中文题名: | 百脉根种质资源在南京地区的筛选评价及指纹图谱构建 |
姓名: | |
学号: | 2022820045 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 095131 |
学科名称: | 农学 - 农业 - 农艺与种业 |
学生类型: | 硕士 |
学位: | 农业硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 草种质资源与育种 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
完成日期: | 2024-05-04 |
答辩日期: | 2024-05-30 |
外文题名: | Screening And Evaluation of Lotus Corniculatus Germplasms Resources and Construction of Fingerprint in Nanjing |
中文关键词: | |
外文关键词: | Lotus corniculatus germplasms ; Adaptability ; Morphological characteristics ; Ground covers plants ; SSR molecular markers ; Grey Relational Analysis |
中文摘要: |
种质资源的评价与研究是选种、引种、育种的重要环节,遗传多样性的分析也有助于了解种质资源间的亲缘关系和遗传背景,为优良性状的延续和品种的识别鉴定提供基础。本研究针对收集到的58份百脉根种质资源材料,通过变异分析、相关性分析、聚类分析以及灰色关联度法等综合评价,筛选出在南京地区适应性好、农艺性状表现优良及观赏性佳、可用作地被植物的百脉根种质材料。除此以外还利用SSR分子标记技术分析百脉根种质资源间的亲缘关系远近,并构建出能有效区分材料的数字指纹图谱。得出以下研究结果: (1)生态适应性评价结果表明,共有20份材料越冬越夏率均较好,且无明显病虫害。20号材料、34号材料、37号材料、49号材料表现优良,越冬率和越夏率均大于70%。 (2)58份百脉根种质资源形态指标之间存在着明显的变异,具有丰富的遗传多样性。节间长变异系数最大,为58.69%。冠幅的变异系数最小,为17.64%。百脉根9个形态指标,除叶宽和节间长,冠幅和节间长节等没有相关性以外,其余指标之间都存在显著(P < 0.05)或极显著(P < 0.01)正相关关系。 (3)根据9个形态指标结果在在欧氏距离10处可以将58份种质材料分成5类。第Ⅰ类包含42份材料,其主要特点是叶长叶宽适中,自然高度较高。第Ⅱ类包含2份材料,特点是叶片狭长,分枝数多,茎长长,节间数多。第Ⅲ类仅有1份材料,特点是叶片长而宽,自然高度高。冠幅茎粗适中,分枝数较少。第Ⅳ类包含9份材料,都为匍匐型材料,主要特点是叶长叶宽适中,冠幅较小,植株较低矮,分枝数较少。第Ⅴ类包括3份材料,这l类材料的特点是叶片小,茎粗小,节间长和节间数均较小、较少。 (4)综合前人研究,建立了百脉根作为地被植物的打分标准和评价指标,结合田间所得数据对材料进行打分。根据12个指标将百脉根种质资源材料分为两大类,一类是适应性佳的材料,另一类是观赏性佳的材料,利用灰色关联度法分别对这两类特性进行综合评价。观赏性最好的材料为32号(CF020666)材料,关联度值为0.853。适应性最好的材料为12(CF040249)号和37号(CF020661)材料,关联度值为0.859。适应性和观赏性均最差的为29号(CF006903)材料。将适应性和观赏性结果相结合,选出在南京地区适宜作为地被植物的材料共4份。 (5)对来源不同的58份百脉材料,采用SSR标记分析亲缘关系,评价其遗传多样性,并构建指纹图谱。7对SSR引物扩增出111个多态性条带,引物平均多态条带比率为95.63%,平均Nei's遗传多样性(Nei's genetic diversity,H)和平均Shannon's指数(Shannon index,I)分别为0.33和0.49。在遗传相似系数0.57处,58份材料经聚类分析分为II大类。基于最少引物鉴定最多种质的原则,利用TM1250、TM0118共2对引物组合可区分全部供试品种,构建出基于SSR标记的数字化指纹图谱及分子身份证。 通过以上研究筛选出在南京地区具有较好表现的材料,生态适应性佳、农艺性状优良的材料共19份,适宜做地被植物的材料4份,并构建出了百脉根种质资源的指纹图谱。本研究为后续百脉根种质资源的利用提供了理论依据。 |
外文摘要: |
The evaluation and research of germplasms resources are important links in breeding, selection, and introduction. The analysis of genetic diversity also helps to understand the genetic relationships and backgrounds between germplasms resources, providing a basis for the continuation of excellent traits and the identification and identification of varieties. This study aimed to collect 58 germplasms materials of Lotus corniculatus , and through comprehensive evaluation such as variation analysis, correlation analysis, cluster analysis, and grey correlation degree method, selected Lotus corniculatus germplasm materials with good adaptability, excellent agronomic traits, and good ornamental value in