- 无标题文档
查看论文信息

中文题名:

 一个棉花花器官突变体候选基因的克隆及功能验证     

姓名:

 杨琴莉    

学号:

 2017101079    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090102    

学科名称:

 农学 - 作物学 - 作物遗传育种    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 南京农业大学    

院系:

 农学院    

专业:

 作物遗传育种    

研究方向:

 分子遗传学    

第一导师姓名:

 胡艳    

第一导师单位:

 南京农业大学    

完成日期:

 2020-08-19    

答辩日期:

 2020-08-20    

外文题名:

 Cloning and functional verification of the candidate gene for a cotton flower organ mutant     

中文关键词:

 棉花182-9突变体 ; MADS-box基因 ; 花发育 ; 基因克隆 ; 功能验证    

外文关键词:

 Cotton mutant 182-9 ; MADS-box ; Flower development ; Gene cloning ; Functional verification    

中文摘要:

棉花是世界性重要的经济作物,是天然纤维的主要来源。棉花生殖生长过程开花、结铃直接影响棉花经济性状——棉纤维的产量和品质。随着对花发育模式研究的逐渐深入,改进后的“AE模型”相较于传统的“ABC模型”有了更广泛的适用性。然而,目前对棉花花器官发育的分子作用机理还处于不成熟阶段。发掘控制棉花花器官发育的关键基因资源,对于培育高产、优质棉花新品种具有重要意义。本实验室以棉花野生型W0为受体,以GoPGF-RNAi为载体转化棉花,在T1代发现了克隆号为182-9的花器官突变体,命名为182-9。该突变体花器官明显瓣化,花瓣和雄蕊结构异常,失去了自身独特的生理构造,均呈现类似细长叶片状态。本研究通过southern杂交、基因组重测序、转录组差异分析、q-PCR以及VIGS沉默基因等技术对182-9突变体进行了系统的分析研究,确定了T-DNA的插入位点,并对候选基因进行了克隆、表达和VIGS功能验证。此外,还对花发育中起重要作用的MADS-box基因家族进行了鉴定、分析,其中部分MADS家族基因在突变体和正常棉花花器官中差异表达,这些基因可能参与了调控花器官的形成。这些研究结果为棉花的花器官发育研究提供了理论依据,同时也为其他物种花器官发育的研究提供了一个良好的借鉴。

本论文的主要研究结果如下:

通过Southern杂交结果证明转基因突变体材料182-9中,外源基因为单拷贝插入。对转基因受体W0和突变体182-9进行高深度基因组重测序,通过基因组序列比对,预测外源DNA插入位点在棉花A11染色体的59086746-59086947区间,PCR进一步明确了A11:59086840为T-DNA插入位点。

根据棉花参考基因组TM-1(V2.1)的注释结果,在插入位点附近,存在3个候选基因GH_A11G2251GH_A11G2252GH_A11G2253。其中,GH_A11G2251在拟南芥中的同源基因注释为AP2-like ethylene-responsive transcription factor ANT,是一个AP2类的花功能基因;GH_A11G2252基因功能注释为Putative ribonuclease H protein,是一类转座因子基因;GH_A11G2253未有功能注释。PCR扩增结果显示三个基因在突变体182-9和受体W0之间基因组序列无差异。q-PCR结果显示, GH_A11G2251在W0和182-9中的花瓣(O2)、雄蕊(O3)、雌蕊(O4)、三个组织中表达存在明显差异;GH_A11G2252在两个材料中没有显著性差异;GH_A11G2253几乎不表达。考虑到棉花新陆早42 号相对TM-1的生长周期要短,我们采用该早熟品种为VIGS受体,沉默上述3个候选基因,观察它们的花器官表型变化。

为了进一步分析W0和182-9花器官整体的基因表达差异,我们对W0和182-9花器官转录组进行差异分析,结果显示有16343个基因在花器官中差异表达,其中8391个基因上调,7952个基因显示下调。对这些差异基因进行GO和KEGG富集分析,我们发现上调基因主要聚集在GO亚级分类的分子功能(MF,Molecular function)进程中,下调基因则主要分布在相同水平的生物学过程(BP,biological process)中。KEGG的Pathway主要富集在与光系统相关的代谢途径中。这与我们182-9出现的异常表型相一致。

