Arabidopsis[J]. Planta, 2023, 258(3): 65. [199]Wei N, Zhang S, Liu Y, et al. Genome-wide association study of coleoptile length with Shanxi wheat[J]. Frontiers in Plant Science, 2022, 13: 1016551. [200]Wei Y, Dong C, Zhang H, et al. Transcriptional changes in litchi (Litchi chinensis Sonn.) inflorescences treated with uniconazole[J]. PLoS One, 2017, 12(4): e176053. [201]Wu J, Liu S, Wang Q, et al. Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes[J]. Theoretical and Applied Genetics 2018, 131(1): 43-58. [202]Wu X, Sun T, Xu W, et al. Unraveling the genetic architecture of two complex, stomata-related drought-responsive traits by high-throughput physiological phenotyping and GWAS in cowpea (Vigna. Unguiculata L. Walp)[J]. Frontiers in Genetics, 2021, 12: 743758. [203]Xu Y, Liao B, Ostevik K L, et al. The maternal donor of chrysanthemum cultivars revealed by comparative analysis of the chloroplast genome[J]. Frontiers in Plant Science, 2022, 13: 923442. [204]Yan Y, Gong W, Yang W, et al. Seed treatment with uniconazole powder improves soybean seedling growth under shading by corn in relay strip intercropping system[J]. Plant Production Science, 2010, 13(4): 367-374. [205]Yang Y, Wen C, Ma N, et al. Heterosis and genetic analysis of branching in cut-flower chrysanthemums[J]. Euphytica : International journal of plant Breeding, 2015, 205(3): 915-925. [206]Yao D, Zhao Q, Li T, et al. Genetic analysis and quantitative trait locus mapping using the major gene plus polygene model for soybean (Glycine max (L.) Merr.) Main Quality Traits[J]. Legume Research, 2023, 46(1): 18-24. [207]Yu L, Zheng P, Zhang T, et al. Genotyping-by-sequencing-based genome-wide association studies on verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.)[J]. Molecular Plant Pathology, 2017, 18(2): 187-194. [208]Zhan Q, Li W, Ye L, et al. Genetic resources resistant to black spot (Alternaria alternate) identified from chrysanthemum-related genera and potential underlying mechanisms[J]. Ornamental Plant Research, 2023, 4: e001. [209]Zhang F, Jiang J, Chen S, et al. Mapping single-locus and epistatic quantitative trait loci for plant architectural traits in chrysanthemum[J]. Molecular Breeding, 2011, 30(2): 1027-1036. [210]Zhang J, Yao D, Ma J, et al. Genetic analysis of the major gene plus polygene model in soybean resistance to Leguminivora glycinivorella[J]. Genetics and Molecular Research, 2014, 13(3): 4983-4989. [211]Zhang L, Tu H, Tang F. Cloning of three epsilon-class glutathione s-transferase genes from micromelalopha troglodyta (Graeser) (Lepidoptera: Notodontidae) and their response to tannic acid[J]. Bulletin of Entomological Research, 2024, 114(2): 172-179. [212]Zhang X, Su J, Jia F, et al. Genetic architecture and genomic prediction of plant height-related traits in chrysanthemum[J]. Horticulture Research, 2024, 11(1): uhad236. [213]Zhang X, Zhao Z, Li J. AHP-based landscape value evaluation of perennial flower border application in hefei City[J]. Journal of Landscape Research, 2024, 16(3): 8-10. [214]Zhao W, Ding L, Liu J, et al. Regulation of lignin biosynthesis by an atypical bHLH protein CmHLB in chrysanthemum.[J]. Journal of Experimental Botany, 2022, 73(8): 2403-2419. [215]Zhao Y, Huo B, Lin S, et al. Germplasm innovation and establishment of comprehensive evaluation system for hedgerow garden chrysanthemum[J]. Agronomy, 2022, 12(8): 1736 |
中图分类号: | S68 |
开放日期: | 2025-06-12 |