the Nanjing area, which can be used as ground cover. In addition, SSR molecular marker technology was also used to analyze the phylogenetic relationships between germplasms resources of Lotus corniculatus, and a digital fingerprint map that can effectively distinguish materials was constructed. The following research results were obtained: (1)The ecological adaptability evaluation results show that a total of 20 materials have good rates of overwintering and summering, and there are no obvious pests or diseases. Among them, material No. 20 , material No. 34 (CF020675), material No. 37 (CF020661), and material No. 49 all performed well, with wintering and summering rates exceeding 70%. (2)There are significant variations in agronomic traits among 58 germplasm resources of Lotus corniculatus, indicating rich genetic diversity. The coefficient of variation for internode length is the highest, at 58.69%. The coefficient of variation of crown width is the smallest, at 17.64%. There is a significant (P < 0.05) or extremely significant (P < 0.01) positive correlation between the 9 morphological indicators of Lotus corniculatus, except for leaf width and internode length, crown width and internode length. (3)Using 9 morphological indicators, 58 germplasm materials can be classified into 5 categories at a Euclidean distance of 10. The first category contains 42 materials, which are mainly characterized by moderate leaf length and width, as well as higher natural height. The second type contains two materials, characterized by narrow and long leaves, multiple branches, long stems, and numerous internodes. The third type only has one material, characterized by long and wide leaves and high natural height. The crown width and stem thickness are moderate, with fewer branches. The fourth category contains 9 materials, all of which are creeping materials, mainly characterized by moderate leaf length and width, small crown width, low and short plants, and fewer branches. The fifth category includes three materials, which are characterized by small leaves, thick stems, small internode length, and fewer internodes. (4)Based on previous research, a scoring standard and evaluation index for Lotus corniculatus as a ground cover plant were established, and the materials were scored based on field data. Divide all indicators into two categories, one is adaptive characteristics, and the other is ornamental characteristics. Use the grey correlation method to comprehensively evaluate these two types of characteristics. The best ornamental material is material No. 32 (CF020666), with a correlation value of 0.853. The materials with the best adaptability are No. 12 (CF040249) and No. 37 (CF020661), with a correlation value of 0.859. The material with the worst adaptability and ornamental value is No. 29 (CF006903). Combining adaptability and ornamental results, a total of 4 materials suitable for use as ground cover plants in the Nanjing area were selected. (5)Using SSR markers to analyze the genetic diversity of 58 hundred vein materials from different sources, and constructing a fingerprint map. Seven pairs of SSR primers amplified 111 polymorphic bands, with an average polymorphic band ratio of 95.63%. The average Nei's genetic diversity (H) and average Shannon's index (I) were 0.33 and 0.49, respectively. At a genetic similarity coefficient of 0.35, 58 materials were classified into Class II through cluster analysis. Based on the principle of identifying the most germplasm with the least number of primers, a digital fingerprint map and molecular identification card based on SSR markers were constructed using two pairs of primer combinations, TM1250 and TM0118, to distinguish all tested varieties. The above results demonstrate that Lotus corniculatus have good performance in the Nanjing area, with a total of 19 materials with good ecological adaptability and morphological characteristics, and 20 materials suitable for ground cover plants. A fingerprint map of Lotus corniculatus germplasm resources was constructed. This study provides a theoretical basis for the utilization of germplasm resources in the future. |
参考文献: |
[1] 唐广立,李传山,陈明利,等.百脉根高频再生体系的建立及兔出血症病毒衣壳蛋白VP60基因的转化[J].分子植物育种,2007,5(04):593-600. [2] Rogge E, Nevens F, Gulinck H. Perception of rural landscapes in Flanders: Looking beyond aesthetics[J]. Landscape and Urban Planning, 2007, 82(4): 159–174. [3] Rahnema S, Sedaghathoor S, Allahyari M S; et al. Preferences and emotion perceptions of ornamental plant species for green space designing among urban park users in Iran[J]. Urban Forestry & Urban Greening, 2019, 39, 98-108. [4] 何昆.优良地被植物百脉根银川地区引种适应性研究[J].中国园艺文摘,2009,25(07):32-34. [5] 陈明.新型园林地被植物百脉根的栽培技术[J].北方园艺,2008,(06):144-145. [6] 杜桂娟,马凤江,刘晓宏,等.优良园林绿化地被植物百脉根[J].北方园艺,2006,(02):107. [7] 陈明.几种野生地被植物的园林性状研究[J].林业实用技术,2007,(05):40-42. [8] 季贵斌,梁力,赵颖.高速公路边坡混播植被群落生态适应性综合评价[J].安全与环境学报,2016,16(06):360-365. [9] 龙忠富,唐成斌,钱晓刚,等.几种草被植物保持水土效益的研究[J].水土保持研究,2002,9(04):136-138. [10] 马琦,王琦.几种草被植物的水土保持效应研究[J].草业科学,2005,22(10):72-74. [11] Marshall A, Bryant D, Latypova G, et al.A high-throughput method for the quantification of proanthocyanidins in forage crops and its application in assessing variation in condensed tannin content in breeding programmes for Lotus corniculatus and Lotus uliginosus[J].Journal of Agricultural and Food Chemistry, 2008, 56(3):974-981. [12] 李宗英.