已有报道证明MADS基因广泛参与了花器官的发育。我们在陆地棉基因组中鉴定出97个MADSⅠ类基因和96个MADSⅡ类基因,分别进行了系统发育进化分析,及18个组织中的表达量分析,进一步揭示了该类基因的组织特异性。之后,我们将上述两类基因分别在突变体182-9和W0花器官转录组中进行比对筛选,得到48个表达差异的花发育基因,其中包括6个MADSⅠ类基因和42个MADSⅡ类基因。

本研究结合生物信息学技术和转基因分子实验共同研究了182-9中花器官异常的可能性分子机制,挖掘出了棉花中花发育调控的相关基因,为棉花育种在花发育方面的研究提供了参考价值。

外文摘要:

Cotton is a worldwide cash crop and a major source of natural fiber. Flowering and boll-setting during cotton reproductive growth directly affected the economic characters of cotton —— The yield and quality of cotton. With the further research on flower development pattern, the improved “AE” model has more extensive applicability than the traditional “ABC “model. However, the molecular mechanism of cotton organ development is still in the immature stage. It is very important to explore the key gene resources which control the development of cotton organs for breeding new cotton varieties with high yield and high quality. Four floral organ mutants, named 182-9, were found in the T1 generation of cotton transformed with the wild type W0 as the receptor and the GoPGF-RNAi as the vector. The mutant had obvious petalization of flower organs, abnormal structure of petals and Stamens, and lost its own unique physiological structure, which were similar to elongated leaves. In this study, T-DNA insertion sites were identified by southern blot analysis, genomic resequencing, transcriptome differential analysis, q-PCR and VIGS silencing gene analysis, the candidate gene was cloned, expressed and the VIGS function was verified. The MADS-box gene family, which plays an important role in flower development, was identified and analyzed. Some of the MADS genes were differentially expressed in mutant and normal cotton organs, these genes may be involved in regulating flower organ formation. These results provide a theoretical basis for the research of cotton floral organ development, and also provide a good reference for the research of other species floral organ development.

The main findings of this paper are as follows:

Southern Blot analysis showed that the foreign gene was inserted by single copy in the transgenic mutant 182-9.The high-depth genome resequencing of the transgenic receptor W0 and the mutant 182-9 was carried out. By comparing the genomic sequences, the insertion sites of exogenous DNA were predicted to be in the 59086746-59086947 region of the Cotton A11 chromosome, PCR further identified A11:59086840 as the T-DNA insertion site.

According to the Annotation of Reference Genome TM-1(V2.1) , there are three candidate genes GH_A11G2251GH_A11G2252GH_A11G2253 near the insertion site. The homologous gene of GH_A11G2251 in Arabidopsis is annotated as AP2-like ethylene-responsive transcription factor (AP2) , which is a functional gene of AP2.The function of GH_A11G2252 gene is annotated as Putative ribonuclease H protein, which is a type of transposable factor gene. No functional comments on GH_A11G2253. The results of PCR amplification showed that there was no difference in the genome sequence between the mutant 182-9 and the receptor W0. The results of q-PCR showed that there were significant differences in the expression of GH_A11G2251 in petal(O2), pistil(O3) and stamen(O4) in W0 and 182-9, no significant difference in GH_A11G2252 in the two materials, and GH_A11G2253 was not expressed. Considering that the growth cycle of Cotton Xinluzao 42 is shorter than that of TM-1, we adopted this early maturing cultivar as VIGS receptor to silence the three candidate genes mentioned above and observe their floral organ phenotypic changes.

In order to further analyze the differences of gene expression between W0 and 182-9 floral organs, we analyzed the transcriptome differences between W0 and 182-9 floral organs. The results showed that 16343 genes were differentially expressed in floral organs, among which 7952 genes were up-regulated, 8,391 genes down-regulated. In the enrichment analysis of GO and KEGG, we found that the up-regulated genes were mainly clustered in the Molecular function (MF) process of GO subclassification, while the down-regulated genes were mainly distributed in the same level of biological process (BP). KEGG Pathway is mainly concentrated in the Pathway related to photosystem. It's consistent with the abnormal phenotype we found in 182-9.

It has been reported that MADS gene is involved in the development of flower organs. We identified 97 in upland cotton genome by MADSⅠgenes and 96 by MADSⅡclass genes, phylogenetic evolution is analyzed respectively, and 18 expression analysis in the organization, and further reveals the tissue specificity of this gene. After that, we compared the two genes in the mutant 182-9 and W0 floral organ transcriptome, and got 48 differentially expressed floral developmental genes, including 6 MADSⅠgenes and 42 MADSⅡgenes.

In this study, the molecular mechanism of 182-9 floral organ abnormalities was investigated by combining bioinformatics technique and transgenic molecular experiments, and the genes involved in the regulation of floral development in cotton were discovered, it provides reference value for the research of cotton breeding in flower development.

 

参考文献:

[1] Abe M, Kobayashi Y, Yamamoto S, et al. Fd, a Bzip Protein Mediating Signals from the Floral Pathway Integrator Ft at the Shoot Apex[J]. Science. 2005,309(5737):1052-1056.

[2] Altschul SF, Madden TL, Schaffer AA, et al. Gapped Blast and Psi-Blast: A New Generation of Protein Database Search Programs[J]. Nucleic Acids Res. 1997,25(17):3389-3402.

[3] Andres F, Porri A, Torti S, et al. Short Vegetative Phase Reduces Gibberellin Biosynthesis at the Arabidopsis Shoot Apex to Regulate the Floral Transition[J]. Proceedings of the National Academy of Sciences of the United States of America. 2014,111(26):201409567.

[4] Azeez A, Miskolczi P, Tylewicz S, et al. A Tree Ortholog of Apetala1 Mediates Photoperiodic Control of Seasonal Growth[J]. Current Biology. 2014,24(7):717-724.

[5] Barker EI, Ashton NW. A Parsimonious Model of Lineage-Specific Expansion of Mads-Box Genes in Physcomitrella Patens[J]. Plant Cell Reports. 2013,32(8):1161-1177.

[6] Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing[J]. Journal of the Royal Statistical Society: Series B (Methodological). 1995,57(1).

[7] Blazquez MA. The Right Time and Place for Making Flowers[J]. Science. 2005.

[8] Blazquez MA, Soowal LN, Lee I, et al. Leafy Expression and Flower Initiation in Arabidopsis[J]. Development. 1997,124(19):3835-3844.

[9] Blazquez MA, Weigel D. Integration of Floral Inductive Signals in Arabidopsis[J]. Nature. 2000,404(6780):889-892.

[10] Cho HJ, Kim JJ, Lee JH, et al. Short Vegetative Phase (Svp) Protein Negatively Regulates Mir172 Transcription Via Direct Binding to the Pri-Mir172a Promoter in Arabidopsis[J]. Febs Letters. 2012,586(16):2332-2337.

[11] Chuck G, Hake S. Regulation of Developmental Transitions[J]. Current Opinion in Plant Biology. 2005,8(1):67-70.

[12] Cock PJA, Fields CJ, Goto N, et al. The Sanger Fastq File Format for Sequences with Quality Scores, and the Solexa/Illumina Fastq Variants[J]. Nucleic Acids Research. 2010,38(6):1767-1771.

[13] Coen ES, Meyerowitz EM. The War of the Whorls: Genetic Interactions Controlling Flower Development[J]. Nature. 1991,353(6339):31-37.

?

[14] Colombo M, Masiero S, Vanzulli S, et al. Agl23, a Type I Mads‐Box Gene That Controls Female Gametophyte and Embryo Development in Arabidopsis[J]. Plant Journal. 2008,54(6):1037-1048.