百脉根种质资源缩合单宁评价及关键基因的挖掘[D].兰州:甘肃农业大学2019:10-49. [13] 赵海明,孙桂枝,王学敏,等.百脉根种质苗期抗旱性鉴定及综合评价[J].草原与草坪,2011,31(06):18-26. [14] 王丹.百脉根种质评价、创制与LcSRA13耐盐调控机理研究[J].兰州:兰州大学,2018:14-90. [15] 张华锋,季彪俊.植物种质资源研究概论[J].宜春学院学报,2005,(02):92-94+110. [16] 李炜,毕影东,刘淼,等.寒地野生大豆表型性状的评价和聚类分析[J].中国种业,2021,(12):73-79. [17] 王晓鸣,邱丽娟,景蕊莲,等.作物种质资源表型性状鉴定评价:现状与趋势[J].植物遗传资源学报,2022,23(01):12-20. [18] 张英俊,任继周,王明利,等.论牧草产业在我国农业产业结构中的地位和发展布局[J].中国农业科技导报,2013,15(04):61-71. [19] 吴雨涵.高寒区无芒雀麦种质资源饲草生产性能评价筛选及抗旱性研究[D].西宁:青海大学,2023:9-51. [20] 刘翔,韩梅,严清彪,等.基于灰色关联分析的肥饲兼用型箭筈豌豆种质资源评价[J].草业科学,2024,41(01):106-116. [21] 李胜军,李诚,易展平,等.长沙县9个早稻品种的生态适应性鉴定与评价[J].湖南农业科学,2024,(02):10-13. [22] 焦芳婵,贺晓辉,刘子仪,等.不同雪茄烟品系在云南烟区的生态适应性评价[J].作物研究,2023,37(04): 94-399+408. [23] 李龙,宋慧,张扬,等.不同生态区谷子品种在华北地区农艺性状及适应性评价[J].江苏农业科学,2023,51(14):90-94. [24] 张皖清,郝培尧,滕依辰,等.北京郊野地区园林地被植物综合评价与分级[J].西北林学院学报,2015,30(05):252-257. [25] 吴昊.基于AHP的武汉市宿根地被植物综合评价[J].中国农学通报,2020,36(07):63-68. [26] 任倩倩,张京伟,孙纪霞,等.二十五种绣球种质资源分析和综合评价[J].浙江农业学报,2021,33(06):1012-1024. [27] 魏忠芬,李慧琳,奉斌,等.贵州紫苏种质资源表型性状的遗传多样性[J].西南农业学报,2017,30(01):45-52. [28] 谭秦亮,朱鹏锦,李穆,等.基于主成分与聚类分析的甘蔗新品种(系)主要农艺及产量性状的评价[J].热带农业科学,2022,42(03):32-38. [29] 贾喜午,周坚,吕庆云,等.基于主成分分析法的复合营养米评价模型的建立[J].中国粮油学报,2015,30(07):123-127. [30] 闻小霞,杨中旭,李庆恩,等.基于主成分分析的山东省中熟棉花新品种(系)的综合评价[J].中国种业,2024,(04):93-97+102. [31] 贺朋飞,陈丽芳,李成悦,等.43个番茄品种的品质分析与评价[J].分子植物育种,2024:1-24. [32] 陈明俊,罗小波,曹贞菊,等.基于主成分分析和隶属函数法对不同马铃薯酶促褐变评价[J].中国蔬菜,2024:1-8. [33] 夏华美,曹志坚,于铭玥,等.30份草地早熟禾苗期耐盐性综合评价:[J].草业科学,2023,40(12): 3124-3137. [34] 田斌,马超,耿怡雯,等.基于主成分分析法评价不同牧草营养成分饲用价值[J].饲料工业,2024,45(07):15-19. [35] 张鹏,鲍根生,刘文辉,等.高寒区41份春蚕豆种质资源农艺性状的遗传多样性分析[J].草业科学,2023,40(07):1844-1855. [36] 谭学瑞,邓聚龙.灰色关联分析:多因素统计分析新方法[J].统计研究,1995,(03):46-48. [37] 张鹤山,张德罡,刘晓静,等.灰色关联度分析法对不同处理下草坪质量的综合评判[J].草业科学,2007,(11):73-76. [38] 刘飞渡,王正超,韩蕾.衡阳市区22种观花草本植物综合评价研究[J].西部林业科学,2015,44(02): 87-90+95. [39] 高凯,潘月,叶康,等.25个大叶绣球品种的园林应用价值综合评价[J].林业科技通讯,2022,(05): 25-29. [40] 白露,张志国,栾东涛,等.基于层次分析法的八仙花引种适应性综合评价[J].北方园艺,2015,(24): 40-45. [41] 梁素林,储博彦,尹新彦,等.不同栽培基质对盆栽八仙花生长及成花的影响[J].河北林业科技,2008,(02): 2-3. [42] 李亚娇,马培杰,罗文举,等.干旱胁迫对百脉根形态和生理指标的影响[J].黑龙江畜牧兽医,2023,(24): 85-93. [43] Abraham E M, Ganopoulos I, Giagourta P, et al. Genetic diversity of Lotus corniculatus in relation to habitat type, species composition and species diversity[J]. Biochemical Systematics and Ecology, 2015, (63):59-67. [44] 刘法涛,杨志忠,条了汉.百脉根在改良草场中的前景初探[J].中国草地学报,1996,(03):42-44. [45] 丁玉川,俞小秋.百脉根的综合利用[J].植物杂志,1998,(02):6-7. [46] 王怀禄.百脉根的研究[J].中国草原,1986,(02):33-37. [47] 崔亚飞.百脉根早熟品系特征特性的研究及再生体系建立[D].甘肃:甘肃农业大学,2009:12-61. [48] 张鸭关,匡崇义,陈功.云南引进帝国百脉根的研究[J].四川草原,2004,(12):9-11. [49] 闫向忠,曹致中,冯玉兰,等.百脉根早熟品系农艺性状初报[J].甘肃农业大学学报,2007,(04):92-96. [50] 于洁,李鸿雁,李俊,等.2个百脉根品系种子萌发期的耐盐性评价[J].草地学报,2018,26(02):414-419. [51] 张本瑜.73份俄罗斯百脉根的营养价值和相对饲喂价值的评价[J].