[15] Corbesier L, Vincent C, Jang S, et al. Ft Protein Movement Contributes to Long-Distance Signaling in Floral Induction of Arabidopsis[J]. Science. 2007,316(5827):1030-1033.

[16] De Martino G, Pan IL, Emmanuel E, et al. Functional Analyses of Two Tomato Apetala3 Genes Demonstrate Diversification in Their Roles in Regulating Floral Development[J]. The Plant Cell. 2006,18(8):1833-1845.

[17] Ding L, Wang Y, Yu H. Overexpression of Dosoc1, an Ortholog of Arabidopsis Soc1, Promotes Flowering in the Orchid Dendrobium Chao Parya Smile[J]. Plant and Cell Physiology. 2013,54(4):595-608.

[18] Eisen MB, Spellman PT, Brown PO, et al. Cluster Analysis and Display of Genome-Wide Expression Patterns[J]. Proceedings of the National Academy of Sciences of the United States of America. 1998,95(25):14863-14868.

[19] Elliott RC, Betzner AS, Huttner E, et al. Aintegumenta, an Apetala2-Like Gene of Arabidopsis with Pleiotropic Roles in Ovule Development and Floral Organ Growth[J]. Plant Cell. 1996,8(2):155-168.

[20] Erlich Y, Mitra PP, Delabastide M, et al. Alta-Cyclic: A Self-Optimizing Base Caller for Next-Generation Sequencing[J]. Nature Methods. 2008,5(8):679-682.

[21] Franklin KA. Light and Temperature Signal Crosstalk in Plant Development[J]. Current Opinion in Plant Biology. 2009,12(1):63-68.

[22] Fujisawa M, Shima Y, Nakagawa H, et al. Transcriptional Regulation of Fruit Ripening by Tomato Fruitfull Homologs and Associated Mads Box Proteins[J]. The Plant Cell. 2014,26(1):89-101.

[23] Geuten K, Irish VF. Hidden Variability of Floral Homeotic B Genes in Solanaceae Provides a Molecular Basis for the Evolution of Novel Functions[J]. The Plant Cell. 2010,22(8):2562-2578.

[24] Gokilavani T, Saraswati N. A Survey of Mikc Type Mads-Box Genes in Non-Seed Plants: Algae, Bryophytes, Lycophytes and Ferns[J]. Frontiers in Plant Science. 2018,9:510.

[25] Gu Q, Ferrandiz C, Yanofsky MF, et al. The Fruitfull Mads-Box Gene Mediates Cell Differentiation During Arabidopsis Fruit Development[J]. Development. 1998,125(8):1509-1517.

[26] Guo X, Chen G, Naeem M, et al. The Mads-Box Gene Slmbp11 Regulates Plant Architecture and Affects Reproductive Development in Tomato Plants[J]. Plant Science. 2017,258:90-101.

[27] Guo X, Hu Z, Yin W, et al. The Tomato Floral Homeotic Protein Fbp1-Like Gene, Slglo1, Plays Key Roles in Petal and Stamen Development[J]. Scientific Reports. 2016,6(1):20454-20454.

?

[28] Han Y, Zhang C, Yang H, et al. Cytokinin Pathway Mediates Apetala1 Function in the Establishment of Determinate Floral Meristems in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America. 2014,111(18):6840-6845.

[29] Hansen KD, Brenner SE, Dudoit S. Biases in Illumina Transcriptome Sequencing Caused by Random Hexamer Priming[J]. Nucleic Acids Research. 2010,38(12).

[30] Hao JJ, Yu SX, Ma QX, et al. Inheritance of Time of Flowering in Upland Cotton under Natural Conditions[J]. Plant Breeding. 2008,127(4):383-390.

[31] Haung M-D, Yang C-H. Emf Genes Interact with Late-Flowering Genes to Regulate Arabidopsis Shoot Development[J]. Plant & Cell Physiology. 1998,39(4):382-393.

[32] Huang C, Sun H, Xu D, et al. Zmcct9 Enhances Maize Adaptation to Higher Latitudes[J]. Proceedings of the National Academy of Sciences of the United States of America. 2018,115(2):201718058.