草原与草坪,2017,37(01):67-78. [52] 谢文辉,赵文武,王雷挺,等.22份百脉根种质资源表型数量性状的遗传多样性分析[J].草地学报,2023,31(01):173-179. [53] 龙忠富,唐成斌,孟军江,等.喀斯特山区坡耕地水土保持型牧草筛选试验研究[J].贵州科学,2007,(S1)483-493. [54] 罗孝伦.百脉根在贵阳花溪高坡的引种观察[J].贵州畜牧兽医,2000,(01):6. [55] 穆尼热·买买提,田聪,朱忠艳,等.观赏牧草——百脉根[J].中国花卉园艺,2017,(08):45. [56] 王国平,肖蓉,李春燕,等.枣茎段再生体系建立的研究[J].中国农学通报,2011,27(31):184-188. [57] 袁澍,贾勇炯,林宏辉.诱导植物体细胞胚发生的几个生理因素[J].植物生理学通讯,2003,(05):508-512. [58] 付丽,张东向,刘安奇,等.不同激素对甘草带芽茎段诱导丛生芽的影响[J].湖北农业科学,2021,60(13):138-142. [59] 马彦.百脉根草坪草的建植及园林绿化应用[J].林业实用技术,2012,(01):53. [60] 张晓娇,李瑞娟,额尔德尼,等.百脉根等宿根地被低温适应性及园林应用前景研究 [J].安徽农业科学,2012,40(28):13871-13873. [61] 张旻桓.湖南牡丹资源遗传多样性及耐热性研究[D].长沙:中南林业科技大学,2019:15-168. [62] Merkouropoulos G, Hilioti Z, Abraham E M, et al. Evaluation of Lotus corniculatus L accessions from different locations at different altitudes reveals phenotypic and genetic diversity[J].Grass and Forage Science, 2018, 72(4):851-856. [63] 袁涛,王莲英.我国芍药属牡丹组革质花盘亚组的形态学研究[J].园艺学报,2003,(02):187-191. [64] 董胜君.山杏种质资源遗传多样性及优特种质发掘研究[D].沈阳农业大学,2020:13-136. [65] 尹明宇.西南桦种质资源遗传多样性评价[D].昆明:中国林业科学研究院,2020:18-111. [66] 唐华江.毛花雀稗遗传多样性研究[D].贵阳:贵州大学,2017:8-49. [67] 黄月琴.基于表型性状与SSR、SRAP标记的苦瓜种质资源遗传多样性分析[D].南昌:江西农业大学,2015:7-54. [68] Varshney R K, Graner A, Sorrells M E. Genic microsatellite markers in plants: features and applications[J]. Trends in Biotechnology, 2005, 23(1):48-55. [69] Arshney R K, Mahendar T, Aggarwal R K, et al. Genic molecular markers in plants: development and applications[J]. Genomics-Assisted Crop Improvement, 2007, (1):13-29. [70] 贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,(04):2-11. [71] Wolff K. RAPD analysis of sporting and chimerism in chrysanthemum[J]. Euphytica, 1996, 89)(2):159-164. [72] Martín C, Uberhuaga E, Pérez C. Application of RAPD markers in the characterisation of chtysanthemum varieties and the assement of somaclonal variation[J]. Euphytica.2002, 127(2):247-253. [73] Klie M, Menz I, Linde M, et al. Lack of structure in the gene pool of the highly polyploid ornamental chrysanthemum[J]. Molecular Breeding, 2013, 32(2): 339-348. [74] Chen Y, Zhou R, Lin X, et al. ISSR analysis of genetic diversity in sacred lotus cultivars[J]. Aquatic Botany, 2008, 89 (3):311-316. [75] Cao D, Lin Z, Huang L, et al. Genome-wide analysis of AP2/ERF superfamily in lotus (Nelumbo nucifera) and the association between NnADAP and rhizome morphology[J]. BioMed Central Genomics, 2021, 22(171):1-12. [76] Savo Sardaro M L, Atallah M, Tavakol E, et al. Diversity for AFLP and SSR in natural populations of Lotus corniculatus L. from Italy[J]. Crop Science, 2008, 48 (3 ):1080-1089. [77] Röder M S, Plaschke J, König S U, et al. Abundance, variability and chromosomal location of microsatellites in wheat[J]. Molecular Genetics & Genomic Medicine. 1995, 3(24):327-333. [78] Depeiges A, Goubely C, Lenoir A, et al. Identification of the most represented repeated motifs[J].Theoretical and Applied Genetics, 1995, (91):160-168. [79] Weber J L, May P E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction[J].American Journal of Human Genetics, 1989, 44(3):388-396. [80] Litt M, Luty J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene[J]. American Journal of Human Genetics, 1989, 44(3):397-401. [81] Hamada H, Petrino M G, Kakunaga T. A novel repeated element with Z-DNA-forming potential is widely found in evolution diverse eukaryotic genomes[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982,, 79(21):6465-6469. [82] Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes[J]. Nucleic Acid Research. 1984, 12(10):4127-4138. [83] Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation: a review[J]. Molecular Ecology, 2010, 11(1):1-16. [84] Ramesh P, Mallikarjuna G, Sameena S, et al. Advancements in molecular marker technologies and their applications in diversity studies[J]. Journal of Biosciences, 2020, 45 (1):319-337. [85] Song X, Zhang C, Li Y, et al. SSR Analysis of Genetic Diversity Among 192 Diploid Potato Cultivars[J]. Horticultural Plant Journal, 2016, 2(3):163-171. [86] Morgante M, Hanafey M, Powel W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes[J]. Nature genetics, 2002, 30(2):194-200. [87] 郑卓,张天舒,李华,等.基于SSR分子标记吉安地区的水稻亲缘关系鉴定分析[J].井冈山大学学报(自然科学版),2024,45(01):48-53. [88] 仲义,吕庆雪,丁增伟,等.利用SSR分子标记对13份玉米自交系的遗传多样性分析[J].分子植物育种,2024:1-9. [89] 王健胜,侯桂玲,王二伟,等.基于SSR标记的100份国内外小麦种质遗传多样性分析及DNA指纹图谱构建[J].山东农业科学,2023,55(09):17-24. [90] Zhu Y, Ma T, Lin Y, et al. SSR molecular marker developments and genetic diversity analysis of Zanthoxylum nitidum (Roxb.)[J]. Scientific Reports, 2023, 26(13):20767. [91] 赵文武.百脉根遗传多样性分析及优质种质资源筛选[D].贵州:贵州大学,2023:10-56. [92] Kramina T E, Degtjareva G V, Meschersky I G. Analysis of hybridization between tetraploid Lotus corniculatus and diploid Lotus stepposus (Fabaceae-Loteae): morphological and molecular aspects[J].Plant Systematics and Evolution, 2011, 298(3):629-644. [93] Alem D, Narancio R, Dellavalle P D, et al., Molecular characterization of Lotus corniculatus cultivars using transferable microsatellite markers[J]. Plant Brreeding, Genetics and Genetic resources. 2011, 38(33): 453-461. [94] 徐悦.基于表型和SSR标记的陇南油橄榄品种鉴定与遗传多样性分析[J].林业科学研究,2022,35(4):33-43. [95] 武敬也,吴欣明,石永红,等.180份饲用燕麦种质资源表型遗传多样性研究[J].草地学报,2023,31(5):1501-1510. [96] 张琦,魏臻武,闫天芳,等.燕麦种质资源农艺性状遗传多样性的鉴定评价[J].草地学报,2021,29(2):309-316. [97] 刘啸.基于西安地区生态适应性的观赏草选择及景观应用研究[D].西安:西安建筑科技大学,2023,9-120. [98] 田利颖.北方城市地被植物应用质量评价方法探讨[J].河北林果研究,2007,22(03):329-335. [99] 丁华娇,汪弘毅.