[33] Huang T, B?hlenius H, Eriksson S, et al. The Mrna of the Arabidopsis Gene Ft Moves from Leaf to Shoot Apex and Induces Flowering[J]. Science. 2005,309(5741):1694-1696.

[34] Irish VF. The Flowering of Arabidopsis Flower Development[J]. Plant Journal. 2010,61(6):1014-1028.

[35] Jaudal M, Monash J, Zhang L, et al. Overexpression of Medicago Svp Genes Causes Floral Defects and Delayed Flowering in Arabidopsis but Only Affects Floral Development in Medicago[J]. Journal of Experimental Botany. 2014,65(2):429-442.

[36] Jiang L, Schlesinger F, Davis CA, et al. Synthetic Spike-in Standards for Rna-Seq Experiments[J]. Genome Research. 2011,21(9):1543-1551.

[37] Jiao Y, Wickett NJ, Ayyampalayam S, et al. Ancestral Polyploidy in Seed Plants and Angiosperms[J]. Nature. 2011,473(7345):97-100.

[38] Jihyun M, Horim L, Minsoo K, et al. Analysis of Flowering Pathway Integrators in Arabidopsis[J]. Plant & Cell Physiology. 2005,(2):2.

[39] Jung CH, Wong CE, Singh MB, et al. Comparative Genomic Analysis of Soybean Flowering Genes[J]. Plos One. 2012,7(6):e38250.

[40] Kanehisa M, Araki M, Goto S, et al. Kegg for Linking Genomes to Life and the Environment[J]. Nucleic Acids Research. 2007,36:480-484.

[41] Kaufmann K, Melzer R, Theissen G, et al. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants[J]. Gene, 2005, 347(2): 183-198.

?

[42] Kim D, Pertea G, Trapnell C, et al. Tophat2: Accurate Alignment of Transcriptomes in the Presence of Insertions, Deletions and Gene Fusions[J]. Genome Biology. 2013,14(4):1-13.

[43] Klucher KM, Chow H, Reiser L, et al. The Aintegumenta Gene of Arabidopsis Required for Ovule and Female Gametophyte Development Is Related to the Floral Homeotic Gene Apetala2[J]. The Plant Cell. 1996,8(2):137-153.

[44] Kobayashi Y, Weigel D. Move on up, it's time for change-mobile signals controlling photoperiod-dependent flowering. Genes Dev. 2007;21(19):2371-2384.

[45] Kojima S, Takahashi Y, Kobayashi Y, et al. Hd3a, a Rice Ortholog of the Arabidopsis Ft Gene, Promotes Transition to Flowering Downstream of Hd1 under Short-Day Conditions[J]. Plant and Cell Physiology. 2002,43(10):1096-1105.

[46] Komeda Y. Genetic Regulation of Time to Flower in Arabidopsis Thaliana[J]. Annual Review of Plant Biology. 2004,55(1):521-535.

[47] Komiya R, Ikegami A, Tamaki S, et al. Hd3a and Rft1 Are Essential for Flowering in Rice[J]. Development. 2008,135(4):767-774.

[48] Kotilainen M, Elomaa P, Uimari A, et al. Grcd1, an Agl2-Like Mads Box Gene, Participates in the C Function During Stamen Development in Gerbera Hybrida[J]. The Plant Cell. 2000,12(10):1893-1902.

[49] Lee JE, Oh M, Park H, et al. Soc1 Translocated to the Nucleus by Interaction with Agl24 Directly Regulates Leafy[J]. Plant Journal. 2008,55(5):832-843.

[50] Lee JH, Park S, Ahn JH. Functional Conservation and Diversification between Rice Osmads22/Osmads55 and Arabidopsis Svp Proteins[J]. Plant Science. 2012,185:97-104.

[51] Lei H, Yuan H, Liu Y, et al. Identification and Characterization of Fasoc1, a Homolog of Suppressor of Overexpression of Constans1 from Strawberry[J]. Gene. 2013,531(2):158-167.