杭州市野生观花型地被植物调查及评价筛选[J].浙江农业科学,2021,62(09):1777-1780. [100] 王松,武敏,王君,等.太原市34种引进地被植物景观价值的综合评价[J].山西农业科学,2020,48(02):249-254. [101] 熊肸,陈榕,姜帅,等.张家界市园林地被植物景观质量评价与应用研究[J].水土保持通报,2018,38(05):307-312. [102] 余莉.地被植物评价标准研究[J].应用研究,2005,503-507. [103] 胡利珍.草本地被植物在湖南引种、筛选及应用评价[C].中国草学会2013学术年会论文集,2013:407-413. [104] 唐东芹,张思平,高本年.用AHP法对桂花品种应用的综合评价[J].江苏林业科技,1998,25(01):12-17. [105] 李梅春.基于层次权重分析技术的垂直绿化植物资源优选[J].武汉理工大学学报(信息与管理工程版),2004,26(03):165-167. [106] 封培波,胡永红,张启翔,等.上海露地宿根花卉景观价值的综合评价[J].北京林业大学学报,2003,25(06):84-87. [107] 夏冰,董丽.北京地区露地宿根花卉的花境应用价值综合评价[J].北方园艺,2010,(09):104-108. [108] 王贺亚,罗静静,崔瑜,等.基于灰色关联度和主成分分析的塔额盆地甜菜品种的适应性分析[J].黑龙江农业科学,2024,(03):12-16. [109] 刘晓宏,刘金刚,宋殿秀,等.灰色关联度分析在切花向日葵综合评价中的应用 [J].园艺与种苗,2024,44(02):4-6+42. [110] Behera T K, Singh A K, Staub J E. Comparative analysis of genetic diversity in Indian bitter gourd (Momordica charantia L.) using RAPD and ISSR markers for developing crop improvement strategies[J]. Scientia Horticulturae, 2008, 115(3): 209-217. [111] Menz M A, Klein R R, Unruh N C, et al. Genetic diversity of public inbreds of sorghum determined by mapped AFLP and SSR Markers[J]. Crop Science, 2004, 44(4): 1236-1244. [112] 张雷凡.基于观赏的石蒜属植物遗传多样性研究[D].杭州:浙江林学院,2007,8-60. [113] 赵丽丽.百脉根种子萌发期抗旱性综合评价[J].贵州农业科学,2012,40(9):56-60. [114] Liu L, Guo W, Zhu X, et al. Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L[J]. Theor Appl Genet, 2003, 106: (03): 461-469. [115] Nakamura Y, Kaneko T, Asamizu E, et al. Structural analysis of a Lotus japonicus genome II.sequence features and mapping of fifty-six TAC clones which coverthe 6.5 Mb regions of the genome[J]. DNA Research, 2002, 9(2): 63-70. [116] 刘毅强. 20份马铃薯品种(系)指纹图谱构建和遗传多样性分析[J].江苏农业科学,2022,50(21):41-46. [117] 骆善伟.中能碳离子束辐射百脉根突突变体库创制及花瓣衰老延迟突变体机理研究[D].北京:中国科学院大学,2018:12-82. [118] 刘胜男.7个苜蓿品种指纹图谱构建及其鉴定方法比较[D].内蒙古:内蒙古农业大学,2018:8-42. [119] 李倩,若扎·扎尔汗,李陈建,等.36份新疆野生黄花苜蓿SSR水平的差异性研究[J].中国草地学报,2021,43(02):1-7. [120] Tian H L, Wang F G, Zha J R, et al. Development of maize SNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties[J]. Mol Breed, 2015, 6 (35): 136. [121] 叶新如.基于EST-SSR标记的MCID法鉴定冬瓜种质资源[J].核农学报,2021,35(4):780-788 .[122] Natalia N, Julieta M, Marcelo H, et al. Cost efficient potato (Solanum tuberosum L.) cultivar identification by microsatellite amplification[J]. Potato Research, 2002(45): 131-138. [123] Bibi S, Khan I A, Dahot M U, et al. Estimation of genetic variability among elite wheat genotypes using random amplified polymorphic dna (rapd) analysis[J].Pakistan Journal of Botany, 2012, 44(6):2033-2040. [124] 崔洪宇.16个黄瓜杂交种SSR数字指纹图谱的构建[J].分子植物育种,2023,21(17):5692-5700. [125] 安苗,王彤彤,付逸婷.52个马铃薯遗传多样性分析及SSR分子身份证构建[J].生物技术通报,2023,39(12)60-67. |
中图分类号: | S68 |
开放日期: | 2024-06-19 |