[52] Li F, Fan G, Wang K, et al. Genome Sequence of the Cultivated Cotton Gossypium Arboreum[J]. Nature Genetics. 2014,46(6):567-572.

[53] Li KH, Chuang TH, Hou CJ, et al. Functional Analysis of the Ft Homolog from Eustoma Grandiflorum Reveals Its Role in Regulating a and C Functional Mads Box Genes to Control Floral Transition and Flower Formation[J]. Plant Molecular Biology Reporter. 2015,33(4):770-782.

[54] Liu C, Zhang J, Zhang N, et al. Interactions among Proteins of Floral Mads-Box Genes in Basal Eudicots: Implications for Evolution of the Regulatory Network for Flower Development[J]. Molecular Biology and Evolution. 2010,27(7):1598-1611.

[55] Lu H, Liu Z, Lan S. Genome Sequencing Reveals the Role of Mads-Box Gene Families in the Floral Morphology Evolution of Orchids[J]. Horticultural Plant Journal. 2019,5(6):247-254.

[56] Mandel MA, Gustafsonbrown C, Savidge B, et al. Molecular Characterization of the Arabidopsis Floral Homeotic Gene Apetala1[J]. Nature. 1992,360(6401):273-277.

[57] Mandel MA, Yanofsky MF. The Arabidopsis Agl8 Mads Box Gene Is Expressed in Inflorescence Meristems and Is Negatively Regulated by Apetala1[J]. The Plant Cell. 1995,7(11):1763-1771.

[58] Melzer R, Thei?en G. Mads and More: Transcription Factors That Shape the Plant[J]. 2011.

[59] Melzer S, Lens F, Gennen J, et al. Flowering-Time Genes Modulate Meristem Determinacy and Growth Form in Arabidopsis Thaliana[J]. Nature Genetics. 2008,40(12):1489-1492.

[60] Messenguy F, Dubois E. Role of Mads Box Proteins and Their Cofactors in Combinatorial Control of Gene Expression and Cell Development[J]. Gene. 2003,316(1):1-21.

[61] Michaels SD, Himelblau E, Kim SY, et al. Integration of Flowering Signals in Winter-Annual Arabidopsis[J]. Plant Physiology. 2005,137(1):149-156.

[62] Mouradov A, Cremer F, Coupland G. Control of Flowering Time Interacting Pathways as a Basis for Diversity[J]. The Plant Cell. 2002,14.

[63] Moyle R, Koia JH, Vrebalov J, et al. The Pineapple Acmads1 Promoter Confers High Level Expression in Tomato and Arabidopsis Flowering and Fruiting Tissues, but Acmads1 Does Not Complement the Tomato Lemads-Rin ( Rin ) Mutant[J]. Plant Molecular Biology. 2014,86(4):395-407.

[64] Nam J, Kim J, Lee S, et al. Type I Mads-Box Genes Have Experienced Faster Birth-and-Death Evolution Than Type Ii Mads-Box Genes in Angiosperms[J]. Proceedings of the National Academy of Sciences of the United States of America. 2004,101(7):1910-1915.

[65] Ng M, Yanofsky MF. Function and Evolution of the Plant Mads-Box Gene Family[J]. Nature Reviews Genetics. 2001,2(3):186-195.

[66] Noh B, Lee SH, Kim HJ, et al. Divergent Roles of a Pair of Homologous Jumonji/Zinc-Finger–Class Transcription Factor Proteins in the Regulation of Arabidopsis Flowering Time[J]. Plant Cell. 2004,16(10):2601-2613.

[67] Norman CM, Runswick M, Pollock R, et al. Isolation and Properties of Cdna Clones Encoding Srf, a Transcription Factor That Binds to the C-Fos Serum Response Element[J]. Cell. 1988,55(6):989-1003.

[68] Passmore S, Maine GT, Elble RC, et al. Saccharomyces Cerevisiae Protein Involved in Plasmid Maintenance Is Necessary for Mating of Mat|á Cells[J]. Journal of Molecular Biology. 1988,204(3):593-606.

[69] Paterson AH, Wendel JF, Gundlach H, et al. Repeated Polyploidization of Gossypium Genomes and the Evolution of Spinnable Cotton Fibres[J]. Nature. 2012,492(7429):423-427.

[70] Pertea M, Kim D, Pertea GM, et al. Transcript-Level Expression Analysis of Rna-Seq Experiments with Hisat, Stringtie and Ballgown[J]. Nat Protoc. 2016,11(9):1650-1667.

[71] Poon RYC. Cell Cycle Control and Genome Instability[J]. Euphytica. 2007,39(1):3-9.

[72] Remay A, Lalanne D, Thouroude T, et al. A Survey of Flowering Genes Reveals the Role of Gibberellins in Floral Control in Rose[J]. Theoretical and Applied Genetics. 2009,119(5):767-781.

[73] Ruokolainen S, Ng YP, Albert VA, et al. Over-Expression of the Gerbera Hybrida at-Soc1-Like1 Gene Gh-Soc1 Leads to Floral Organ Identity Deterioration[J]. Annals of Botany. 2011,107(9):1491-1499.

[74] Seymour GB, Ryder CD, Cevik V, et al. A Sepallata Gene Is Involved in the Development and Ripening of Strawberry (Fragaria X Ananassa Duch.) Fruit, a Non-Climacteric Tissue[J]. Journal of Experimental Botany. 2011,62(3):1179-1188.

[75] Silva CS, Puranik S, Round A, et al. Evolution of the Plant Reproduction Master Regulators Lfy and the Mads Transcription Factors: The Role of Protein Structure in the Evolutionary Development of the Flower[J]. Frontiers in Plant Science. 2016,6:1193-1193.

[76] Simpson GG, Quesada V, Henderson IR, et al. Rna Processing and Arabidopsis Flowering Time Control[J]. Biochemical Society Transactions. 2004,32(4):565-566.

[77] Sommer H, Beltran JP, Huijser P, et al. Deficiens, a Homeotic Gene Involved in the Control of Flower Morphogenesis in Antirrhinum Majus: The Protein Shows Homology to Transcription Factors[J]. The EMBO Journal. 1990,9(3):605-613.

[78] Song M, Fan S, Yuan R, et al. Genetic Analysis of Earliness Traits in Short Season Cotton (Gossypium Hirsutum L.)[J]. Journal of Integrative Agriculture. 2012,11(12):1968-1975.

[79] Theisen G. Development of Floral Organ Identity: Stories from the Mads House[J]. Current Opinion in Plant Biology. 2001,4(1):75-85.

[80] Vergani P, Morandini P, Soave C, et al. Complementation of a yeast Δpkc1 mutant by the Arabidopsis protein ANT[J]. FEBS Letters, 1997, 400(2): 243-246.

[81] Balanza V, Martinezfernandez I, Ferrandiz C, et al. Sequential action of FRUITFULL as a modulator of the activity of the floral regulators SVP and SOC1[J]. Journal of Experimental Botany, 2014, 65(4): 1193-1203.

[82] Wang K, Wang Z, Li F, et al. The Draft Genome of a Diploid Cotton Gossypium Raimondii[J]. Nature Genetics. 2012,44(10):1098-1103.

[83] Wang P, Wang S, Chen Y, et al. Genome-Wide Analysis of the Mads-Box Gene Family in Watermelon[J]. Computational Biology and Chemistry. 2019,80:341-350.

?

[84] Wang X, Fan S, Song M, et al. Upland Cotton Gene GhFPF1 Confers Promotion of Flowering Time and Shade-Avoidance Responses in Arabidopsis thaliana[J]. PLOS ONE, 2014, 9(3).

[85] Weigel D, Alvarez J, Smyth DR, et al. Leafy Controls Meristem Identity in Arabidopsis[J]. Cell. 1992,69(5):843-859.

[86] Wigge PA, Kim MC, Jaeger KE, et al. Integration of Spatial and Temporal Information During Floral Induction in Arabidopsis[J]. Science. 2005,309(5737):1056-1059.

[87] Yan L, Yang M, Guo H, et al. Single-Cell Rna-Seq Profiling of Human Preimplantation Embryos and Embryonic Stem Cells[J]. Nature Structural & Molecular Biology. 2013,20(9):1131-1139.

[88] Yanofsky MF, Ma H, Bowman JL, et al. The Protein Encoded by the Arabidopsis Homeotic Gene Agamous Resembles Transcription Factors[J]. Nature. 1990,346(6279):35-39.

[89] Guo Y, Zhu Q, Zheng S, et al. Cloning of a MADS box gene (GhMADS3) from cotton and analysis of its homeotic role in transgenic tobacco.[J]. Journal of Genetics and Genomics, 2007, 34(6): 527-535.

[90] Zhang J, Guo W, Zhang T. Molecular Linkage Map of Allotetraploid Cotton ( Gossypium Hirsutum L. ?á Gossypium Barbadense L.) with a Haploid Population[J]. Theoretical and Applied Genetics. 2002,105(8):1166-1174.

[91] Zhang X, Dou L, Pang C, et al. Genomic Organization, Differential Expression, and Functional Analysis of the Spl Gene Family in Gossypium Hirsutum[J]. Molecular Genetics and Genomics. 2015,290(1):115-126.

[92] Zhang X, Wei J, Fan S, et al. Functional Characterization of Ghsoc1 and Ghmads42 Homologs from Upland Cotton (Gossypium Hirsutum L.)[J]. Plant Science. 2016,242:178-186.

[93] Zheng S Y, Guo Y L, Xiao Y H, et al. Cloning of a MADS box protein gene (GhMADS1) from cotton (Gossypium hirsutum L.)[J]. Acta Genetica Sinica, 2004, 31(10).

[94] 范树国. 高等植物成花分子机理研究进展[J]. 楚雄师范学院学报. 2014,029(6):58-69.

[95] 高川,周清明. 烟草早花研究进展[J]. 现代农业科技. 2009,000(8):101-102,104.

[96] 洪薇,曹家树. Flc基因表达在植物春化过程中的作用[J]. 植物学报. 2002,19(4):406-411. [97] 胡芳名, 刘丽娜, 李建安,等. 拟南芥FLC基因抑制成花机理研究进展%Literature Review of Researches on Inhibition Flowering Mechanism of FLC Gene in Arabidopsis thaliana[J]. 经济林研究, 2007, 025(004):77-81.

[98] 黄方, 迟英俊, 喻德跃. 植物mads-Box基因研究进展[J]. 南京农业大学学报. 2012,(5):13-22.

[99] 林钟员. 莲的花器官瓣化分子调控机制的研究[D]: 中国科学院大学(中国科学院武汉植物园); 2019.

[100] 马源. 外源开花素基因ft对洋桔梗的转化及育种研究[D]: 天津大学; 2008.

[101] 齐仙惠, 巫东堂, 李改珍, 等. 拟南芥成花调控途径的研究进展[J]. 山西农业大学学报(自然科学版). 2018,038(9):1-7,36.

[102] 宋任涛, 许政暟, 李杉,等. 盐芥花时相关基因、编码蛋白及其克隆方法和应用.

[103] 涂艳. 环境因子在植物成花诱导中的作用及其机理[J]. 江西广播电视大学学报. 2002,014(002):62-64.

[104] 王力娜. 棉花mads-Box基因家族的克隆、表达谱分析及功能验证[D]: 中国农业科学院; 2010.

[105] 王亚杰. 巴西橡胶树mads-Box基因家族的克隆、表达谱分析及功能验证[D]: 海南大学; 2017.

[106] 徐雷, 贾飞飞, 王利琳. Progresses on Molecular Mechanisms of Flowering Transition in Arabidopsis%拟南芥开花诱导途径分子机制研究进展[J]. 西北植物学报. 2011,(5):1057-1065.

[107] 张宁. 被子植物中a类mads-Box基因的功能与进化研究[D]: 中国科学院研究生院;中国科学院大学; 2009.

中图分类号:

 S33    

开放日期:

 2020-10-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式